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1. Introduction

Let Q be a bounded domain in R¥ with C*~ boundary 8Q. Let @ be a fixed
point in Q and B(&, @) be the ball of radius & with the center @. We put

Q,=Q\B(&, @). Consider the following eigenvalue problem

(1.1) —Au(x) = au(x) XEQ,
u(x) =0 xE0Q
u(x)+ke“%‘_(x) =0 xE0B(e, ).
Vs

Here & denotes a positive constant. And o is a real number. Here 9/0v, de-
notes the derivative along the exterior normal direction with respect to Q,.

Let p;j(€)>0 be the j-th eigenvalue of (1.1). Let p; be the j-th eigenvalue
of the problem

(1.2) — Au(x) = au(x) xEQ
u(x) =0 xE00 .
Let G(x,y) (resp, G¢(x,y)) be the Green function of the Laplacian in
(resp. Q,) associated with the boundary condition (1.2) (resp. (1.1)).
Main aim of this paper is to show the following Theorems. Let g,(x)

be the L*-normalized eigenfunction associated with z;. We have the follow-
ing.

Theorem 1. Assume N=3. We fix jand a=1. Suppose that p;is simple.
Then, for any fixed s€(0, 1),
(1.3) pi(€) = p+Pe+0(8) ( 022
1i(€) = mj+P;E+0(€%) (1<e<?)
1i(€) = p;+(14+k)'P;64+0(&) ( o=1),
where
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Theorem 2. Assume N=3. Wefixjandc<<l. Supposethat p, is simple.
Then,

(14 a8 = w08 +O(E) (0=o<1)
1i(€) = p;+0,;8"+R;E+0(8%) (—1/2<a<0)
1i(€) = p;j+0Q;8"+R;E840(&) (—2<o=-1/2)
1i(€) = mi+R;E+0(E) (e=—-2),

where
Qj = (4r/k) py()*

R, = —(2 |grad (@) |*—(4]3) 1, 0,(@)") .

ReEMARK. The case N=2 is treated in Ozawa [10] and [11]. The singu-
larity of G(x, y) near x=y in the case N=3 is stronger than that of the case
N=2. When we use the Sobolev embedding; W??(Q)<C*-¥/({]), we must take
p larger as N increases. Therefore we may need some change of the mehtod

devloped in the above papers.
When N =4, we do not know whether the method we have used can be

applied or not.

For the related papers we have Besson [2], Chavel and Feldman [3], Oza-
wa [8], [9], Rauch and Taylor [12] and the references in the above papers.

For other related problems on singular variation of domains the readers
may refer to Arrieta, Hale and Han [1], Jimbo [4], Jimbo and Morita [5]. The
Poisson equation with many small Robin holes is discussed in Kaizu [6], [7].

2. Outline of proof of Theorem 1 and Theorem 2

Hereafter we assume N=3.
We introduce the following kernel p(x, ¥).
21 De(%,9) = G(%, y)+£(6)G(x, B)G(@, y)
+h(8) <V, G(x, @), V,G(w, y)>
+i(€) <H,G(%, @), H,G(@, ),

where
_ _ ou 0v
(Y U(®), V o(@)p = 3
»=1 Qw, OW, |uw-w
0% 0%

3
H,u(w), H,v(®)) =
<Hu(@), Hpp(@)) = >3 ow, 0w, B, 0%, |-z
when w=(w,, w,, w;) is an orthonormal frame of R®. Here g(&), A(€), i(€) are
determined so that

(2.2) P, y)+Re™2

Pe(%, 9) xE0B(&, W)
v,




EIGENVALUES OF THE LAPLACIAN 785

is small in some sense.

