ASYMPTOTICS OF EIGENVALUES OF THE LAPLACIAN WITH SMALL SPHERICAL ROBIN BOUNDARY

Susumu ROPPONGI

(Received June 8, 1992)

1. Introduction

Let Ω be a bounded domain in \boldsymbol{R}^{N} with C^{∞} boundary $\partial \Omega$. Let \widetilde{w} be a fixed point in Ω and $B(\varepsilon, \widetilde{w})$ be the ball of radius ε with the center \widetilde{w}. We put $\Omega_{\mathrm{a}}=\Omega \backslash \overline{\boldsymbol{B}(\varepsilon, \tilde{w})}$. Consider the following eigenvalue problem

$$
\begin{array}{cll}
-\Delta u(x)=\lambda u(x) & x \in \Omega_{\mathfrak{z}} \tag{1.1}\\
u(x)=0 & x \in \partial \Omega \\
u(x)+k \varepsilon^{\sigma} \frac{\partial u}{\partial \nu_{x}}(x)=0 & \left.x \in \partial B_{(}^{\prime} \varepsilon, \widetilde{w}\right) .
\end{array}
$$

Here k denotes a positive constant. And σ is a real number. Here $\partial / \partial \nu_{x}$ denotes the derivative along the exterior normal direction with respect to Ω_{e}.

Let $\mu_{j}(\varepsilon)>0$ be the j-th eigenvalue of (1.1). Let μ_{j} be the j-th eigenvalue of the problem

$$
\begin{align*}
-\Delta u(x) & =\lambda u(x) & & x \in \Omega \tag{1.2}\\
u(x) & =0 & & x \in \partial \Omega .
\end{align*}
$$

Let $G(x, y)$ (resp, $G_{\mathrm{e}}(x, y)$) be the Green function of the Laplacian in Ω (resp. Ω_{q}) associated with the boundary condition (1.2) (resp. (1.1)).

Main aim of this paper is to show the following Theorems. Let $\varphi_{i}(x)$ be the L^{2}-normalized eigenfunction associated with μ_{j}. We have the following.

Theorem 1. Assume $N=3$. We fix j and $\sigma \geqq 1$. Suppose that μ_{j} is simple. Then, for any fixed $s \in(0,1)$,

$$
\begin{array}{ll}
\mu_{j}(\varepsilon)=\mu_{j}+P_{j} \varepsilon+O\left(\varepsilon^{2-s}\right) & (\quad \sigma \geqq 2) \tag{1.3}\\
\mu_{j}(\varepsilon)=\mu_{j}+P_{j} \varepsilon+O\left(\varepsilon^{\sigma}\right) & (1<\sigma<2) \\
\mu_{j}(\varepsilon)=\mu_{j}+(1+k)^{-1} P_{j} \varepsilon+O\left(\varepsilon^{2-s}\right) & (\quad \sigma=1),
\end{array}
$$

where

$$
P_{j}=4 \pi \varphi_{j}(\tilde{w})^{2}
$$

Theorem 2. Assume $N=3$. We fix j and $\sigma<1$. Suppose that μ_{j} is simple. Then,

$$
\begin{array}{ll}
\mu_{j}(\varepsilon)=\mu_{j}+Q_{j} \varepsilon^{2-\sigma}+O\left(\varepsilon^{3-2 \sigma}\right) & (0 \leqq \sigma<1) \tag{1.4}\\
\mu_{j}(\varepsilon)=\mu_{j}+Q_{j} \varepsilon^{2-\sigma}+R_{j} \varepsilon^{3}+O\left(\varepsilon^{3-2 \sigma}\right) & (-1 / 2<\sigma<0) \\
\mu_{j}(\varepsilon)=\mu_{j}+Q_{j} \varepsilon^{2-\sigma}+R_{j} \varepsilon^{3}+O\left(\varepsilon^{4}\right) & (-2<\sigma \leqq-1 / 2) \\
\mu_{j}(\varepsilon)=\mu_{j}+R_{j} \varepsilon^{3}+O\left(\varepsilon^{4}\right) & (\sigma \leqq-2),
\end{array}
$$

where

$$
\begin{aligned}
& Q_{j}=(4 \pi / k) \varphi_{j}(\widetilde{w})^{2} \\
& R_{j}=-\pi\left(2\left|\operatorname{grad} \varphi_{j}(\widetilde{w})\right|^{2}-(4 / 3) \mu_{j} \varphi_{j}(\widetilde{w})^{2}\right)
\end{aligned}
$$

Remark. The case $N=2$ is treated in Ozawa [10] and [11]. The singularity of $G(x, y)$ near $x=y$ in the case $N=3$ is stronger than that of the case $N=2$. When we use the Sobolev embedding; $W^{2, p}(\Omega) \hookrightarrow C^{2-N / p}(\bar{\Omega})$, we must take p larger as N increases. Therefore we may need some change of the mehtod devloped in the above papers.

When $N \geqq 4$, we do not know whether the method we have used can be applied or not.

For the related papers we have Besson [2], Chavel and Feldman [3], Ozawa [8], [9], Rauch and Taylor [12] and the references in the above papers.

For other related problems on singular variation of domains the readers may refer to Arrieta, Hale and Han [1], Jimbo [4], Jimbo and Morita [5]. The Poisson equation with many small Robin holes is discussed in Kaizu [6], [7].

2. Outline of proof of Theorem 1 and Theorem 2

Hereafter we assume $N=3$.
We introduce the following kernel $p_{\mathrm{e}}(x, y)$.

$$
\begin{align*}
p_{\mathrm{z}}(x, y)=G(x, y) & +g(\varepsilon) G(x, \tilde{w}) G(\tilde{w}, y) \tag{2.1}\\
& +h(\varepsilon)\left\langle\nabla_{w} G(x, \tilde{w}), \nabla_{w} G(\widetilde{w}, y)\right\rangle \\
& +i(\varepsilon)\left\langle H_{w} G(x, \widetilde{w}), H_{w} G(\widetilde{w}, y)\right\rangle
\end{align*}
$$

where

$$
\begin{aligned}
& \left\langle\nabla_{w} u(\widetilde{w}), \nabla_{w} v(\widetilde{w})\right\rangle=\left.\sum_{n=1}^{3} \frac{\partial u}{\partial w_{n}} \frac{\partial v}{\partial w_{n}}\right|_{w-\tilde{w}} \\
& \left\langle H_{w} u(\widetilde{w}), H_{w} v(\widetilde{w})\right\rangle=\left.\sum_{m, n=1}^{3} \frac{\partial^{2} u}{\partial w_{m} \partial w_{n}} \frac{\partial^{2} v}{\partial w_{m} \partial w_{n}}\right|_{w=\tilde{w}}
\end{aligned}
$$

when $w=\left(w_{1}, w_{2}, w_{3}\right)$ is an orthonormal frame of \boldsymbol{R}^{3}. Here $g(\varepsilon), h(\varepsilon), i(\varepsilon)$ are determined so that

$$
\begin{equation*}
p_{\mathrm{e}}(x, y)+k \varepsilon^{\sigma} \frac{\partial}{\partial \nu_{x}} p_{\mathrm{z}}(x, y) \quad x \in \partial B(\varepsilon, \widetilde{w}) \tag{2.2}
\end{equation*}
$$

is small in some sense.
If we put

$$
\begin{align*}
g(\varepsilon) & =-\left(\gamma+(4 \pi \varepsilon)^{-1}+k(4 \pi)^{-1} \varepsilon^{\sigma-2}\right)^{-1} & & \tag{2.3}\\
h(\varepsilon) & =\left(k \varepsilon^{\sigma}-\varepsilon\right) /\left((4 \pi)^{-1} \varepsilon^{-2}+k(2 \pi)^{-1} \varepsilon^{\sigma-3}\right) & & (\sigma<1) \tag{2.4}\\
& =0 & & (\sigma \geqq 1)
\end{align*}
$$

and

$$
\begin{align*}
i(\varepsilon) & =k \varepsilon^{\sigma+1} /\left(3(4 \pi)^{-1} \varepsilon^{-3}+9 k(4 \pi)^{-1} \varepsilon^{\sigma-4}\right) & & (\sigma<1) \tag{2.5}\\
& =0 & & (\sigma \leqq 1),
\end{align*}
$$

the above aim for (2.2) to be small is attained.
Here

$$
\gamma=\lim _{x \rightarrow \tilde{w}}\left(G(x, \tilde{w})-(4 \pi)^{-1}|x-\widetilde{w}|^{-1}\right)
$$

We put

$$
\begin{aligned}
& (\boldsymbol{G} f)(x)=\int_{\Omega} G(x, y) f(y) d y \\
& \left(\boldsymbol{G}_{\mathrm{e}} f\right)(x)=\int_{\mathbf{\Omega}_{\mathrm{z}}} G_{\mathrm{z}}(x, y) f(y) d y
\end{aligned}
$$

and

$$
\left(\boldsymbol{P}_{\mathrm{e}} f\right)(x)=\int_{\mathbf{\Omega}_{\mathbf{e}}} p_{\mathrm{e}}(x, y) f(y) d y
$$

Let T and T_{z} be operators on Ω and Ω_{e}, respectively. Then, $\|T\|_{p},\left\|T_{\mathrm{e}}\right\|_{\mathrm{D}, \mathrm{e}}$ denotes the operator norm on $L^{p}(\Omega), L^{p}\left(\Omega_{\mathrm{q}}\right)$, respectively. Let f and f_{z} be functions on Ω and Ω_{q}, respectively. Then, $\|f\|_{p},\left\|f_{\mathrm{z}}\right\|_{p, \mathrm{e}}$ denotes the norm on $L^{p}(\Omega), L^{p}\left(\Omega_{\mathrm{e}}\right)$, respectively.

At first we outline the proof of Theorem 1. A crucial part of our proof of Theorem 1 is the following.

Theorem 3. Fix $\sigma \geqq 1$ and $s \in(0,1)$. Then there exists a constant C_{s} independent of ε such that

$$
\begin{equation*}
\left\|\left(\boldsymbol{P}_{\mathrm{z}}-\boldsymbol{G}_{\mathrm{e}}\right) f\right\|_{2, \mathrm{e}} \leqq C_{s} \varepsilon^{2-s}\|f\|_{p, \mathrm{e}} \tag{2.6}
\end{equation*}
$$

holds for any $f \in L^{p}\left(\Omega_{\mathrm{e}}\right)(\boldsymbol{p}>3)$.
We put

$$
\begin{align*}
\widetilde{p}_{\mathrm{e}}(x, y)=G(x, y) & +g(\varepsilon) G(x, \tilde{w}) G(\tilde{w}, y) \chi_{\mathfrak{z}}(x) \chi_{\mathrm{z}}(y) \tag{2.7}\\
& +h(\varepsilon)\left\langle\nabla_{w} G(x, \widetilde{w}), \nabla_{w} G(\widetilde{w}, y)\right\rangle \chi_{\mathrm{z}}(x) \chi_{\mathfrak{\ell}}(y) \\
& +i(\varepsilon)\left\langle H_{w} G(x, \widetilde{w}), H_{w} G(\widetilde{w}, y)\right\rangle \chi_{\mathrm{z}}(x) \chi_{\mathrm{z}}(y)
\end{align*}
$$

for the characteristic function $\chi_{\mathrm{z}}(x)$ of $\bar{\Omega}_{\mathrm{e}}$.

And we put

$$
\left(\tilde{\boldsymbol{P}}_{\mathrm{z}} f\right)(x)=\int_{\Omega} \tilde{p}_{\mathrm{e}}(x, y) f(y) d y
$$

Since $\boldsymbol{G}_{\boldsymbol{\varepsilon}}$ is approximated by $\boldsymbol{P}_{\mathrm{\varepsilon}}$ and the difference between $\boldsymbol{P}_{\boldsymbol{\varepsilon}}$ and $\tilde{\boldsymbol{P}}_{\boldsymbol{\varepsilon}}$ is small in some sense, we know that everything reduces to our investigation of the perturbative analysis of $\boldsymbol{G} \rightarrow \tilde{\boldsymbol{P}}_{\mathbf{z}}$.

Next we outline the proof of Theorem 2. One important part of our proof of Theorem 2 is the following.

Theorem 4. Fix $\sigma<1$. Then, there exists a constant C such that

$$
\begin{align*}
\left\|\left(\boldsymbol{P}_{\mathrm{z}}-\boldsymbol{G}_{\mathrm{z}}\right)\left(\chi_{\mathrm{e}} \varphi_{j}\right)\right\|_{2, \mathrm{e}} \leqq C \varepsilon^{4-\sigma} & & (0 \leqq \sigma<1) \tag{2.8}\\
\leqq C \varepsilon^{4} & & (\quad \sigma<0)
\end{align*}
$$

hold.
We fix j and put

$$
\begin{align*}
\bar{p}_{\mathrm{e}}(x, y)=G(x, y) & -(4 \pi / 3) \mu_{j} \varepsilon^{3} G(x, \widetilde{w}) G(\widetilde{w}, y) \xi_{\mathrm{e}}(x) \xi_{\mathrm{e}}(y) \tag{2.9}\\
& +g(\xi) G(x, \tilde{w}) G(\widetilde{w}, y) \xi_{\mathrm{e}}(x) \xi_{\mathrm{e}}(y) \\
& +h(\varepsilon)\left\langle\nabla_{w} G(x, \widetilde{w}), \nabla_{w} G(\widetilde{w}, y)\right\rangle \xi_{\mathrm{e}}(x) \xi_{\mathrm{e}}(y) \\
& +i(\varepsilon)\left\langle H_{w} G(x, \tilde{w}), H_{w} G(\widetilde{w}, y)\right\rangle \xi_{\mathrm{e}}(x) \xi_{\mathrm{e}}(y),
\end{align*}
$$

where $\xi_{\mathrm{z}}(x) \in C^{\infty}\left(\boldsymbol{R}^{3}\right)$ satisfies $\left|\xi_{\mathrm{z}}(x)\right| \leqq 1, \xi_{\mathrm{z}}(x)=1$ for $x \in \boldsymbol{R}^{3} \backslash \overline{\boldsymbol{B}(\varepsilon, \tilde{w})}, \xi_{\mathrm{z}}(x)=0$ for $x \in B(\varepsilon / 2, \tilde{w})$ and $\xi_{\mathrm{\varepsilon}}(x-\tilde{w})$ is rotationary invariant.
Furthermore we put

$$
\left(\overline{\boldsymbol{P}}_{\mathrm{e}} f\right)(x)=\int_{\mathrm{Q}} \overline{\mathrm{e}}_{\mathrm{e}}(x, y) f(y) d y
$$

The other important part of our proof of Theorem 2 is the following.
Theorem 5. Fix $\sigma<1$. Then, there exists a constant C such that

$$
\begin{align*}
\left\|\left(\chi_{\mathrm{z}} \bar{P}_{\mathrm{z}}-\boldsymbol{P}_{\mathrm{e}} \chi_{\mathrm{z}}\right) \varphi_{j}\right\|_{2, \mathrm{z}} & \leqq C \varepsilon^{4-\sigma} & & (0<\sigma<1) \tag{2.10}\\
& \leqq C \varepsilon^{4} & & (r \leqq 0)
\end{align*}
$$

hold.
Since (2.8) and (2.10) are both $o\left(\varepsilon^{3}+\varepsilon^{2-\sigma}\right)$, we know that everything reduces to our investigation of the perturbative analysis of $\boldsymbol{G} \rightarrow \overline{\boldsymbol{P}}_{\boldsymbol{\varepsilon}}$.

3. Estimation of L^{p}-norm

We write $B(\varepsilon, \widetilde{w})=B_{\varepsilon}$. In this section we show the following propositions.

Proposition 3.1. Fix $\sigma \geqq 1$. Assume that $u_{\mathrm{z}}(x) \in C^{\infty}\left(\bar{\Omega}_{\mathrm{z}}\right)$ satisfies

$$
\begin{align*}
& \Delta u_{z}(x)=0 \tag{3.1}\\
& u_{\mathrm{z}}(x)=0 \quad x \in \Omega_{\varepsilon} \\
& u_{\varepsilon}(x)+k \varepsilon^{\sigma} \frac{\partial u_{z}}{\partial \nu_{x}}(x)=M \Omega \\
&
\end{align*}
$$

We fix $s \in(0,1)$. Then,

$$
\begin{equation*}
\left\|u_{\mathrm{z}}\right\|_{2, \mathrm{z}} \leqq C_{s} \varepsilon^{1-s} \underset{\omega}{\operatorname{Max}}|M(\omega)| \tag{3.2}
\end{equation*}
$$

holds for a constant C_{s} independent of ε.
Proposition 3.2. Fix $\sigma<2$. Under the same assumptions of u_{z} in Proposition 3.1,

$$
\begin{equation*}
\left\|u_{\mathrm{e}}\right\|_{2, \mathrm{e}} \leqq C \varepsilon^{2-\sigma} \operatorname{Max}_{\omega}|M(\omega)| \tag{3.3}
\end{equation*}
$$

holds for a constant C independent of ε.
We take the same procedure as in Ozawa [9, section 1, pp. 260-262] to prove the above Propositions. But we need some change of the method developed in the above paper, since we put the Robin condition on ∂B_{z} and we assume that $N=3$.

At first we prepare two Lemmas.
Lemma 3.3. Fix $\alpha \in C^{\infty}\left(S^{2}\right)$ and $q>1$. Then there exists at least one solution of

$$
\begin{align*}
& \Delta v_{\mathrm{z}}(x)=0 \quad x \in R^{3} \backslash \bar{B}_{\mathrm{z}} \tag{3.4}\\
& v_{\mathrm{z}}(x)+k \varepsilon^{\sigma} \frac{\partial v_{\mathrm{z}}}{\partial \nu_{x}}(x)=\alpha(\omega) \quad x=\widetilde{w}+\varepsilon \omega \in \partial B_{\mathrm{z}}\left(\omega \in S^{2}\right) \tag{3.5}
\end{align*}
$$

satisfying

$$
\begin{align*}
& \left|v_{\mathrm{z}}(x)\right| \leqq C \varepsilon^{2-\sigma} \operatorname{Max}_{\omega}|\alpha(\omega)| r^{-1}(\log (r /(r-\varepsilon)))^{1 / 2} \tag{3.6}\\
& \left|v_{\mathrm{z}}(x)\right| \leqq C_{q} \varepsilon^{1-\sigma / q} \operatorname{Max}_{\omega}|\alpha(\omega)|(r-\varepsilon)^{-1 / q^{\prime}} \tag{3.7}
\end{align*}
$$

for $r=|x-\tilde{w}|>\varepsilon$ and

$$
\begin{equation*}
\left\|v_{\mathrm{e}}\right\|_{2, \mathrm{e}} \leqq C_{q}^{\prime} \varepsilon^{1-(\sigma-1) /(2 q)} \operatorname{Max}_{\omega}|\alpha(\omega)| \tag{3.8}
\end{equation*}
$$

where q^{\prime} satisfies $(1 / q)+\left(1 / q^{\prime}\right)=1$.
Proof. We put $x=\tilde{w}+r \omega\left(\omega \in S^{2}\right)$ and

$$
\omega=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta) \quad(0 \leqq \theta<\pi, 0 \leqq \varphi<2 \pi) .
$$

Let $P_{n}(z)$ be the Legendre polynomial and $P_{n}^{m}(z)$ be the associated Legendre function, that is,

$$
P_{n}^{m}(z)=\left(1-z^{2}\right)^{m / 2} \cdot d^{m} P_{n}(z) / d z^{m} \quad\left(|z|<1, m \in Z_{+}\right) .
$$

It is well-known that $\left\{P_{n}^{m}(\cos \theta) \cos m \varphi, P_{n}^{m}(\cos \theta) \sin m \varphi ; 0 \leqq m \leqq n\right\}_{n=0}^{\infty}$ is a complete orthogonal system of $L^{2}\left(S^{2}\right)$ consisting of eigenfunction of the LaplaceBeltrami operator $\Delta_{S^{2}}$ whose eigenvalue is $-n(n+1)$.

Therefore we have the Fourier expansion

$$
\begin{equation*}
\alpha(\omega)=\sum_{n=0}^{\infty} Y_{n}(\theta, \varphi) \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{n}(\theta, \varphi)=\sum_{m=0}^{n}\left(a_{n, m} \cos m \varphi+b_{n, m} \sin m \varphi\right) P_{n}^{m}(\cos \theta) \tag{3.10}
\end{equation*}
$$

By the Parseval relation, we see

$$
\begin{align*}
& \sum_{n=0}^{\infty}(2 n+1)^{-1}\left(a_{n, 0}^{2}+\sum_{m=1}^{n}((n+m)!/ 2 \cdot(n-m)!)\left(a_{n, m}^{2}+b_{n, m}^{2}\right)\right) \tag{3.11}\\
= & C\|\alpha\|_{L^{2}\left(s^{2}\right) \leqq}^{2} \leqq C^{\prime}\left(\operatorname{Max}_{\infty}|\alpha(\omega)|\right)^{2} .
\end{align*}
$$

We put

$$
v_{\mathrm{e}}(x)=\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n}\left(s_{n, m} \cos m \varphi+t_{n, m} \sin m \varphi\right) P_{n}^{m}(\cos \theta)\right) r^{-(n+1)}
$$

Then, it satisfies $\Delta v_{\mathrm{e}}(x)=0$ for $x \in \boldsymbol{R}^{3} \backslash \bar{B}_{\mathrm{e}}$.
We see that

$$
\begin{aligned}
& v_{\mathrm{e}}(x)+k \varepsilon^{\sigma} \frac{\partial v_{\mathrm{z}}}{\partial \nu_{x}}(x)_{\mid x \in \partial B_{\mathrm{e}}}=\alpha(\omega) \\
= & \sum_{n=0}^{\infty}\left(\sum_{m=0}^{n}\left(a_{n, m} \cos m \varphi+b_{n, m} \sin m \varphi\right) P_{n}^{m}(\cos \theta)\right)
\end{aligned}
$$

implies

$$
\begin{aligned}
& a_{n, m}=\varepsilon^{-(n+1)}\left(1+(n+1) k \varepsilon^{\sigma-1}\right) s_{n, m} \\
& b_{n, m}=\varepsilon^{-(n+1)}\left(1+(n+1) k \varepsilon^{\sigma-1}\right) t_{n, m}
\end{aligned}
$$

for $0 \leqq m \leqq n, n \geqq 0$.
Thus we have

$$
\begin{equation*}
v_{\mathrm{z}}(x)=\sum_{n=0}^{\infty} Y_{n}(\theta, \varphi)(\varepsilon / r)^{n+1}\left(1+(n+1) k \varepsilon^{\sigma-1}\right)^{-1} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|v_{\mathrm{e}}(x)\right|^{2} \leq\left(\sum_{n=0}^{\infty} Y_{n}(\theta, \varphi)^{2}\right) \sum_{n=0}^{\infty}(\varepsilon / r)^{2 n+2}\left(1+(n+1) k \varepsilon^{\sigma-1}\right)^{-2} \tag{3.13}
\end{equation*}
$$

Since (3.9) holds in $L^{2}\left(S^{2}\right)$, we see that

$$
\begin{aligned}
& \int_{\omega \in S^{2}}\left|v_{\mathrm{e}}(x)\right|^{2} d \omega \\
& \leqq\|\alpha\|_{L^{2}\left(s^{2}\right)}^{\sum_{n=0}^{\infty}(\varepsilon / r)^{2 n+2}\left(1+(n+1) k \varepsilon^{\sigma-1}\right)^{-2}, ~} \\
& \leqq C\left(\operatorname{Max}_{\omega}|\alpha(\omega)|\right)^{2}\left(\sum_{n=0}^{\infty}(\varepsilon / r)^{2(n+1) q^{\prime}}\right)^{1 / q^{\prime}} \\
& \times\left(\sum_{n=0}^{\infty}\left(1+(n+1) k \varepsilon^{\sigma-1}\right)^{-2 q}\right)^{1 / q} \\
& \leqq C(\underset{\omega}{\operatorname{Max}}|\alpha(\omega)|)^{2}(\varepsilon / r)^{2}\left(\sum_{n=0}^{\infty}(\varepsilon / r)^{n}\right)^{1 / q^{\prime}} \\
& \times\left(\int_{0}^{\infty}\left(1+k \varepsilon^{\sigma-1} t\right)^{-2 q} d t\right)^{1 / q} \\
& =C(\underset{\omega}{\operatorname{Max}}|\alpha(\omega)|)^{2}(\varepsilon / r)^{2}(r /(r-\varepsilon))^{1 / q^{\prime}}\left((2 q-1) k \varepsilon^{\sigma-1}\right)^{-1 / q} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left\|v_{\mathrm{z}}\right\|_{2, \mathrm{z}}^{2} & \leqq \int_{\mathrm{z}}^{R}\left(\int_{\omega \in s^{2}}\left|v_{\mathrm{z}}(x)\right|^{2} d \omega\right) r^{2} d r \\
& \leqq C_{q}(\underset{\omega}{\operatorname{Max}}|\alpha(\omega)|)^{2} \varepsilon^{2+(1-\sigma) / q} .
\end{aligned}
$$

Thus we get (3.8).
Using the Schwarz inequality and the relation

$$
P_{n}(\cos \theta)^{2}+\sum_{m=1}^{n}(2 \cdot(n-m)!/(n+m)!) P_{n}^{m}(\cos \theta)^{2}=1
$$

we see

$$
\begin{equation*}
\left|Y_{n}(\theta, \varphi)\right|^{2} \leqq a_{n, 0}^{2}+\sum_{m=1}^{n}((n+m) /!2 \cdot(n-m)!)\left(a_{n, m}^{2}+b_{n, m}^{2}\right) . \tag{3.13}
\end{equation*}
$$

From (3.11), (3.12) and (3.13), we have

$$
\left|v_{\mathrm{z}}(x)\right| \leqq C \operatorname{Max}_{\omega}|\alpha(\omega)| R(\varepsilon, \sigma, r)^{1 / 2}(\varepsilon / r),
$$

where

$$
R(\varepsilon, \sigma, r)=\sum_{n=0}^{\infty}(\varepsilon / r)^{2 n}(n+1)\left(1+(n+1) k \varepsilon^{\sigma-1}\right)^{-2} .
$$

Since

$$
\begin{aligned}
R(\varepsilon, \sigma, r) & \leqq C \varepsilon^{2(1-\sigma)} \sum_{n=0}^{\infty}(n+1)^{-1}(\varepsilon / r)^{n+1} \\
& \leqq C \varepsilon^{2(1-\sigma)} \log (r /(r-\varepsilon))
\end{aligned}
$$

and

$$
\begin{aligned}
R(\varepsilon, \sigma, r) \leq & \left(\sum_{n=0}^{\infty}(n+1)(\varepsilon / r)^{2 n q^{\prime}}\right)^{1 / q^{\prime}} \\
& \times\left(\sum_{n=0}^{\infty}(n+1)\left(1+(n+1) k \varepsilon^{\sigma-1}\right)^{-2 q}\right)^{1 / q}
\end{aligned}
$$

$$
\begin{aligned}
\leqq & \left(\sum_{n=0}^{\infty}(n+1)(\varepsilon / r)^{n}\right)^{1 / q^{\prime}} \\
& \times\left(k^{-1} \varepsilon^{1-\sigma} \sum_{n=0}^{\infty}\left(1+(n+1) k \varepsilon^{\sigma-1}\right)^{1-2 q}\right)^{1 / q} \\
\leqq & (r /(r-\varepsilon))^{2 / q^{\prime}}\left(k^{-1} \varepsilon^{1-\sigma} \int_{0}^{\infty}\left(1+k \varepsilon^{\sigma-1} t\right)^{1-2 q} d t\right)^{1 / q} \\
= & (r /(r-\varepsilon))^{2 / q^{\prime}}\left(2(q-1) k^{2} \varepsilon^{2(\sigma-1)}\right)^{-1 / q}
\end{aligned}
$$

hold, we get (3.6) and (3.7).
q.e.d.