If we put
(23) £(8) = —(7-+ (e hd) 1e70)
(2.4) h(€) = (RE°—&)/((47) e 2 +-k(27)2"3) (a<1)
=0 (e=1)
and
(2.5) i(&) = k&MY (3(4n) 163+ 9k(4m) 27 (a<])
=0 (e= 1),
the above aim for (2.2) to be small is attained.
Here
v = lim (G(x, @)—(4=) ™" |x—@| ™).
We put
(N @) = | _ G f(y)dy
©N@ =[Gy
and

(P = [ 2 5)f(0)ay

Let T and T, be operators on Q and Q,, respectively. Then, ||T|, ||T|l,.
denotes the operator norm on L?(Q), L?(Q,), respectively. Let f and f, be func-
tions on ) and Q,, respectively. Then, ||f||,, ||fell,. denotes the norm on
L*(Q), L*(Q,), respectively.

At first we outline the proof of Theorem 1. A crucial part of our proof
of Theorem 1 is the following.

Theorem 3. Fix o=1 and s&(0,1). Then there exists a constant C,
independent of & such that

(2.6) I(Pe—Go)fll2,e < C8* || fll,.e
holds for any f €L*(Q,) (p>3).

We put
(27)  Bux ) = G(x, y)+8(e)G(x, B)G(@, y)Xe(x)Xe()

+h(€) VG (%, B), V,G(W, y)) Xo(%)Xe()
+i(€) CHLG(x, @), H,G(W, y)> Xe(%)Xe(y)

for the characteristic function X,(x) of &,.
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And we put
(B @) = |_Bis, Df )y

Since @, is approximated by P, and the difference between P, and P, is small
in some sense, we know that everything reduces to our investigation of the

perturbative analysis of G— P,.
Next we outline the proof of Theorem 2. One important part of our
proof of Theorem 2 is the following.

Theorem 4. Fix o<<1. Then, there exists a constant C such that

(2.8) I(Pe—Go) (Xep)lL e =CE"  (0=0<1)
=ce¢ ( <0
hold.
We fix j and put

(2.9) Be(%,y) = G(x, y)—(47/3) 1s;6°G(, W)G(@, Y)E(*)E+(Y)
+8(5)G(x, B)G(@, y)Eo(x)E(¥)
+h(&) KV.G(x, D), V,G(@, y)> E(%)E(¥)
+i(€) <H,G(x, @), H,G(W, y)> E(*)E(Y) »
where £,(x)EC~(R® satisfies |E,(x)| <1, E(x)=1 for xER*\B(E, W), £,(x)=0
for x& B(&/2, @) and &,(x—®) is rotationary invariant.
Furthermore we put

(B @) = | B ) (3)ay .
The other important part of our proof of Theorem 2 is the following.
Theorem 5. Fix o<<1. Then, there exists a constant C such that

(2.10) ”(sze—sze)¢j”2.e§084—c (0<0‘<1)
<ce¢t  ( o=0)
hold.

Since (2.8) and (2.10) are both o(&+&-°), we know that everything re-
duces to our investigation of the perturbative analysis of G— P,.

3. Estimation of LP-norm

We write B(§, W)=B,. In this section we show the following proposi-
tions.
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Proposition 3.1. Fix c=1. Assume that u(x)EC=($,) satisfies

(3.1) Au(x)=0 x€Q,
uy(x) =0 xE0Q

u,(x)+ke’gﬁ'_(x) = M(w) x= W+E0E0B, (0=S?).
Ve

We fix s€(0,1). Then,
(3.2) lluellz,e < C,"* Max | M()|
holds for a constant C, independent of E.

Proposition 3.2. Fix o<<2. Under the same assumptions of u, in Pro-
position 3.1,

(3.3) Il S CE=* Max| M(a)|
holds for a constant C independent of &.

We take the same procedure as in Ozawa [9, section 1, pp. 260-262] to pro-
ve the above Propositions. But we need some change of the method developed
in the above paper, since we put the Robin condition on 0B, and we assume
that N=3.

At first we prepare two Lemmas.