Lemma 3.4. Fix $\beta \in C^{\infty}\left(\partial B_{\mathrm{q}}\right)$. Assume that $g \in H^{2}\left(\Omega_{\mathrm{q}}\right)$ satisfies

$$
\begin{array}{rlrl}
\Delta g(x) & =0 & x \in \Omega_{\mathrm{z}} \tag{3.14}\\
g(x) & =0 & x \in \partial \Omega \\
g(x)+k \varepsilon^{\sigma} \frac{\partial g}{\partial \nu_{x}}(x) & =\beta(x) & & x \in \partial B_{\mathrm{q}} .
\end{array}
$$

Then,

$$
\int_{\Omega_{\mathrm{e}}}|\nabla g(x)|^{2} d x \leqq 4 \pi k^{-1} \varepsilon^{2-\sigma}\left(\underset{\partial B_{\mathrm{\varepsilon}}}{\operatorname{Max}}|\beta(x)|\right)^{2} .
$$

Proof. Since $g \in H^{2}\left(\Omega_{\varepsilon}\right)$, we have Green's formula:

$$
\int_{\Omega_{\mathrm{g}}}\left(g \cdot \Delta g+|\nabla g|^{2}\right) d x=\int_{\partial \Omega_{\varepsilon}} g \frac{\partial g}{\partial \nu_{x}} d \sigma_{x}
$$

By (3.14), we can see that

$$
\int_{\Omega_{\varepsilon}}|\nabla g|^{2} d x=\int_{\partial B_{\varepsilon}} g \frac{\partial g}{\partial \nu_{x}} d \sigma_{x}=\int_{\partial B_{\varepsilon}}\left(\beta(x)-k \varepsilon^{\sigma} \frac{\partial g}{\partial \nu_{x}}(x)\right) \frac{\partial g}{\partial \nu_{x}}(x) d \sigma_{x} .
$$

Therefore, we have

$$
\begin{equation*}
\int_{\Omega_{\varepsilon}}|\nabla g|^{2} d x+k \varepsilon^{\sigma} \int_{\partial B_{\varepsilon}}\left|\frac{\partial g}{\partial \nu_{x}}\right|^{2} d \sigma_{x}=\int_{\partial B_{\varepsilon}} \beta(x) \frac{\partial g}{\partial \nu_{x}}(x) d \sigma_{x} \tag{3.15}
\end{equation*}
$$

Using the Schwarz inequality, we have

$$
\begin{aligned}
k \varepsilon^{\sigma} \int_{\partial B_{\varepsilon}}\left|\frac{\partial g}{\partial \nu_{x}}\right|^{2} d \sigma_{x} & \leqq \int_{\partial B_{\varepsilon}} \beta(x) \frac{\partial g}{\partial \nu_{x}}(x) d \sigma_{x} \\
& \leqq\left(\int_{\partial B_{\varepsilon}} \beta(x)^{2} d \sigma_{x}\right)^{1 / 2}\left(\int_{\partial B_{\varepsilon}}\left|\frac{\partial g}{\partial \nu_{x}}\right|^{2} d \sigma_{x}\right)^{1 / 2}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\left(\int_{\partial B_{\varepsilon}}\left|\frac{\partial g}{\partial \nu_{x}}\right|^{2} d \sigma_{x}\right)^{1 / 2} \leqq k^{-1} \varepsilon^{-\sigma}\left(\int_{\partial B_{\varepsilon}} \beta(x)^{2} d \sigma_{x}\right)^{1 / 2} \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16), we get

$$
\begin{aligned}
\int_{\Omega_{\mathrm{e}}}|\nabla g|^{2} d x & \leqq \int_{\partial B_{\varepsilon}} \beta(x) \frac{\partial g}{\partial \nu_{x}}(x) d \sigma_{x} \\
& \leqq\left(\int_{\partial B_{\varepsilon}} \beta(x)^{2} d \sigma_{x}\right)^{1 / 2}\left(\int_{\partial B_{\varepsilon}}\left|\frac{\partial g}{\partial \nu_{x}}\right|^{2} d \sigma_{x}\right)^{1 / 2} \\
& \leqq k^{-1} \varepsilon^{-\sigma} \int_{\partial B_{\varepsilon}} \beta(x)^{2} d \sigma_{x} \\
& \leqq 4 \pi k^{-1} \varepsilon^{2-\sigma}\left(\operatorname{Max}_{\partial B_{\varepsilon}}|\beta(x)|\right)^{2}
\end{aligned}
$$

q.e.d.

Now we are in a position to prove Propositions 3.1 and 3.2.
Proof of Proposition 3.1. Let $u_{\varepsilon}(x)$ be as in Proposition 3.1. We take an arbitrary $q>\sigma$. Firstly we put $\alpha(\omega)=M(\omega)$ and we take $v_{\varepsilon}^{(0)}$ so that it satisfies (3.4), (3.5), (3.7) and (3.8). Then $v_{\mathrm{z}}^{(0)}$ may not satisfy $v_{\mathrm{g}}^{(0)}(x)=0$ for $x \in \partial \Omega$. Let $v_{\varepsilon}^{(1)}$ be the harmonic function in Ω satisfying $v_{\varepsilon}^{(1)}(x)=v_{\varepsilon}^{(0)}(x)$ for $x \in \partial \Omega$. Put

$$
M_{\mathrm{z}}=\underset{\omega}{\operatorname{Max}}|M(\omega)| .
$$

Then from (3.7) we see that $\operatorname{Max}\left\{\left|v_{\mathrm{z}}^{(1)}(x)\right| ; x \in \bar{\Omega}\right\} \leqq \hat{C}_{q} \varepsilon^{1-\sigma / q} M_{\mathrm{z}}$ and $\operatorname{Max}\left\{\mid v_{\mathrm{z}}^{(1)}(x)\right.$ $\left.+k \varepsilon^{\sigma} \partial v_{\varepsilon}^{(1)}(x) / \partial \nu_{x} \mid ; x \in \partial B_{z}\right\} \leqq \hat{C}_{q} \varepsilon^{1-\sigma / q} M_{q}$, where \hat{C}_{q} is a constant independent of ε. Secondly, we put $\alpha(\omega)=v_{\varepsilon}^{(1)}(x)+k \varepsilon^{\sigma} \partial v_{\varepsilon}^{(1)}(x) / \partial \nu_{x}$ for $x=\tilde{w}+\varepsilon \omega \in \partial B_{\varepsilon}$ and we take $v_{\mathrm{g}}^{(2)}$ so that it satisfies (3.4), (3.5), (3.7) and (3.8). Let $v_{\mathrm{g}}^{(3)}$ be the harmonic function in Ω satisfying $v_{\mathrm{g}}^{(3)}(x)=v_{\mathrm{\varepsilon}}^{(2)}(x)$ for $x \in \partial \Omega$. Then, $\operatorname{Max}\left\{\left|v_{\mathrm{\varepsilon}}^{(3)}(x)\right| ; x \in \bar{\Omega}\right\}$ $\leqq\left(\hat{C}_{q} \varepsilon^{1-\sigma / q}\right)^{2} M_{\mathrm{\varepsilon}}$ and $\operatorname{Max}\left\{\left|v_{\mathrm{e}}^{(3)}(x)+k \varepsilon^{\sigma} \partial v_{\mathrm{e}}^{(3)}(x) / \partial \nu_{x}\right| ; x \in \partial B_{\mathrm{z}}\right\} \leqq\left(\hat{C}_{q} \varepsilon^{1-\sigma / q}\right)^{2} M_{\mathrm{e}}$.

By repeating this procedure we have

$$
\begin{aligned}
\Delta v_{\mathrm{z}}^{(2 n+1)}(x) & =0 \quad x \in \Omega \\
v_{\mathrm{z}}^{(2 n+1)}(x) & =v_{\mathrm{z}}^{(2 n)}(x) \quad x \in \partial \Omega
\end{aligned}
$$

and

$$
\begin{gathered}
\Delta v_{\varepsilon}^{(2 n+2)}(x)=0 \quad x \in \boldsymbol{R}^{3} \backslash \bar{B}_{\varepsilon} \\
v_{\mathrm{\varepsilon}}^{(2 n+2)}(x)+k \varepsilon^{\sigma} \frac{\partial v_{\mathrm{\varepsilon}}^{(2 n+2)}}{\partial \nu_{x}}(x)=v_{\mathrm{\varepsilon}}^{(2 n+1)}(x)+k \varepsilon^{\sigma} \frac{\partial v_{\mathrm{e}}^{(2 n+1)}}{\partial \nu_{x}}(x) \quad x \in \partial B_{\mathrm{\varepsilon}}
\end{gathered}
$$

for $n=0,1,2, \cdots$.
Then, by induction,

$$
\begin{gather*}
\operatorname{Max}_{\overline{\bar{\alpha}}}\left|v_{\mathrm{z}}^{(2 n+1)}(x)\right| \leqq\left(\hat{C}_{q} \varepsilon^{1-\sigma / q}\right)^{n+1} M_{\mathrm{\varepsilon}} \tag{3.17}\\
\underset{\partial B_{\mathrm{\varepsilon}}}{\operatorname{Max}}\left|v_{\mathrm{s}}^{(2 n+1)}(x)+k \varepsilon^{\sigma} \frac{\partial v_{\mathrm{z}}^{(2 n+1)}}{\partial \nu_{x}}(x)\right| \leqq\left(\hat{C}_{q} \varepsilon^{1-\sigma / q}\right)^{n+1} M_{\mathrm{z}} \tag{3.18}
\end{gather*}
$$

$$
\begin{gather*}
\left|v_{\mathrm{\varepsilon}}^{(2 n)}(x)\right| \leqq\left(\hat{C}_{q} \varepsilon^{1-\sigma / q}\right)^{n+1} M_{\mathrm{z}}(r-\varepsilon)^{-1 / q^{\prime}} \quad(r>\varepsilon) \tag{3.19}\\
\left\|v_{\mathrm{z}}^{(2 n)}\right\|_{2, \mathrm{e}} \leqq C_{q}^{\prime} \varepsilon^{1-(\sigma-1) /(2 q)}\left(\hat{C}_{q} \varepsilon^{1-\sigma / q}\right)^{n} M_{\mathrm{z}} \tag{3.20}
\end{gather*}
$$

hold for $n \geqq 0$.
Since $q>\sigma$, we can take ε so that $\hat{C}_{q} \varepsilon^{1-\sigma / q}<1 / 2$. We put

$$
\begin{equation*}
w_{\mathrm{z}}(x)=\sum_{n=0}^{\infty}(-1)^{n} v_{\mathrm{e}}^{(n)}(x) . \tag{3.21}
\end{equation*}
$$

From (3.17) and (3.19), we can see that the right hand side of (3.21) is uniformly convergent on $\bar{\Omega} \backslash B_{\eta}$ for any $\eta>\varepsilon$. Since $v_{\mathrm{e}}^{(n)}$ is harmonic in Ω_{e}, we see that $w_{\mathrm{e}}(x)$ is harmonic in $\Omega_{\mathrm{e}}, w_{\mathrm{z}}(x)=0$ for $x \in \partial \Omega$ and

$$
\frac{\partial w_{\varepsilon}}{\partial x_{j}}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\partial v_{\varepsilon}^{(n)}}{\partial x_{j}}(x) \quad x \in \Omega_{\varepsilon}, \quad j=1,2,3 .
$$

We put

$$
g_{\mathrm{z}}^{(n)}(x)=u_{\mathrm{z}}(x)-\sum_{i=0}^{2 n+1}(-1)^{i} v_{\mathrm{e}}^{(i)}(x)
$$

Then,

$$
\begin{equation*}
\nabla g_{\mathrm{z}}^{(n)}(x) \rightarrow \nabla\left(u_{\mathrm{z}}-w_{\mathrm{z}}\right)(x) \quad(n \rightarrow \infty) \quad \text { for } \quad x \in \Omega_{\mathrm{z}} \tag{3.22}
\end{equation*}
$$

It is easy to see that $g_{\varepsilon}^{(n)}$ is harmonic in $\Omega_{\varepsilon}, g_{\varepsilon}^{(n)}(x)=0$ for $x \in \partial \Omega$ and

$$
g_{\varepsilon}^{(n)}(x)+k \varepsilon^{\sigma} \frac{\partial g_{\varepsilon}^{(n)}}{\partial \nu_{x}}(x)=v_{\varepsilon}^{(2 n+1)}(x)+k \varepsilon^{\sigma} \frac{\partial v_{\varepsilon}^{(2 n+1)}}{\partial \nu_{x}}(x) \quad x \in \partial B_{z} .
$$

Therefore, by Lemma 3.4 and (3.18), we have

$$
\begin{aligned}
\int_{\Omega_{z}}\left|\nabla g_{\varepsilon}^{(n)}\right|^{2} d x & \leqq 4 \pi k^{-1} \varepsilon^{2-\sigma} \operatorname{Max}_{\partial B_{\varepsilon}}\left|v_{\mathrm{z}}^{(2 n+1)}(x)+k \varepsilon^{\sigma} \frac{\partial v_{\varepsilon}^{(2 n+1)}}{\partial \nu_{x}}(x)\right| \\
& \leqq 4 \pi k^{-1} \varepsilon^{2-\sigma}\left(\hat{C}_{q} \varepsilon^{1-\sigma / q}\right)^{n} M_{\varepsilon}
\end{aligned}
$$

Using Fatou's Lemma and (3.22), we see that

$$
\int_{\Omega_{\mathrm{z}}}\left|\nabla\left(u_{\mathrm{z}}-w_{\mathrm{z}}\right)\right|^{2} d x \leqq \liminf _{n \rightarrow \infty} \int_{\Omega_{\mathrm{z}}}\left|\nabla g^{(n)}\right|^{2} d x \leqq 0
$$

Thus, $u_{\mathrm{z}}-w_{\mathrm{z}}=$ constant a.e. Ω_{q}. Since $u_{\mathrm{q}}(x)=w_{\mathrm{e}}(x)=0$ for $x \in \partial \Omega, u_{\mathrm{z}}=w_{\mathrm{z}}$ a.e. Ω_{e}. Therefore,

$$
\begin{equation*}
u_{\mathrm{z}}(x)=\sum_{n=0}^{\infty}(-1)^{n} v_{\mathrm{e}}^{(n)}(x) \quad x \in \Omega_{\mathrm{z}} \tag{3.23}
\end{equation*}
$$

From (3.17) and (3.20), we have

$$
\begin{aligned}
\left\|\sum_{n=0}^{2 \sum^{\prime}+1}(-1)^{n} v_{z}^{(n)}\right\|_{2, \mathrm{e}} & \leqq \sum_{n=0}^{n^{\prime}}\left(\left\|v_{z}^{(2 n)}\right\|_{2, \mathrm{e}}+\left\|v_{z}^{(2 n+1)}\right\|_{2, \mathrm{z}}\right) \\
& \leqq \sum_{n=0}^{n^{\prime}}\left(C_{q}^{\prime} \varepsilon^{1-(\sigma-1)((2 q)}+\hat{C}_{q} \varepsilon^{1-\sigma / q}\right)(1 / 2)^{n} M_{\mathrm{z}} \\
& \leqq C_{q} \varepsilon^{1-\sigma / q} M_{z} .
\end{aligned}
$$

Using Fatou's Lemma and (3.23), we see that

$$
\begin{aligned}
\int_{\Omega_{\mathrm{e}}}\left|u_{\mathrm{e}}(x)\right|^{2} d x & \leqq \liminf _{u^{\prime} \rightarrow \infty} \int_{\Omega_{\mathrm{\varepsilon}}}\left|\sum_{n=0}^{2 n^{\prime}+1}(-1)^{n} v_{\mathrm{z}}^{(u)}(x)\right|^{2} d x \\
& \leqq\left(C_{q} \varepsilon^{1-\sigma / q} M_{\mathrm{e}}\right)^{2}
\end{aligned}
$$

Thus we get (3.2).
Proof of Proposition 3.2. Let $\left\{v_{\varepsilon}^{(n)}(x)\right\}_{n=0}^{\infty}$ be the sequence of functions as in the proof of Proposition 3.1. Then, by using (3.6), we can get

$$
\begin{align*}
& \operatorname{Max}_{\overline{\bar{\alpha}}}\left|v_{\mathrm{z}}^{(2 n+1)}(x)\right| \leqq\left(\hat{C} \varepsilon^{2-\sigma}\right)^{n+1} M_{\mathrm{z}} \tag{3.24}\\
& \operatorname{Max}_{\partial \theta_{\mathrm{z}}}\left|v_{\mathrm{z}}^{(2 n+1)}(x)+k \varepsilon^{\sigma} \frac{\partial v_{\mathrm{z}}^{(2 n+1)}}{\partial \nu_{x}}(x)\right| \leqq\left(\hat{C} \varepsilon^{2-\sigma}\right)^{n+1} M_{\mathrm{z}} \\
& \quad\left|v_{\mathrm{z}}^{(2 n)}(x)\right| \leqq\left(\hat{C} \varepsilon^{2-\sigma}\right)^{n+1} M_{\mathrm{z}} r^{-1}(\log (r \mid(r-\varepsilon)))^{1 / 2} \tag{3.25}
\end{align*}
$$

for $n \geqq 0$. Here \hat{C} is a constant independent of ε and $M_{z}=\operatorname{Max}_{\omega}|M(\omega)|$.
Since $\sigma<2$, we can take ε so that $\hat{C} \varepsilon^{2-\sigma}<1 / 2$. Then, by the same argument as in the proof of Proposition 3.1, we can see that

$$
\begin{equation*}
u_{\mathrm{z}}(x)=\sum_{n=0}^{\infty}(-1)^{n} v_{\mathrm{z}}^{(n)}(x) \quad x \in \Omega_{\mathrm{z}} . \tag{3.26}
\end{equation*}
$$

From (3.24), (3.25) and (3.26), we have

$$
\begin{align*}
\left|u_{\mathrm{z}}(x)\right| & \leqq \sum_{n=0}^{\infty}\left(\left|v_{\mathrm{z}}^{(2 n)}(x)\right|+\left|v_{\mathrm{z}}^{(2 n+1)}(x)\right|\right) \tag{3.27}\\
& \leqq C \varepsilon^{2-\sigma} M_{\mathrm{z}} r^{-1}(\log (r /(r-\varepsilon)))^{1 / 2} \quad(r>\varepsilon)
\end{align*}
$$

Now (3.3) easily follows from (3.27).

4. Proof of Theorem 3

From this section to section 7, we assume $\sigma \geqq 1$. By (2.3) we see that

$$
\begin{align*}
g(\varepsilon) & =-4 \pi \varepsilon+O\left(\varepsilon^{2}+\varepsilon^{\sigma}\right) & & (\sigma>1) \tag{4.1}\\
& =-4 \pi(1+k)^{-1} \varepsilon+O\left(\varepsilon^{2}\right) & & (\sigma=1)
\end{align*}
$$

We take an arbitrary fixed point $x \in \partial B_{q}$. Without loss of generality we
may assume $\tilde{w}=0$ and $x=\varepsilon \mathrm{e}_{1}$. Here we put $\mathrm{e}_{1}=(1,0,0)$. We put $p_{\varepsilon}(x, y)$ as before and

$$
S(x, y)=G(x, y)-(4 \pi)^{-1}|x-y|^{-1} .
$$

Then, $S(x, y) \in C^{\infty}(\Omega \times \Omega)$ and

$$
\begin{aligned}
& \quad p_{\mathrm{e}}(x, y)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} p_{\mathrm{z}}(x, y)_{\mid x=\mathrm{e}_{1}} \\
& =G(x, y)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} G(x, y)-g(\varepsilon) k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} S(x, \tilde{w}) G(\tilde{w}, y) \\
& \quad+g(\varepsilon)\left((4 \pi)^{-1} \varepsilon^{-1}+S(x, \tilde{w})+k(4 \pi)^{-1} \varepsilon^{\sigma-2}\right) G(\tilde{w}, y)
\end{aligned}
$$

for $\tilde{w}=0, x=\varepsilon \mathrm{e}_{1}$.
Since $\gamma=S(\tilde{w}, \tilde{w}), S(x, \widetilde{w})=\gamma+O(\varepsilon)$ as $\varepsilon \rightarrow 0 . \quad$ By (4.1),

$$
\begin{align*}
& p_{\mathrm{z}}(x, y)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} p_{\mathrm{z}}(x, y)_{\mid x=\mathrm{s} \mathrm{e}_{1}} \tag{4.2}\\
= & G(x, y)-G(\tilde{w}, y)+O\left(\varepsilon^{2}\right) G(\tilde{w}, y)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} G(x, y)
\end{align*}
$$

for $\tilde{w}=0, x=\varepsilon \mathrm{e}_{1}$.
We take an arbitrary $f \in L^{p}\left(\Omega_{\mathrm{z}}\right)$ and let \tilde{f} be the extension of f to Ω defined by 0 on B_{ε}. Then we have

$$
\begin{align*}
& \left(\boldsymbol{P}_{\mathrm{z}} f\right)(x)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}}\left(\boldsymbol{P}_{\mathrm{z}} f\right)(x)_{\mid x=\mathrm{e}_{1}} \tag{4.3}\\
= & (\boldsymbol{G} \tilde{f})(x)-(\boldsymbol{G} \tilde{f})(\tilde{w})+O\left(\varepsilon^{2}\right)(\boldsymbol{G} \tilde{f})(\tilde{w})-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}}(\boldsymbol{G} \tilde{f})(x)
\end{align*}
$$

for $\tilde{w}=0, x=\varepsilon e_{1}$.
By the Sobolev embedding theorem and a priori estimate

$$
\begin{equation*}
\|\boldsymbol{G} \tilde{f}\|_{C^{1+\tau}(\bar{\Omega})} \leqq C\|\tilde{f}\|_{p} \leqq C\|f\|_{p, \varepsilon} \tag{4.4}
\end{equation*}
$$

hold for $\tau=1-3 / p(p>3)$. Therefore we have

$$
\left|\left(\boldsymbol{P}_{\mathrm{e}} f\right)(x)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}}\left(\boldsymbol{P}_{\mathrm{e}} f\right)(x)\right|_{x=\mathrm{e}_{1}} \leqq C \varepsilon\|f\|_{p, \mathrm{e}}
$$

We put $u_{\mathrm{q}}=\left(\boldsymbol{P}_{\mathrm{q}}-\boldsymbol{G}_{\mathrm{q}}\right) f$. Then u_{q} satisfies (3.1) because $\boldsymbol{G}_{\mathbf{\varepsilon}} f$ satisfies the given Robin condition on ∂B_{ε}. By Proposition 3.1, we have (2.6).

5. Convergence of eigenvalues for $\sigma \geqq 1$

We put $\tilde{p}_{\mathrm{z}}(x, y), \tilde{\boldsymbol{P}}_{\mathrm{z}}$ as before. Then,

$$
\begin{equation*}
\tilde{\boldsymbol{P}}_{\boldsymbol{z}}=A_{0}+g(\varepsilon) A_{1} \tag{5.1}
\end{equation*}
$$

where $A_{0}=\boldsymbol{G}$ and

$$
\begin{equation*}
\left(A_{1} f\right)(x)=G(x, \tilde{w}) \chi_{\mathrm{z}}(x)\left(G \chi_{\mathrm{z}} f\right)(\widetilde{w}) . \tag{5.2}
\end{equation*}
$$

Since

$$
\left|\left(A_{1} f\right)(x)\right| \leqq C|x-\tilde{w}|^{-1} \chi_{\varepsilon}(x)\|f\|_{p} \quad(p>3 / 2)
$$

we have

$$
\begin{align*}
\left\|A_{1} f\right\|_{p} \leqq C\|f\|_{p} \quad(3 / 2<p<3) \tag{5.3}\\
\leqq C \varepsilon^{3 / p-1}\|f\|_{p} \quad(p>3) .
\end{align*}
$$

From (4.1), (5.1) and (5.3) we have

$$
\left\|\left(\tilde{\boldsymbol{P}}_{\boldsymbol{z}}-\boldsymbol{G}\right) f\right\|_{2} \leqq|g(\varepsilon)|\left\|A_{1} f\right\|_{2} \leqq C \varepsilon\|f\|_{2}
$$

for any $f \in L^{2}(\Omega)$. Therefore we get the following.
Lemma 5.1. There exists a constant C independent of ε such that

$$
\begin{equation*}
\left\|\tilde{\boldsymbol{P}}_{\boldsymbol{z}}-\boldsymbol{G}\right\|_{2} \leqq C \varepsilon \tag{5.4}
\end{equation*}
$$

holds.
Next we want to estimate $\left\|\chi_{\mathbf{z}} \tilde{\boldsymbol{P}}_{\mathrm{e}} \chi_{\mathrm{g}}-\tilde{\boldsymbol{P}}_{\mathbf{z}}\right\|_{2}$. It does not exceed

$$
\begin{equation*}
\left\|\left(1-\chi_{\mathrm{q}}\right) \tilde{P}_{\mathrm{q}} \chi_{\mathrm{g}}\right\|_{2}+\left\|\tilde{P}_{\mathrm{q}}\left(1-\chi_{\mathrm{q}}\right)\right\|_{2} \tag{5.5}
\end{equation*}
$$

Notice that $\left(1-\chi_{\varepsilon}\right) \chi_{\varepsilon}=0$ in $g(\varepsilon)$ term. By (5.1),

$$
\left\|\left(1-\chi_{\mathfrak{e}}\right) \tilde{\boldsymbol{P}}_{\mathrm{e}} v\right\|_{2} \leqq C\left|B_{\mathrm{e}}\right|^{1 / 2}\|\boldsymbol{G} v\|_{2} \leqq C \varepsilon^{3 / 2}\|v\|_{2}
$$

hold for any $v \in L^{2}(\Omega)$. Therefore we get

$$
\begin{align*}
& \left\|\left(1-\chi_{\mathfrak{z}}\right) \tilde{\boldsymbol{P}}_{\mathrm{z}}\right\|_{2} \leqq C \varepsilon^{3 / 2} \tag{5.6}\\
& \left\|\left(1-\chi_{\mathrm{z}}\right) \tilde{\boldsymbol{P}}_{\mathrm{z}} \chi_{\mathrm{z}}\right\|_{2} \leqq C \varepsilon^{3 / 2} .
\end{align*}
$$

Since we have the duality

$$
\left(\left(1-\chi_{\mathfrak{q}}\right) \tilde{\boldsymbol{P}}_{\mathbf{q}}\right)^{*}=\tilde{\boldsymbol{P}}_{\mathfrak{z}}\left(1-\chi_{\mathfrak{q}}\right),
$$

we get

$$
\begin{equation*}
\left\|\tilde{\boldsymbol{P}}_{\mathrm{g}}\left(1-\chi_{\mathrm{e}}\right)\right\|_{2} \leqq C \varepsilon^{3 / 2} . \tag{5.7}
\end{equation*}
$$

Summing up these facts, we get the following.
Lemma 5.2. There exists a constant C independent of ε such that

$$
\left\|\chi_{\mathrm{z}} \tilde{P}_{\mathrm{z}} \chi_{\mathrm{z}}-\tilde{\boldsymbol{P}}_{\mathrm{z}}\right\|_{2} \leqq C \varepsilon^{3 / 2}
$$

holds.
Notice that the j-the eigenvalue of $\boldsymbol{P}_{\mathbf{z}}$ is equal to the j-th eigenvalue of $\chi_{\mathbf{z}} \tilde{P}_{\mathrm{z}} \chi_{\mathrm{z}}$. By virtue of Theorem 3, Lemmas 5.1 and 5.2 , we see that there exists a constant C independent of ε such that

$$
\begin{equation*}
\left|\mu_{j}(\varepsilon)^{-1}-\mu_{j}^{-1}\right| \leqq C\left(\varepsilon^{2-s}+\varepsilon+\varepsilon^{3 / 2}\right) \leqq C \cdot \varepsilon \tag{5.8}
\end{equation*}
$$

hold.
For the later convenience we estimate $\left\|\left(\chi_{\mathbf{z}} \tilde{\boldsymbol{P}}_{\mathbf{z}}-\boldsymbol{P}_{\mathbf{z}} \chi_{\mathbf{z}}\right) f\right\|_{2, \mathrm{z}}$. We put $v_{\mathbf{z}}=$ $\left(\chi_{z} \tilde{\boldsymbol{P}}_{z}-\boldsymbol{P}_{\mathrm{z}} \chi_{\mathrm{z}}\right) f$. Then, $v_{\mathrm{z}}=\left(\boldsymbol{G} \hat{\chi}_{\mathrm{z}} f\right)$ on Ω_{q}. Here $\hat{\chi}_{\mathrm{z}}$ is the characteristic function on B_{z}. Thus v_{z} satisfies $\Delta v_{\mathrm{z}}(x)=0$ for $x \in \Omega_{\mathrm{e}}, v_{\mathrm{z}}(x)=0$ for $x \in \partial \Omega$ and

$$
\begin{align*}
\left|v_{\mathrm{e}}(x)\right| & \leqq C\left(\int_{B_{\varepsilon}}|x-y|^{-p^{\prime}} d y\right)^{1 / p^{\prime}}\|f\|_{p} \tag{5.9}\\
& \leqq \begin{cases}C \varepsilon^{2-3 / p}\|f\|_{p} & (3 / 2<p<\infty) \\
C \varepsilon^{2}\|f\|_{\infty} & (p=\infty)\end{cases}
\end{align*}
$$

for $x \in \partial B_{\varepsilon}$.
By the maximum principle, we get the following.
Lemma 5.3. There exists a constant C independent of ε such that

$$
\begin{array}{rlr}
\left\|\left(\chi_{\mathrm{z}} \tilde{P}_{\mathrm{z}}-\boldsymbol{P}_{\mathrm{z}} \chi_{\mathrm{z}}\right) f\right\|_{2, \mathrm{z}} & \leqq C \varepsilon^{2-3 / p}\|f\|_{p} \quad(3 / 2<\boldsymbol{p}<\infty) \tag{5.10}\\
& \leqq C \varepsilon^{2}\|f\|_{\infty} \quad(p=\infty)
\end{array}
$$

hold for any $f \in L^{p}(\Omega)$.

6. Perturbational calculus for $\tilde{\boldsymbol{P}}_{\boldsymbol{z}}$

In this section we consider the behaviour of eigenvalues of $\tilde{\boldsymbol{P}}_{z}$ as ε tends to 0 . We put

$$
\begin{aligned}
& \lambda(\varepsilon)=\lambda_{0}+g(\varepsilon) \lambda_{1} \\
& \psi(\varepsilon)=\psi_{0}+g(\varepsilon) \psi_{1}
\end{aligned}
$$

so that $\lambda(\varepsilon)$ and $\psi(\varepsilon)$ is an approximate eigenvalue of $\tilde{\boldsymbol{P}}_{\varepsilon}$ and an approximate eigenfunction of $\tilde{\boldsymbol{P}}_{\mathrm{z}}$, respectively.