Lemma 3.3. Fix a€C~(S? and g>1. Then there exists at least one solu-
tion of

(34) Av(x) =0 xER\B,

(3.5) v,(x)+k£"g—::(x) = a(0) *=W+EeSOB(wES?)
satisfying

(3.6) |2:(x) | <C&*" Max | a(w) | r~(log(r/(r—¢&)))?
(3.7) |og(x)| S C,8'""" Max| a(w) | (r—&)™¢

for r=|x—|>¢€ and
(38) o4l CLE= -5/ Max | )],
where q' satisfies (1/9)+(1/¢")=1.
Proof. We put x=0+r0 (0= S?) and
w=(sinf cos @, sinf sing, cosf) (0=0<z, 0<@<2x).
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Let P,(2) be the Legendre polynomial and P7(z) be the associated Legendre
function, that is,

Pi(z) = (1—29)"2.d"P(2)|dz"  (|z]|<1,mEZ,).

It is well-known that {Py(cos @) cos mep, Py(cos@)sinmep; 0=m=n};_, is a
complete orthogonal system of L*(.S?) consisting of eigenfunction of the Laplace-
Beltrami operator Ag2z whose eigenvalue is —n(n-1).

Therefore we have the Fourier expansion

(3.9) a(o) =31 Y,(0,9),
where
(3.10) Yo(6, @) = 33 (ay,m €08 @+, sin mep) P (cos 6) .

By the Parseval relation, we see
(3.11) 31 (2n+1)7@k 0+ 33 ((n4-m) 2+ (n—m)1) (@2, m+-Bm)
= Cllalfixsn < C'(Max| a(w) )
We put
Oy(5) = 33 (33 (Sn,m €08 M-+, si mp) P (c08 O))r~ 44D

Then, it satisfies Av,(x)=0 for x& R%\B,.

We see that
0, () +ke" g:’ (®) 1208 = (o)
= g (,g, (@y,m cos mp+b, ,, sin mep) Py (cos 6))
implies

By = &V (14(n+1)RE")s,
bn.m = E—(“+l)(1+(”+l)kgd._l)t)l.m

for 0=m=<n, n=0.
Thus we have

(3.12) v(®) = 33 V.(0, @) (el (14-(n+- De™),
and
B13) 0@ P<( Va6, @)) 3 (el (1 (n+ DheT) 2,

Since (3.9) holds in L*(S?), we see that
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[ lo®)?do
< llelliasn 33 (6fr) (14 (n+ 1ke" )2
< C(Max | aw) | (3] (efr)e o'y
X (3] (1 De) e
< C(Max| a(w) (M (elr) )¢
X (S: (1-+Re"-)-2dt)s
= C(Max| (o) Y(&/r)(r/(r— &))" (29— 1)ke") Ve
Therefore, we have
lode={" (oo Pdwyar

<C,(Max | at(w)])? £2+0-1 ,

Thus we get (3.8).
Using the Schwarz inequality and the relation

P, (cos )"+ 33 (2+(n—m)!(n-+m)!)P(cos ) = 1,
Wwe see "~
(313)  1Y,(0, 9)I*Sahot 33 ((n+m)/12-(n—m)!) (@ m+-BEm) -
From (3.11), (3.12) and (3.13), we have
|vi(x) | SC Max| a(w) | R(&, o, 7)P(E]r) ,

where
R(&, o, 7) = 3 (&lrPo(n+1) (14+(n+-1)ke"-)2.
Since a
R(E, o, 7)< C 0= io (n+-1)"1 (fr)**
<C &4-7 log(r/(r—&))
and

R(&, 0,7 (”2:0 (n41) (E/r)zw)l/q,

X (g (n+1) (14 (n+1)ke"-1)2)Me
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(55 (n+1) (efr))
X (k164" 33 (1 (n+ 1)ke" 1)) s
<(rlr—e) (k6= | (14he ey -Haeye
=(r[(r—&)// (2(g— 1)K "-V) e
hold, we get (3.6) and (3.7).
Lemma 3.4. Fix B€C>(0B,). Assume that g& H*(Q,) satisfies

(3.14) Ag(x) =0 xEQ,
g(x)=20 xE00
g(x)+ke“§_g(x) — B(x) xE0B, .
Vg
Then,

S |V () |? die S ek te"(Max | 8(3) |
Qe B,

Proof. Since g H*(,), we have Green’s formula:

[ @ag+iveryar={ g% ao..