Let λ_{0} be a simple eigenvalue of A_{0} and ψ_{0} be a solution of

$$
\begin{equation*}
\left(A_{0}-\lambda_{0}\right) \psi_{0}=0, \quad\left\|\psi_{0}\right\|_{2}=1 \tag{6.1}
\end{equation*}
$$

Next we solve the following equations:

$$
\begin{equation*}
\left(A_{0}-\lambda_{0}\right) \psi_{1}=\left(\lambda_{1}-A_{1}\right) \psi_{0} \tag{6.2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\psi_{0}, \psi_{1}\right)_{2}=0 \tag{6.3}
\end{equation*}
$$

where $(,)_{2}$ denotes the inner product on $L^{2}(\Omega)$.
By the Fredholm alternative theory, we see that

$$
\begin{equation*}
\lambda_{1}=\left(A_{1} \psi_{0}, \psi_{0}\right)_{2} \tag{6.4}
\end{equation*}
$$

is the condition such that the unique solution of ψ_{1} of (6.2) and (6.3) exists.
Hereafter we put $\lambda_{0}=\mu_{j}^{-1}$. Then $\psi_{0}=\varphi_{j} . \quad$ It is easy to see

$$
\begin{gather*}
\lambda_{1}=\left|\left(G \chi_{z} \varphi_{j}\right)(\tilde{w})\right|^{2}=\mu_{j}^{-2} \varphi_{j}(\tilde{w})^{2}+O\left(\varepsilon^{2}\right) \tag{6.5}\\
\left(\tilde{P}_{\mathrm{e}}-\lambda(\varepsilon)\right) \psi(\varepsilon)=g(\varepsilon)^{2}\left(A_{1}-\lambda_{1}\right) \psi_{1} . \tag{6.6}
\end{gather*}
$$

From (5.3), (6.2), (6.4) and (6.6), we have the following.
Lemma 6.1. There exists a constant C independent of ε such that

$$
\begin{equation*}
\left\|\left(\tilde{\boldsymbol{P}}_{z}-\lambda(\varepsilon)\right) \psi(\varepsilon)\right\|_{2, \varepsilon} \leqq C g(\varepsilon)^{2} \leqq C \varepsilon^{2} \tag{6.7}
\end{equation*}
$$

hold.
By (5.3), (6.2) and (6.4), we have

$$
\begin{equation*}
\left\|\psi_{1}\right\|_{p},\left\|A_{1}\right\|_{p} \leqq C \varepsilon^{3 / p-1} \quad(p>3) \tag{6.8}
\end{equation*}
$$

Now we have the following.
Lemma 6.2. Fix $s \in(0,1)$. Then, there exist constants C, C_{s} independent of ε such that

$$
\begin{array}{r}
\left\|\left(\boldsymbol{P}_{\mathrm{z}}-\boldsymbol{G}_{\mathrm{z}}\right)\left(\chi_{\mathrm{z}} \psi(\varepsilon)\right)\right\|_{2, \mathrm{~s}} \leqq C_{s} \varepsilon^{2-s} \\
\left\|\left(\chi_{\mathrm{z}} \tilde{\boldsymbol{P}}_{\mathrm{z}}-\boldsymbol{P}_{\mathrm{z}} \chi_{\mathrm{z}}\right) \psi(\varepsilon)\right\|_{2, \mathrm{z}} \leqq C \varepsilon^{2} \tag{6.10}
\end{array}
$$

hold.
Proof. By (6.8), Theorem 3 and Lemma 5.3, we have

$$
\begin{aligned}
& \quad\left\|\left(\boldsymbol{P}_{\mathbf{z}}-\boldsymbol{G}_{\mathrm{z}}\right)\left(\chi_{\mathrm{z}} \psi(\varepsilon)\right)\right\|_{2, \mathrm{e}} \\
& \leqq C_{\mathrm{s}} \varepsilon^{2-s}\left(1+|g(\varepsilon)| \varepsilon^{3 / p-1}\right) \leqq C_{s} \varepsilon^{2-s} \quad(p>3)
\end{aligned}
$$

and

$$
\begin{aligned}
& \quad\left\|\left(\chi_{\mathrm{z}} \tilde{\boldsymbol{P}}_{\mathrm{z}}-\boldsymbol{P}_{\mathrm{z}} \chi_{\mathrm{z}}\right) \psi(\varepsilon)\right\|_{2, \mathrm{z}} \\
& \leqq C\left(\varepsilon^{2}+|g(\varepsilon)| \varepsilon^{2-3 / p} \varepsilon^{3 / p-1}\right) \leqq C \varepsilon^{2} \quad(\boldsymbol{p}>3) .
\end{aligned}
$$

q.e.d.

7. Proof of Theorem 1

Now we are in a position to prove Theorem 1. We fix $s \in(0,1)$. Then,
by Lemmas 6.1 and 6.2, we have

$$
\begin{aligned}
& \quad\left\|\left(\boldsymbol{G}_{\mathrm{z}}-\lambda(\varepsilon)\right)\left(\chi_{\mathrm{z}} \psi(\varepsilon)\right)\right\|_{2, \mathrm{z}} \\
& \leqq \\
& \leqq\left(\boldsymbol{G}_{\mathrm{z}}-\boldsymbol{P}_{\mathrm{z}}\right)\left(\chi_{\mathrm{z}} \psi(\varepsilon)\right)\left\|_{2, \mathrm{z}}+\right\|\left(\boldsymbol{P}_{\mathrm{z}} \chi_{\mathrm{z}}-\chi_{\mathfrak{z}} \tilde{\boldsymbol{P}}_{\mathrm{z}}\right) \psi(\varepsilon) \|_{2, \mathrm{e}} \\
& \quad+\left\|\chi_{\mathrm{z}}\left(\tilde{\boldsymbol{P}}_{\mathrm{z}}-\lambda(\varepsilon)\right) \psi(\varepsilon)\right\|_{2, \mathrm{e}} \\
& \leqq
\end{aligned}
$$

Since $\|\psi(\varepsilon)\|_{2, \varepsilon} \in(1 / 2,2)$ for small ε, there exists at least one eigenvalue $\lambda^{*}(\varepsilon)$ of $\boldsymbol{G}_{\mathrm{e}}$ satisfying

$$
\begin{equation*}
\left|\lambda^{*}(\varepsilon)-\lambda(\varepsilon)\right| \leqq C_{s} \varepsilon^{2-s} \tag{7.1}
\end{equation*}
$$

We here represent $\lambda(\varepsilon)$ explicitly as follows:

$$
\begin{align*}
\lambda(\varepsilon) & =\mu_{j}^{-1}+g(\varepsilon)\left(\mu_{j}^{-2} \varphi_{j}(\widetilde{w})^{2}+0\left(\varepsilon^{2}\right)\right) \tag{7.2}\\
& = \begin{cases}\mu_{j}^{-1}-4 \pi \mu_{j}^{-2} \varphi_{j}(\tilde{w})^{2} \varepsilon+0\left(\varepsilon^{2}+\varepsilon^{\sigma}\right) & (\sigma>1) \\
\mu_{j}^{-1}-4 \pi(1+k)^{-1} \mu_{j}^{-2} \varphi_{j}(\tilde{w})^{2} \varepsilon+0\left(\varepsilon^{2}\right) & (\sigma=1)\end{cases}
\end{align*}
$$

By (7.1), (7.2) and the fact (5.8), we see that $\lambda^{*}(\varepsilon)$ must be $\mu_{j}(\varepsilon)^{-1}$. Then, (1.3) easily follows from (7.1) and (7.2). Therefore we get the desired Theorem 1.

8. Proof of Theorem 4

From this section we assume $\sigma<1$. By (2.3), (2.4) and (2.5), we see that

$$
\begin{align*}
& g(\varepsilon)=-(4 \pi / k) \varepsilon^{2-\sigma}+O\left(\varepsilon^{3-2 \sigma}\right) \tag{8.1}\\
& h(\varepsilon)=2 \pi \varepsilon^{3}+O\left(\varepsilon^{4-\sigma}\right) \\
& i(\varepsilon)=(4 \pi / 9) \varepsilon^{5}+O\left(\varepsilon^{6-\sigma}\right)
\end{align*}
$$

We take an arbitrary $x \in \partial B_{q}$. Without loss of generality we may assume that $\tilde{w}=0$ and $x=\varepsilon \mathrm{e}_{1}$. We put $S(x, y)$ as before. Then, the same calculation as in p. 263 of Ozawa [9] yields

$$
\begin{align*}
& \left\langle\nabla_{w} G(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \tag{8.2}\\
= & (4 \pi)^{-1} \varepsilon^{-2} \frac{\partial}{\partial w_{1}} G(\tilde{w}, y)+\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \\
& \frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} G(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \tag{8.3}\\
= & -(2 \pi)^{-1} \varepsilon^{-3} \frac{\partial}{\partial w_{1}} G(\tilde{w}, y)+\frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \\
& \left\langle H_{w} G(x, \tilde{w}), H_{w} G(\tilde{w}, y)\right\rangle-\left\langle H_{w} S(x, \tilde{w}), H_{w} G(\tilde{w}, y)\right\rangle \tag{8.4}\\
= & 3(4 \pi)^{-1} \varepsilon^{-3} \frac{\partial^{2}}{\partial w_{1}^{2}} G(\tilde{w}, y)-(4 \pi)^{-1} \varepsilon^{-3} \Delta_{w} G(\widetilde{w}, y)
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial x_{1}}\left\langle H_{w} G(x, \widetilde{w}), H_{w} G(\widetilde{w}, y)\right\rangle-\frac{\partial}{\partial x_{1}}\left\langle H_{w} S(x, \widetilde{w}), H_{w} G(\widetilde{w}, y)\right\rangle \tag{8.5}\\
= & -9(4 \pi)^{-1} \varepsilon^{-4} \frac{\partial^{2}}{\partial w_{1}^{2}} G(\widetilde{w}, y)+3(4 \pi)^{-1} \varepsilon^{-4} \Delta_{w} G(\widetilde{w}, y)
\end{align*}
$$

for $x=\varepsilon \mathrm{e}_{1}, \tilde{w}=0$. We recall that

$$
\begin{equation*}
\Delta_{w} G(\widetilde{w}, y)=0 \quad \text { for } \quad y \in \Omega_{\mathrm{\varepsilon}} . \tag{8.6}
\end{equation*}
$$

We put $p_{\mathrm{e}}(x, y)$ as before. By (8.2), (8.3), (8.4), (8.5) and (8.6), we have

$$
\begin{equation*}
p_{\mathrm{e}}(x, y)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} p_{\mathrm{e}}(x, y)_{\mid x=\mathrm{e} \mathrm{e}_{1}}=\sum_{j=1}^{7} L_{j}, \tag{8.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& L_{1}=G(x, y) \\
& L_{2}=g(\varepsilon)\left((4 \pi \varepsilon)^{-1}+\gamma+(4 \pi)^{-1} k \varepsilon^{\sigma-2}\right) G(\widetilde{w}, y) \\
& L_{3}=g(\varepsilon) O\left(\varepsilon^{\sigma}\right) G(\tilde{w}, y) \\
& L_{4}=(4 \pi)^{-1}\left(\varepsilon^{-2}+2 k \varepsilon^{\sigma-3}\right) h(\varepsilon) \frac{\partial}{\partial w_{1}} G(\tilde{w}, y)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} G(x, y) \\
& L_{5}= 3(4 \pi)^{-1}\left(\varepsilon^{-3}+3 k \varepsilon^{\sigma-4}\right) i(\varepsilon) \frac{\partial^{2}}{\partial w_{1}^{2}} G(\tilde{w}, y) \\
& L_{6}= h(\varepsilon)\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \\
& \quad \quad-k \varepsilon^{\sigma} h(\varepsilon) \frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} S(x, \widetilde{w}), \nabla_{w} G(\tilde{w}, y)\right\rangle \\
& L_{7}= i(\varepsilon)\left\langle H_{w} S(x, \tilde{w}), H_{w} G(\widetilde{w}, y)\right\rangle \\
& \quad-k \varepsilon^{\sigma} i(\varepsilon) \frac{\partial}{\partial x_{1}}\left\langle H_{w} S(x, \widetilde{w}), H_{w} G(\tilde{w}, y)\right\rangle
\end{aligned}
$$

for $\tilde{w}=0, x=\varepsilon \mathrm{e}_{1}$.
Here we used the fact that

$$
S(x, \widetilde{w})=\gamma+O(\varepsilon) \quad \text { as } \quad \varepsilon \rightarrow 0
$$

By (2.3), (2.4), (2.5) and (8.6), we get the following.

$$
\begin{align*}
& p_{\mathrm{e}}(x, y)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} p_{\mathrm{e}}(x, y)_{\mid x=\mathrm{e}} \mathrm{e}_{1} \tag{8.8}\\
= & G(x, y)-G(\widetilde{w}, y)-\varepsilon \frac{\partial}{\partial w_{1}} G(\widetilde{w}, y)+L_{3}+L_{6}+L_{7} \\
& -k \varepsilon^{\sigma}\left(\frac{\partial}{\partial x_{1}} G(x, y)-\frac{\partial}{\partial w_{1}} G(\tilde{w}, y)-\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}} G(\widetilde{w}, y)\right)
\end{align*}
$$

for $\tilde{w}=0, x=\varepsilon \mathrm{e}_{1}$.
We take an arbitrary $f \in L^{p}\left(\Omega_{\varepsilon}\right)$ and let \tilde{f} be the extension of f to Ω defined by 0 on B_{z}. By (8.8),

$$
\begin{align*}
& \left(\boldsymbol{P}_{\mathrm{z}} f\right)(x)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}}\left(\boldsymbol{P}_{\mathrm{z}} f\right)(x)_{\mid x=\mathrm{e}_{1}} \tag{8.9}\\
= & (\boldsymbol{G} \tilde{f})(x)-(\boldsymbol{G} \tilde{f})(\tilde{w})-\varepsilon \frac{\partial}{\partial w_{1}}(\boldsymbol{G} \tilde{f})(\tilde{w})+I_{0}(\varepsilon, \tilde{f}) \\
& -k \varepsilon^{\sigma}\left(\frac{\partial}{\partial x_{1}}(\boldsymbol{G} \tilde{f})(x)-\frac{\partial}{\partial w_{1}}(\boldsymbol{G} \tilde{f})(\tilde{w})-\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}}(\boldsymbol{G} \tilde{f})(\tilde{w})\right),
\end{align*}
$$

where

$$
\begin{aligned}
I_{0}(\varepsilon, \tilde{f})= & g(\varepsilon) O\left(\varepsilon^{\sigma}\right)(\boldsymbol{G} \tilde{f})(\tilde{w}) \\
& +h(\varepsilon)\left\langle\nabla_{w} S(x, \tilde{w}), \nabla_{w}(\boldsymbol{G} \tilde{f})(\widetilde{w})\right\rangle \\
& -k \varepsilon^{\sigma} h(\varepsilon) \frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} S(x, \widetilde{w}), \nabla_{w}(\boldsymbol{G} \tilde{f})(\widetilde{w})\right\rangle \\
& +i(\varepsilon)\left\langle H_{w} S(x, \widetilde{w}), H_{w}(\boldsymbol{G} \tilde{f})(\widetilde{w})\right\rangle \\
& -k \varepsilon^{\sigma} i(\varepsilon) \frac{\partial}{\partial x_{1}}\left\langle H_{w} S(x, \widetilde{w}), H_{w}(\boldsymbol{G} \tilde{f})(\widetilde{w})\right\rangle
\end{aligned}
$$

for $\tilde{w}=0, x=\varepsilon e_{1}$.
By (4.4), we have

$$
\begin{align*}
& |(\boldsymbol{G} \tilde{f})(\tilde{w})| \leqq C\|f\|_{p, \varepsilon} \tag{8.10}\\
& \left|(\boldsymbol{G} \tilde{f})(x)-(\boldsymbol{G} \tilde{f})(\tilde{w})-\varepsilon \frac{\partial}{\partial w_{1}}(\boldsymbol{G} \tilde{f})(\tilde{w})\right| \leqq C \varepsilon^{2-3 / p}\|f\|_{p, \varepsilon} \\
& \left|\frac{\partial}{\partial x_{1}}(\boldsymbol{G} \tilde{f})(x)-\frac{\partial}{\partial w_{1}}(\boldsymbol{G} \tilde{f})(\tilde{w})\right| \leqq C \varepsilon^{1-3 / p}\|f\|_{p, \varepsilon}
\end{align*}
$$

for $\tilde{w}=0, x=\varepsilon \mathrm{e}_{1}, p>3$.
Furthermore,

$$
\begin{align*}
\left|\frac{\partial}{\partial w_{n}}(\boldsymbol{G} \tilde{f})(\tilde{w})\right| & \leqq C\left(\int_{\Omega_{\varepsilon}}|y-\tilde{w}|^{-2 p^{\prime}} d y\right)^{1 / p^{\prime}}\|\tilde{f}\|_{p} \tag{8.11}\\
& \leqq \begin{cases}C \varepsilon^{1-3 / p}\|f\|_{p, \varepsilon} \quad(1<p<3) \\
C\|f\|_{p, \varepsilon} & (p>3)\end{cases}
\end{align*}
$$

for $1 \leqq n \leqq 3$, where p^{\prime} satisfies $(1 / p)+\left(1 / p^{\prime}\right)=1$. Also,

$$
\begin{align*}
\left|\frac{\partial^{2}}{\partial w_{m} \partial w_{n}}(\boldsymbol{G} \tilde{f})(\tilde{w})\right| & \leqq C\left(\int_{\Omega_{\varepsilon}}|y-\tilde{w}|^{-3 p^{\prime}} d y\right)^{1 / p^{\prime}}\|\tilde{f}\|_{p} \tag{8.12}\\
& \leqq C \varepsilon^{-3 / p}\|f\|_{p, \mathrm{e}} \quad(p>1)
\end{align*}
$$

for $1 \leqq m, n \leqq 3$.
Summing up these facts, we get

$$
\left|\left(\boldsymbol{P}_{\mathrm{z}} f\right)(x)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}}\left(\boldsymbol{P}_{\mathrm{z}} f\right)(x)\right|_{x=\mathrm{z} \mathrm{e}_{1}} \leqq C \varepsilon^{1+\sigma-3 / p}\|f\|_{p, \mathrm{e}}
$$

for $p>3$.
Therefore we have the following by Proposition 3.2.
Lemma 8.1. For a constant C independent of ε,

$$
\begin{equation*}
\left\|\left(\boldsymbol{P}_{\mathrm{z}}-\boldsymbol{G}_{\mathrm{z}}\right) f\right\|_{2, \mathrm{e}} \leqq C \varepsilon^{3-3 / \mathrm{p}}\|f\|_{\mathrm{p}, \mathrm{e}} \tag{8.13}
\end{equation*}
$$

holds for any $f \in L^{p}\left(\Omega_{\mathrm{\varepsilon}}\right)(p>3)$.
The right hand side of (8.13) is not $O\left(\varepsilon^{3}\right)$. On the other hand, the right hand side of (2.8) is $o\left(\varepsilon^{3}\right)$. Therefore we need some sharper estimate to get Theorem 4.

We put $v_{\mathbf{z}}(x)=\left(\left(\boldsymbol{P}_{\mathbf{z}}-\boldsymbol{G}_{\boldsymbol{q}}\right)\left(\chi_{\mathbf{z}} \varphi_{j}\right)\right)(x)$. As we get (8.9),

$$
\begin{align*}
& v_{\mathrm{z}}(x)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} v_{\mathrm{z}}(x)_{\mid x=\mathrm{e}_{1}} \tag{8.14}\\
= & I_{1}(\varepsilon)-I_{2}(\varepsilon)-k \varepsilon^{\sigma}\left(I_{3}(\varepsilon)-I_{4}(\varepsilon)\right)+I_{5}(\varepsilon),
\end{align*}
$$

where

$$
\begin{aligned}
& I_{1}(\varepsilon)=\left(\boldsymbol{G} \varphi_{j}\right)(x)-\left(\boldsymbol{G} \varphi_{j}\right)(\tilde{w})-\varepsilon \frac{\partial}{\partial w_{1}}\left(\boldsymbol{G} \boldsymbol{\varphi}_{j}\right)(\tilde{w}) \\
& I_{2}(\varepsilon)=\left(\boldsymbol{G} \hat{\chi}_{z} \varphi_{j}\right)(x)-\left(\boldsymbol{G} \hat{\chi}_{e} \varphi_{j}\right)(\tilde{w})-\varepsilon \frac{\partial}{\partial w_{1}}\left(\boldsymbol{G} \hat{\chi}_{z} \varphi_{j}\right)(\tilde{w}) \\
& I_{3}(\varepsilon)=\frac{\partial}{\partial x_{1}}\left(\boldsymbol{G} \boldsymbol{\varphi}_{j}\right)(x)-\left(\frac{\partial}{\partial w_{1}}+\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}}\right)\left(\boldsymbol{G} \varphi_{j}\right)(\tilde{w}) \\
& I_{4}(\varepsilon)=\frac{\partial}{\partial x_{1}}\left(\boldsymbol{G} \hat{\chi}_{z} \varphi_{j}\right)(x)-\left(\frac{\partial}{\partial w_{1}}+\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}}\right)\left(\boldsymbol{G} \hat{\chi}_{z} \varphi_{j}\right)(\tilde{w})
\end{aligned}
$$

for $\tilde{w}=0, x=\varepsilon \mathrm{e}_{1}$, and $I_{5}(\varepsilon)$ is given by replacing f with $\chi_{8} \varphi_{j}$ in the term $I_{0}(\varepsilon, \tilde{f})$ of (8.9).
Since $\boldsymbol{G} \boldsymbol{\varphi}_{j}=\mu_{j}^{-1} \boldsymbol{\varphi}_{j}$,

$$
\begin{equation*}
\left|I_{1}(\varepsilon)\right| \leqq C \varepsilon^{2},\left|I_{3}(\varepsilon)\right| \leqq C \varepsilon^{2} \tag{8.15}
\end{equation*}
$$

Using (8.11), (8.12) with $f=\chi_{\varepsilon} \varphi_{j}$, we have

$$
\begin{equation*}
\left|I_{5}(\varepsilon)\right| \leqq C\left(\varepsilon^{2}+\varepsilon^{3+\sigma}\right) \tag{8.16}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
\left|I_{2}(\varepsilon)\right| & \leqq C \varepsilon^{2-3 / p}| | \hat{\chi}_{\varepsilon} \varphi_{j} \|_{p} \quad(p>3) \tag{8.17}\\
& \leqq C \varepsilon^{2-3 / p}\left|B_{\varepsilon}\right|^{1 / p} \leqq C \varepsilon^{2}
\end{align*}
$$

Now we want to estimate $I_{4}(\varepsilon)$. We put $L(x, y)=(4 \pi)^{-1}|x-y|^{-1}$. Then, we have

$$
\begin{equation*}
I_{4}(\varepsilon)=I_{6}(\varepsilon)+I_{7}(\varepsilon)+I_{8}(\varepsilon) \tag{8.18}
\end{equation*}
$$

where

$$
\begin{aligned}
I_{6}(\varepsilon)= & \frac{\partial}{\partial x_{1}}\left(\int_{B_{\mathrm{e}}} L(x, y)\left(\varphi_{j}(y)-\varphi_{j}(x)\right) d y\right)_{\mid x=\mathrm{e}_{1}} \\
& -\frac{\partial}{\partial w_{1}} \int_{B_{\varepsilon}} L(w, y)\left(\varphi_{j}(y)-\varphi_{j}(w)\right) d y \\
& -\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}} \int_{B_{\varepsilon}} L(w, y)\left(\varphi_{j}(y)-\varphi_{j}(w)-\sum_{n=1}^{3}\left(y_{n}-w_{n}\right) \frac{\partial \varphi_{j}}{\partial w_{n}}(w)\right) d y \\
I_{7}(\varepsilon)= & \frac{\partial}{\partial x_{1}}\left(\varphi_{j}(x) F(x)\right)_{\mid x=e_{1}}-\left(\frac{\partial}{\partial w_{1}}+\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}}\right)\left(\varphi_{j}(w) F(w)\right) \\
& -\varepsilon \sum_{n=1}^{3} \frac{\partial^{2}}{\partial w_{1}^{2}}\left(\frac{\partial \varphi_{j}}{\partial w_{n}}(w) K_{n}(w)\right) \\
I_{8}(\varepsilon)= & \frac{\partial}{\partial x_{1}}\left(\mathbf{S} \hat{\chi}_{\varepsilon} \varphi_{j}\right)(x)_{\mid x=e_{1}}-\left(\frac{\partial}{\partial w_{1}}+\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}}\right)\left(\mathbf{S} \hat{\chi}_{\varepsilon} \varphi_{j}\right)(w)
\end{aligned}
$$

for $w=0$. Here we put operator S and functions F, K_{n} as follows:

$$
\begin{aligned}
& (\boldsymbol{S} f)(x)=\int_{\Omega} S(x, y) f(y) d y \\
& F(x)=\int_{B_{\varepsilon}} L(x, y) d y
\end{aligned}
$$

and

$$
K_{n}(w)=\int_{B_{\mathrm{e}}} L(w, y)\left(y_{n}-w_{n}\right) d y \quad(n=1,2,3)
$$

It is easy to see that

$$
\begin{align*}
& \left|I_{8}(\varepsilon)\right| \leqq C \varepsilon^{2} \tag{8.19}\\
& \left|I_{6}(\varepsilon)\right| \leqq C \int_{B_{\mathrm{e}}}|x-y|^{-1} d y_{\mid x=\mathrm{e}_{1}}+C \int_{B_{\mathrm{e}}}|\tilde{w}-y|^{-1} d y \\
& +C \varepsilon \int_{B_{\mathrm{e}}}|\tilde{w}-y|^{-1} d y \\
& \leqq C \varepsilon^{2} .
\end{align*}
$$

The simple calculation yields

$$
\begin{align*}
F(x) & =\left(\varepsilon^{3} / 3\right)|x|^{-1} \quad \text { for } \quad x \in R^{3} \backslash \bar{B}_{z} \tag{8.21}\\
& =\varepsilon^{2} / 2-|x|^{2} / 6 \quad \text { for } \quad x \in B_{z}, \\
K_{n}(w) & =w_{n}\left(|w|^{2} / 5-\varepsilon^{2}\right) / 3 \quad \text { for } \quad w \in B_{z} . \tag{8.22}
\end{align*}
$$

Therefore, we see that

$$
\begin{equation*}
F(x)=\varepsilon^{2} / 3, \quad \partial F(x) / \partial x_{1}=-\varepsilon / 3 \tag{8.23}
\end{equation*}
$$

for $x=\varepsilon e_{1}$, and

$$
\begin{align*}
& F(w)=\varepsilon^{2} / 2, \quad \partial F(w) / \partial w_{1}=0, \quad \partial^{2} F(w) / \partial w_{1}^{2}=-1 / 3 \tag{8.24}\\
& K_{n}(w)=\partial^{2} K_{n}(w) / \partial w_{1}^{2}=0, \quad \partial K_{n}(w) / \partial w_{1}=-\delta_{1, n}\left(\varepsilon^{2} / 3\right) \tag{8.25}
\end{align*}
$$

for $w=0$, where $\delta_{1, n}$ is the Kronecker delta. Summing up these facts, we have

$$
\begin{equation*}
I_{7}(\varepsilon)=-\varepsilon\left(\varphi_{j}\left(\varepsilon \mathrm{e}_{1}\right)-\varphi_{j}(0)\right) / 3+O\left(\varepsilon^{2}\right)=O\left(\varepsilon^{2}\right) \tag{8.26}
\end{equation*}
$$

From (8.14), (8.15), (8.16), (8.17), (8.18), (8.19), (8.20) and (8.26), we see that

$$
\left|v_{z}(x)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} v_{\mathrm{z}}(x)\right|_{x=\mathrm{z}_{1}} \leqq C\left(\varepsilon^{2}+\varepsilon^{2+\sigma}\right) .
$$

By Proposition 3.2, we have

$$
\left\|v_{\mathrm{z}}\right\|_{2, \mathrm{z}} \leqq C \varepsilon^{4}\left(1+\varepsilon^{-\sigma}\right) .
$$

Therefore, we get the desired Theorem 4.

9. Convergence of eigenvalues for $\boldsymbol{\sigma}<1$

We put A_{0}, A_{1} as before. Then,

$$
\begin{equation*}
\tilde{\boldsymbol{P}}_{\mathrm{e}}=A_{0}+g(\varepsilon) A_{1}+h(\varepsilon) A_{2}+i(\varepsilon) A_{3}, \tag{9.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \left(A_{2} f\right)(x)=\left\langle\nabla_{w} G(x, \tilde{w}), \nabla_{w}\left(G \chi_{\mathfrak{z}} f\right)(\tilde{w})\right\rangle \chi_{\mathfrak{e}}(x) \tag{9.2}\\
& \left(A_{3} f\right)(x)=\left\langle H_{w} G(x, \tilde{w}), H_{w}\left(G \chi_{\mathfrak{z}} f\right)(\tilde{w})\right\rangle \chi_{\mathfrak{z}}(x) .
\end{align*}
$$

Using (8.11) and (8.12), we have

$$
\begin{align*}
\left\|A_{2} f\right\|_{p} & \leqq C\left(\int_{\mathfrak{Q}_{\mathfrak{e}}}|x-\tilde{w}|^{-2 p} d x\right)^{1 / p}\left\|\nabla_{w}\left(\boldsymbol{G} \chi_{\mathrm{e}} f\right)\right\|_{\infty} \tag{9.4}\\
& \leqq\left\{\begin{array}{lc}
C \varepsilon^{-1}\|f\|_{p} & (3 / 2<p<3) \\
C \varepsilon^{3 / p-2} \|\left. f\right|_{p} & (p>3),
\end{array}\right.
\end{align*}
$$

and

$$
\begin{align*}
& \left\|A_{3} f\right\|_{p} \leqq C\left(\int_{\Omega_{\mathrm{z}}}|x-\tilde{w}|^{-3 p} d x\right)^{1 / p}\left\|H_{w}\left(G \chi_{z} f\right)\right\|_{\infty} \tag{9.5}\\
& \quad \leqq C \varepsilon^{-3}\|f\|_{p} \quad(p>1)
\end{align*}
$$

Here we put

$$
\left(H_{w} v\right)(w)=\sum_{m, n=1}^{3} \frac{\partial^{2} v}{\partial w_{m} \partial w_{n}}(w) .
$$

From (5.3), (8.1), (9.1), (9.4) and (9.5),

$$
\begin{aligned}
\left\|\left(\tilde{\boldsymbol{P}}_{\mathrm{z}}-\boldsymbol{G}\right) f\right\|_{2} & \leqq C\left(|g(\varepsilon)|+|h(\varepsilon)| \varepsilon^{-1}+|i(\varepsilon)| \varepsilon^{-3}\right)\|f\|_{2} \\
& \leqq C\left(\varepsilon^{2}+\varepsilon^{2-\sigma}\right)\|f\|_{2}
\end{aligned}
$$

hold for any $f \in L^{2}(\Omega)$.
Therefore we get the following.
Lemma 9.1. There exists a constant C independent of ε such that

$$
\begin{equation*}
\left\|\tilde{P}_{\mathrm{z}}-\boldsymbol{G}\right\|_{2} \leqq C\left(\varepsilon^{2}+\varepsilon^{2-\sigma}\right) \tag{9.6}
\end{equation*}
$$

holds.
Notice that Lemma 5.2 is valid for $\sigma<1$ because $\left(1-\chi_{\mathfrak{e}}\right) \chi_{\mathbf{z}}=0$. As we get (5.8),

$$
\begin{equation*}
\left|\mu_{j}(\varepsilon)^{-1}-\mu_{j}^{-1}\right| \leqq C\left(\varepsilon^{3-3 / p}+\varepsilon^{2}+\varepsilon^{2-\sigma}+\varepsilon^{3 / 2}\right) \leqq C\left(\varepsilon^{3 / 2}+\varepsilon^{2-\sigma}\right) \tag{9.7}
\end{equation*}
$$

hold for a constant C independent of ε.

10. Perturbational calculus for $\overline{\boldsymbol{P}}_{\mathrm{g}}$

We recall (2.9). Then,

$$
\begin{equation*}
\overline{\boldsymbol{P}}_{\mathrm{\varepsilon}}=A_{0}+\bar{g}(\varepsilon) \bar{A}_{1}+h(\varepsilon) \bar{A}_{2}+i(\varepsilon) \bar{A}_{3} \tag{10.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{g}(\varepsilon)=g(\varepsilon)-(4 \pi / 3) \mu_{j} \varepsilon^{3} \tag{10.2}
\end{equation*}
$$

and $\bar{A}_{1}, \bar{A}_{2}, \bar{A}_{3}$ is given by replacing χ_{z} with ξ_{z} in (5.2), (9.2), (9.3), respectively.

Furthermore we put $\lambda_{0}=\mu_{j}^{-1}, \psi_{0}=\varphi_{j}$ and

$$
\begin{aligned}
& \lambda(\varepsilon)=\lambda_{0}+\bar{g}(\varepsilon) \lambda_{1}+h(\varepsilon) \lambda_{2}+i(\varepsilon) \lambda_{3} \\
& \psi(\varepsilon)=\psi_{0}+\bar{g}(\varepsilon) \psi_{1}+h(\varepsilon) \psi_{2}+i(\varepsilon) \psi_{3} .
\end{aligned}
$$

Then,

$$
\begin{equation*}
\left(A_{0}-\lambda_{0}\right) \psi_{0}=0, \quad\left\|\psi_{0}\right\|_{2}=1 \tag{10.3}
\end{equation*}
$$

Next we consider the following equations:

$$
\begin{equation*}
\left(A_{0}-\lambda_{0}\right) \psi_{n}=\left(\lambda_{n}-\bar{A}_{n}\right) \psi_{0}, \quad\left(\psi_{0}, \psi_{n}\right)_{2}=0 \quad(n=1,2,3) . \tag{10.4}
\end{equation*}
$$

By the Fredholm alternative theory, we see that

$$
\begin{equation*}
\lambda_{n}=\left(\bar{A}_{n} \psi_{0}, \psi_{0}\right)_{2} \quad(n=1,2,3) \tag{10.5}
\end{equation*}
$$

is the condition such that the unique solution ψ_{n} of (10.4) exists.
Since $\xi_{\varepsilon}=0$ on $B_{\varepsilon / 2}, \bar{A}_{1}, \bar{A}_{2}, \bar{A}_{3}$ satisfies the same inequality as in (5.3), (9.4), (9.5), respectively. Then, by the Fredholm theory and the estimate of the $L^{p}(\Omega)$ norm of the right hand side of (10.4), we get the following.

Lemma 10.1. For a constant C independent of ε,

$$
\begin{array}{rlr}
\left\|\psi_{1}\right\|_{p},\left\|\bar{A}_{1}\right\|_{p} & \leqq C \quad(3 / 2<p<3) \\
& \leqq C \varepsilon^{3 / p-1} & (p>3) \\
\left\|\psi_{2}\right\|_{p},\left\|\bar{A}_{2}\right\|_{p} & \leqq C \varepsilon^{-1} & (3 / 2<p<3) \\
& \leqq C \varepsilon^{3 / p-2} & (p>3) \\
\left\|\psi_{3}\right\|_{p},\left\|\bar{A}_{3}\right\|_{p} & \leqq C \varepsilon^{-3} & (p>1)
\end{array}
$$

hold.
In view of (10.1), (10.3) and (10.4), we have

$$
\begin{align*}
& \left(\overline{\boldsymbol{P}}_{\varepsilon}-\lambda(\varepsilon)\right) \psi(\varepsilon) \tag{10.6}\\
= & \bar{g}(\varepsilon)^{2}\left(\bar{A}_{1}-\lambda_{1}\right) \psi_{1}+h(\varepsilon)^{2}\left(\bar{A}_{2}-\lambda_{2}\right) \psi_{2}+i(\varepsilon)^{2}\left(\bar{A}_{3}-\lambda_{3}\right) \psi_{3} \\
& +\bar{g}(\varepsilon) h(\varepsilon)\left(\left(\bar{A}_{1}-\lambda_{1}\right) \psi_{2}+\left(\bar{A}_{2}-\lambda_{2}\right) \psi_{1}\right) \\
& +h(\varepsilon) i(\varepsilon)\left(\left(\bar{A}_{2}-\lambda_{2}\right) \psi_{3}+\left(\bar{A}_{3}-\lambda_{3}\right) \psi_{2}\right) \\
& +i(\varepsilon) \bar{g}(\varepsilon)\left(\left(\bar{A}_{3}-\lambda_{3}\right) \psi_{1}+\left(\bar{A}_{1}-\lambda_{1}\right) \psi_{3}\right) .
\end{align*}
$$

By (10.5), (10.6) and Lemma 10.1, we see that

$$
\left\|\left(\overline{\boldsymbol{P}}_{\mathrm{z}}-\lambda(\varepsilon)\right) \psi(\varepsilon)\right\|_{2} \leqq C\left(\bar{g}(\varepsilon)^{2}+\varepsilon^{4}\right) \leqq C \varepsilon^{4}\left(1+\varepsilon^{-2 \sigma}\right) .
$$

Therefore we get the following.
Lemma 10.2. For a constant C independent of ε,

$$
\begin{equation*}
\left\|\left(\overline{\boldsymbol{P}}_{\mathrm{z}}-\lambda(\varepsilon)\right) \psi(\varepsilon)\right\|_{2} \leqq C \varepsilon^{4}\left(1+\varepsilon^{-2 \sigma}\right) \tag{10.7}
\end{equation*}
$$

holds.
On the other hand, by Lemmas 8.1, 10.1 and Theorem 4, we see that

$$
\begin{aligned}
& \left\|\left(\boldsymbol{P}_{z}-\boldsymbol{G}_{z}\right)\left(\chi_{z} \psi(\varepsilon)\right)\right\|_{2, z} \\
\leqq & C\left(\varepsilon^{4}\left(1+\varepsilon^{-\sigma}\right)+|\bar{g}(\varepsilon)| \varepsilon^{2}+|h(\varepsilon)| \varepsilon+|i(\varepsilon)| \varepsilon^{-3 / p}\right) \quad(p>3) \\
\leqq & C \varepsilon^{4}\left(1+\varepsilon^{-\sigma}\right) .
\end{aligned}
$$

Therefore, we get the following.
Lemma 10.3. For a constant C independent of ε,

$$
\begin{equation*}
\left\|\left(\boldsymbol{P}_{\mathrm{z}}-\boldsymbol{G}_{\mathrm{z}}\right)\left(\chi_{\mathrm{z}} \psi(\varepsilon)\right)\right\|_{2, \mathrm{z}} \leqq C \varepsilon^{4}\left(1+\varepsilon^{-\sigma}\right) \tag{10.8}
\end{equation*}
$$

holds.

11. Proof of Theorem 5

We put

$$
\begin{equation*}
J_{\mathrm{e}}(x ; v)=\left(\chi_{\mathrm{z}} \overline{\boldsymbol{P}}_{\mathrm{e}} v-\boldsymbol{P}_{\mathrm{e}} \chi_{\mathrm{e}} v\right)(x) \tag{11.1}
\end{equation*}
$$

for $v \in L^{p}(\Omega)$.
Then, we see that

$$
\begin{align*}
\Delta J_{\mathrm{e}}(x ; v) & =0 & & x \in \Omega_{\varepsilon} \tag{11.2}\\
J_{\mathrm{z}}(x ; v) & =0 & & x \in \partial \Omega
\end{align*}
$$

As we get (8.9), we have

$$
\begin{align*}
& J_{\mathrm{e}}(x ; v)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} J_{\mathrm{e}}(x ; v)_{\mid x=\mathrm{ze}} \tag{11.3}\\
= & \sum_{n=9}^{11} I_{n}(\varepsilon ; v)-k \varepsilon^{\sigma}\left(I_{12}(\varepsilon ; v)+I_{13}(\varepsilon ; v)\right),
\end{align*}
$$

where $I_{9}(\varepsilon ; v)$ is given by $I_{0}(\varepsilon ; \tilde{f})$ in (8.9) with $f=\xi_{\mathrm{z}} \hat{\chi}_{\mathrm{z}} v=\left(\xi_{\mathrm{z}}-\chi_{\mathrm{z}}\right) v$ and

$$
\begin{aligned}
& I_{10}(\varepsilon ; v)=\left(\boldsymbol{G} \hat{\chi}_{\mathrm{e}} v\right)(x)-\left(\boldsymbol{G} \xi_{\mathrm{e}} \hat{\chi}_{\mathrm{e}} v\right)(\widetilde{w})-\varepsilon \frac{\partial}{\partial w_{1}}\left(\boldsymbol{G} \xi_{\mathrm{e}} \hat{\chi}_{\mathrm{e}} v\right)(\widetilde{w}) \\
& I_{11}(\varepsilon ; v)=-(4 \pi / 3) \mu_{j} \varepsilon^{3} G(x, \widetilde{w})\left(\boldsymbol{G} \xi_{\mathrm{e}} v\right)(\widetilde{w}) \\
& I_{12}(\varepsilon ; v)=\frac{\partial}{\partial x_{1}}\left(\boldsymbol{G} \hat{\chi}_{\mathrm{e}} v\right)(x)-\left(\frac{\partial}{\partial w_{1}}+\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}}\right)\left(\boldsymbol{G} \xi_{\mathrm{e}} \hat{\chi}_{\mathrm{e}} v\right)(\widetilde{w}) \\
& I_{13}(\varepsilon ; v)=-(4 \pi / 3) \mu_{j} \varepsilon^{3} \frac{\partial}{\partial x_{1}} G(x, \widetilde{w})\left(\boldsymbol{G} \xi_{\mathrm{e}} v\right)(\widetilde{w})
\end{aligned}
$$

for $\widetilde{w}=0, x=\varepsilon \mathrm{e}_{1}$.
It is easy to see that

$$
\begin{gather*}
\left|I_{9}(\varepsilon ; v)\right| \leqq C\left(\varepsilon^{2}+\varepsilon^{3+\sigma}\right)\|v\|_{p} \quad(p>3) \tag{11.4}\\
\left|I_{11}(\varepsilon ; v)\right| \leqq C \varepsilon^{2}\|v\|_{p} \quad(p>3 / 2) \tag{11.5}
\end{gather*}
$$

$$
\begin{equation*}
\left|I_{13}(\varepsilon ; v)\right| \leqq C \varepsilon\|v\|_{p} \quad(p>3 / 2) . \tag{11.6}
\end{equation*}
$$

We have

$$
\begin{align*}
\left|I_{10}(\varepsilon ; v)\right| \leqq & C\left(\int_{B_{\varepsilon}}|x-y|^{-p^{\prime}} d y\right)_{\mid x=e^{1 / p_{1}}}^{1 / p^{\prime}}\|v\|_{p} \tag{11.7}\\
& +C\left(\int_{B_{\varepsilon}}|\tilde{w}-y|^{-p^{\prime}} d y\right)^{1 / p^{\prime}}\|v\|_{p} \\
& +C \varepsilon\left(\int_{B_{\varepsilon}}|\widetilde{w}-y|^{-2 p^{\prime}} d y\right)^{1 / p^{\prime}}\|v\|_{p} \\
& \leqq \begin{array}{lr}
C \varepsilon^{2-3 / p}\|v\|_{p} & (3 / 2<p<\infty) \\
C \varepsilon^{2}\|v\|_{\infty} & (p=\infty),
\end{array}
\end{align*}
$$

and

$$
\begin{align*}
\left|I_{12}(\varepsilon ; v)\right| \leqq & C\left(\int_{B_{\varepsilon}}|x-y|^{-2 p^{\prime}} d y\right)_{\mid x=z e_{1}}^{1 / p_{1}}\|v\|_{p} \tag{11.8}\\
& +C\left(\int_{B_{\varepsilon}}|\tilde{w}-y|^{-2 p^{\prime}} d y\right)^{1 / p^{\prime}}\|v\|_{p} \\
& +C \varepsilon\left(\int_{B_{\varepsilon}}|\tilde{w}-y|^{-3 p^{\prime}} d y\right)^{1 / p^{\prime}}\|v\|_{p} \\
\leqq & C \varepsilon^{1-3 / p}\|v\|_{p} \quad(3<p<\infty) .
\end{align*}
$$

Summing up these facts, we have

$$
\left|J_{z}(x ; v)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} J_{z}(x ; v)\right|_{x=\varepsilon_{e_{1}}} \leqq C \varepsilon^{1+\sigma-3 / p}\|v\|_{p}
$$

for $p>3$. By Proposition 3.2, we get the following.
Lemma 11.1. There exists a constant C independent of ε such that

$$
\begin{equation*}
\left\|J_{\mathrm{e}}(\cdot ; v)\right\|_{2, \mathrm{e}} \leqq C \varepsilon^{3-3 / p}\|v\|_{p} \tag{11.9}
\end{equation*}
$$

holds for any $v \in L^{p}(\Omega)(p>3)$.
Next we estimate $\left\|J_{\mathrm{e}}\left(\cdot ; \varphi_{j}\right)\right\|_{2, \mathrm{e}}$. We see that

$$
\begin{equation*}
I_{12}\left(\varepsilon ; \varphi_{j}\right)=I_{4}(\varepsilon)+\sum_{n=14}^{16} I_{n}(\varepsilon), \tag{11.10}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{14}(\varepsilon)=\left(\frac{\partial}{\partial w_{1}}+\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}}\right)\left(S\left(1-\xi_{\mathrm{z}}\right) \hat{\chi}_{\mathrm{z}} \varphi_{j}\right)(\tilde{w}) \\
& I_{15}(\varepsilon)=\frac{\partial}{\partial w_{1}} \int_{B_{\mathrm{z}}} L(w, y)\left(1-\xi_{\mathrm{z}}(y)\right) \varphi_{j}(y) d y_{\mid w=0} \\
& I_{16}(\varepsilon)=\varepsilon \frac{\partial^{2}}{\partial w_{1}^{2}} \int_{B_{\mathrm{z}}} L(w, y)\left(1-\xi_{\mathrm{z}}(y)\right) \varphi_{j}(y) d y_{\mid w=0} .
\end{aligned}
$$

Since $S(x, y) \in C^{\infty}(\Omega \times \Omega)$,

$$
\begin{equation*}
\left|I_{14}(\varepsilon)\right| \leqq C \varepsilon^{2} \tag{11.11}
\end{equation*}
$$

In section 8 , we have already showed the following.

$$
\begin{equation*}
\left|I_{4}(\varepsilon)\right| \leqq C \varepsilon^{2} \tag{11.12}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial w_{1}} \int_{B_{\varepsilon}} L(w, y) \varphi_{j}(y) d y=O\left(\varepsilon^{2}\right) \tag{11.13}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{2}}{\partial w_{1}^{2}} \int_{B_{\varepsilon}} L(w, y) \varphi_{j}(y) d y=-(1 / 3) \varphi_{j}(\tilde{w})+O\left(\varepsilon^{2}\right) \tag{11.14}
\end{equation*}
$$

for $w=\tilde{w}=0$.
On the other hand, we see that

$$
\Delta_{w} \int_{B_{\mathrm{e}}} L(w, y) \xi_{\mathrm{z}}(y) d y=-\left(\hat{\chi}_{\mathrm{z}} \xi_{\mathrm{z}}\right)(w) .
$$

Since $\xi_{\mathrm{z}}(w)=0$ for $w \in B_{\mathrm{e} / 2}$ and $\xi_{\mathrm{e}}(w)$ is rotationary invariant, we have

$$
\begin{equation*}
\int_{B_{\mathrm{e}}} L(w, y) \xi_{\mathrm{e}}(y) d y=\mathrm{Constant}=O\left(\varepsilon^{2}\right) \quad \text { for } \quad w \in B_{\mathrm{e} / 2} \tag{11.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\xi_{\mathrm{z}}(y)\right|=\left|\xi_{\mathrm{z}}(y)-\xi_{\mathrm{z}}(w)\right| \leqq C \varepsilon^{-1}|y-w| \tag{11.16}
\end{equation*}
$$

for $w \in B_{\varepsilon / 2}, y \in B_{q}$.
Therefore, we have the following.

$$
\begin{align*}
& \quad \frac{\partial}{\partial w_{1}} \int_{B_{\mathrm{e}}} L(w, y) \xi_{\mathrm{e}}(y) \varphi_{j}(y) d y_{\mid w=0} \tag{11.16}\\
& =\frac{\partial}{\partial w_{1}} \int_{B_{\mathrm{e}}} L(w, y) \xi_{\mathrm{e}}(y)\left(\varphi_{j}(y)-\varphi_{j}(w)\right) d y_{\mid w=0} \\
& \quad \quad+\frac{\partial}{\partial w_{1}}\left(\varphi_{j}(w) \int_{B_{\mathrm{z}}} L(w, y) \xi_{\mathrm{e}}(y) d y\right)_{\mid w=0} \\
& =O\left(\varepsilon^{2}\right) \\
& \tag{11.17}\\
& \quad \frac{\partial^{2}}{\partial w_{1}^{2}} \int_{B_{\mathrm{e}}} L(w, y) \xi_{\mathrm{e}}(y) \varphi_{j}(y) d y_{\mid w=0} \\
& = \\
& \frac{\partial^{2}}{\partial w_{1}^{2}} \int_{B_{\mathrm{e}}} L(w, y) \xi_{\mathrm{e}}(y)\left(\varphi_{j}(y)-\varphi_{j}(w)\right) d y_{\mid w=0} \\
& \quad+\frac{\partial^{2}}{\partial w_{1}^{2}}\left(\varnothing_{j}(w) \int_{B_{\mathrm{e}}} L(w, y) \xi_{\mathrm{e}}(y) d y\right)_{\mid w=0} \\
& =O(\varepsilon)
\end{align*}
$$

Summing up these facts, we have

$$
\begin{equation*}
I_{12}\left(\varepsilon ; \varphi_{j}\right)=-(\varepsilon / 3) \varphi_{j}(\widetilde{w})+O\left(\varepsilon^{2}\right) \tag{11.18}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
I_{13}\left(\varepsilon ; \varphi_{j}\right)=(\varepsilon / 3) \varphi_{j}(\tilde{w})+O\left(\varepsilon^{2}\right) \tag{11.19}
\end{equation*}
$$

Thus, by (11.3), (11.4), (11.5), (11.7), (11.18) and (11.19), we have

$$
\left|J_{z}\left(x ; \varphi_{j}\right)-k \varepsilon^{\sigma} \frac{\partial}{\partial x_{1}} J_{\mathrm{z}}\left(x ; \varphi_{j}\right)\right|_{x=\varepsilon \mathrm{e}_{1}} \leqq C\left(\varepsilon^{2}+\varepsilon^{2+\sigma}\right) .
$$

By Proposition 3.2, we get the desired Theorem 5.
Furthermore, we have the following.
Lemma 11.2. There exists a constant C independent of ε such that

$$
\begin{equation*}
\left\|J_{\mathrm{e}}(\cdot ; \psi(\varepsilon))\right\|_{2, \mathrm{e}} \leqq C \varepsilon^{4}\left(1+\varepsilon^{-\sigma}\right) \tag{11.20}
\end{equation*}
$$

holds.
Proof. We recall that $\psi(\varepsilon)=\phi_{j}+\bar{g}(\varepsilon) \psi_{1}+h(\varepsilon) \psi_{2}+i(\varepsilon) \psi_{3}$. We put $p>3$ in Lemma 10.1. Then, (11.20) easily follows from Lemmas 10.1, 11.1 and Theorem 5.

Remark. By neglecting $I_{11}(\varepsilon ; v)$ and $I_{13}(\varepsilon ; v)$ in (11.13), we have

$$
\begin{equation*}
\left\|\left(\chi_{\mathfrak{z}} \hat{\boldsymbol{P}}_{\mathrm{z}}-\boldsymbol{P}_{\mathrm{z}} \chi_{\mathrm{z}}\right) \varphi_{j}\right\|_{2, \mathrm{z}} \leqq C \varepsilon^{3} \tag{11.21}
\end{equation*}
$$

where

$$
\hat{\boldsymbol{P}}_{\mathrm{z}}=\overline{\boldsymbol{P}}_{\mathrm{z}}+(4 \pi / 3) \mu_{j} \varepsilon^{3} \bar{A}_{1}
$$

Since the remainder term of an asymptotic formula (1.4) is $O\left(\varepsilon^{4}\right)$ for $\sigma \leqq-2$, the estimate (11.21) is weak in the sense that the right hand side is $O\left(\varepsilon^{3}\right)$. Therefore, the existence of the term $(4 \pi / 3) \mu_{j} \varepsilon^{3} G(x, \widetilde{w}) G(\widetilde{w}, y) \xi_{\mathrm{e}}(x) \xi_{\mathrm{z}}(y)$ in (2.9) is essential to get Theorem 2.

12. Proof of Theorem 2

Now we are in a position to prove Theorem 2. As in section 7, by Lemmas 10.2, 10.3 and 11.2, we have

$$
\left\|\left(\boldsymbol{G}_{\varepsilon}-\lambda(\varepsilon)\right)\left(\chi_{\mathrm{z}} \psi(\varepsilon)\right)\right\|_{2, \mathrm{e}} \leqq C \varepsilon^{4}\left(1+\varepsilon^{-2 \sigma}\right) .
$$

Since $\|\psi(\varepsilon)\|_{2, \varepsilon} \in(1 / 2,2)$ for small ε, there exists at least one eigenvalue $\lambda^{*}(\varepsilon)$ of $\boldsymbol{G}_{\mathrm{q}}$ satisfying

$$
\begin{equation*}
\left|\lambda^{*}(\varepsilon)-\lambda(\varepsilon)\right| \leqq C \varepsilon^{4}\left(1+\varepsilon^{-2 \sigma}\right) \tag{12.1}
\end{equation*}
$$

We here represent $\lambda_{1}, \lambda_{2}, \lambda_{3}$ explicitly as follows.

$$
\begin{align*}
\lambda_{1} & =\left(\int_{\mathbf{Q}} G(w, y) \xi_{z}(y) \varphi_{j}(y) d y\right)_{\mid w=\tilde{w}}^{2} \tag{12.2}\\
& =\mu_{j}^{-2} \varphi_{j}(\tilde{w})^{2}+O\left(\varepsilon^{2}\right)
\end{align*}
$$

$$
\begin{equation*}
\lambda_{2}=\sum_{n=1}^{3}\left(\frac{\partial}{\partial w_{n}} \int_{\Omega} G(w, y) \xi_{\imath}(y) \varphi_{j}(y) d y\right)_{\mid w=\tilde{w}}^{2} \tag{12.3}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{3}=\sum_{m, n=1}^{3}\left(\frac{\partial^{2}}{\partial w_{m} \partial w_{n}} \int_{Q} G(w, y) \xi_{\mathrm{\varepsilon}}(y) \varphi_{j}(y) d y\right)_{\mid w=\tilde{w}}^{2} \tag{12.4}
\end{equation*}
$$

Since $\xi_{\mathrm{e}}(y)=0$ for $y \in B_{\mathrm{e} / 2}$,

$$
\begin{equation*}
\left|\lambda_{3}\right| \leqq C\left(\int_{\Omega \backslash B_{\varepsilon} / 2}|y-\tilde{w}|^{-3} d y\right)^{2} \leqq C|\log \varepsilon|^{2} \tag{12.5}
\end{equation*}
$$

On the other hand, by (8.25) and (11.15), we see that

$$
\begin{aligned}
& \quad \frac{\partial}{\partial w_{n}} \int_{\Omega} G(w, y)\left(1-\xi_{z}(y)\right) \varphi_{j}(y) d y \\
& = \\
& \frac{\partial}{\partial w_{n}} \int_{\Omega} S(w, y)\left(1-\xi_{z}(y)\right) \varphi_{j}(y) d y \\
& \quad+\frac{\partial}{\partial w_{n}} \int_{\Omega} L(w, y)\left(1-\xi_{z}(y)\right)\left(\varphi_{j}(y)-\varphi_{j}(w)\right) d y \\
& \quad+\frac{\partial}{\partial w_{n}}\left(\varphi_{j}(w) \int_{\Omega} L(w, y)\left(1-\xi_{z}(y)\right) d y\right) \\
& =
\end{aligned}
$$

for $w=\widetilde{w}=0$.
Thus, we have

$$
\begin{equation*}
\lambda_{2}=\mu_{j}^{-2}\left|\operatorname{grad} \varphi_{j}(\widetilde{w})\right|^{2}+O(\varepsilon) \tag{12.6}
\end{equation*}
$$

From (12.2), (12.5) and (12.6),

$$
\begin{equation*}
\lambda(\varepsilon)=\mu_{j}^{-1}-\mu_{j}^{-2}\left(Q_{j} \varepsilon^{2-\sigma}+R_{j} \varepsilon^{3}\right)+O\left(\varepsilon^{3-2 \sigma}+\varepsilon^{4-\sigma}+\varepsilon^{4}\right), \tag{12.7}
\end{equation*}
$$

where Q_{j}, R_{j} are as mentioned before.
By (12.1), (12.7) and the fact (9.7), we see that $\lambda^{*}(\varepsilon)$ must be $\mu_{j}(\varepsilon)^{-1}$.
Then,

$$
\begin{align*}
& \left|\mu_{j}(\varepsilon)^{-1}-\mu_{j}^{-1}\left(1-\mu_{j}^{-1}\left(Q_{j} \varepsilon^{2-\sigma}+R_{j} \varepsilon^{3}\right)\right)\right| \tag{12.8}\\
\leqq & C\left(\varepsilon^{3-2 \sigma}+\varepsilon^{4}\right)
\end{align*}
$$

holds.

Theorem 2 easily follows from (12.8).

References

[1] J.M. Arrieta, J. Hale and Q. Han: Eigenvalue problems for nonsmoothly perturbed domains, J. Diff. Equations, 91 (1991), 24-52.
[2] G. Besson: Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou, Bull. Soc. Math. France, 113 (1985), 211-239.
[3] I. Chavel and E.A. Feldman: Spectra of manifolds less a small domain, Duke Math. J., 56 (1988), 399-414.
[4] S. Jimbo: The singularly perturbed domain and the characterization for the eigenfunctions with Neumann boundary condition, J. Diff. Equations, 77 (1989), 322350.
[5] S. Jimbo and Y. Morita: Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels, Comm. Partial Differential Equations, 17 (1992), 523-552.
[6] S. Kaizu: The Robin problems on domains with many tiny holes, Proc. Japan Acad. Ser. A, 61 (1985), 39-42.
[7] S. Kaizu: The Poisson equation with non-autonomous semilinear boundary conditions in domains with many tiny holes, SIAM J. Math. Anal., 22 (1991), 12221245.
[8] S. Ozawa: Electrostatic capacity and eigenvalues of the Laplacian, J. Fac. Sci. Univ. Tokyo Sec IA, 30 (1983), 53-62.
[9] S. Ozawa: Spectra of domains with small spherical Neumann boundary, Ibid., 30 (1983), 259-277.
[10] S. Ozawa: Singular variation of domain and spectra of the Laplacian with small Robin conditional boundary I, to appear in Osaka J. Math.
[11] S. Ozawa, S. Roppongi: Singular variation of domain and spectra of the Laplacian with small Robin conditional boundary II, Kodai Math. J., 15 (1992), 403-429.
[12] J. Rauch, M. Taylor: Potential and scattering theory on wildly perturbed domains, J. Funct. Anal., 18 (1975), 27-59.

Department of Mathematics Faculty of Sciences
Tokyo Institute of Technology
O-okayama, Meguro-ku, Tokyo 152
Japan