9Qe 61!,

By (3.14), we can see that

Sne velrar={ ¢ % 45, = Saﬂe (ﬁ(x)—ke“aﬂf;(x))%(x)da,.

%B:  Ov,

Therefore, we have

2 - _ag_._ 2 = 6g X
(3.15) Sm |Vg|?dx+ ke Saag | o, |?do, Saag B(x) o, (%)do .
Using the Schwarz inequality, we have
- 0g |2 og
we | || de < [,,, 8 ()
og
< 2 1/2 0f |2 1z
<({,, serdeye(f 1 120
Thus,
(3.16) (S I-Q‘g—lzdo-,)l/zs_k“&‘”(s B(x)do )\ .
9Bg avx 9Bg
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From (3.15) and (3.16), we get

og
gm |Vg|? dxgsm B) 8- (x) d.

% do )

g(gm B(x) do ) (Sm l o,

<ke° Sw B(x) do,
§4rzk”‘€2"(l\£ax| Bx)|)?.

q.e.d.

Now we are in a position to prove Propositions 3.1 and 3.2.

Proof of Proposition 3.1. Let u,(x) be as in Proposition 3.1. We take an
arbitrary ¢>¢o. Firstly we put a(w)=M(») and we take o{* so that it satisfies
(3.4), (3.5), (3.7) and (3.8). Then 9! may not satisfy v{”(x)=0 for x€3Q.
Let v{" be the harmonic function in Q satisfying v{"(x)=2{"(x) for x€8Q. Put

M, = Max | M(»)].

Then from (3.7) we see that Max{| v{"(x)| ; x€ 0} <C,&" M, and Max{|2{"(x)
+ke70v{(x)/0v, | ; xS 0B,} ééq{:‘l"’"’ M,, where C, is a constant independent of
&. Secondly, we put a(w)=1v{"(x)+kE"0v"(x)/0v, for x=W+Ew<= 0B, and we
take v{®) so that it satisfies (3.4), (3.5), (3.7) and (3.8). Let v{* be the harmonic
function in Q satisfying v{¥(x)=0v"(x) for x€9Q. Then, Max{|v{"(x)|; x€}
<(C,&-"1?M, and Max{|v®(x)+ ke 00(x)/dv,|; x€8B} <(C,&-"1)M, .

By repeating this procedure we have
Av"* D (x) =0 x€Q
,0(82'1+1)(x) — v(eZn)(x) xe aﬂ
and
Av?D(x) =0  xER\B,

2+ 0)(x)+ k" 0% a“”a (x)—v(2”+1’(x)—|—k8°'~——~67§ (x) x<0B,

x x

for n=0,1, 2, ---.
Then, by induction,

(17 Max | o{(x) | < (C,&=")*M,

(3.18) Max | {2+ x) - he™2 a”ae (%)) <(C 6Ty M,

Vy
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(3.19) [0(x) | <(C 8-y M(r—e)™ '  (r>¢)
(3:20) (0]l < Ce1-"-2C0 (C g1="10)" M,
hold for #=0.

Since ¢>o, we can take & so that é,&“"’" <1/2. We put
(3.21) wy(x) = 33 (—1)"s"(x)
n=0

From (3.17) and (3.19), we can see that the right hand side of (3.21) is uniformly
convergent on Q\B, for any »>&. Since v is harmonic in Q,, we see that
w,(x) is harmonic in Q,, w,(x)=0 for x&0Q and

Oy ) — S (- 1)"6”= ® x€Q., j=123.
0x;

We put
(@) = () — 33 (—1)0x)
Then,
(3.22) Ver(x)>V(ue—we)(x)  (m—>c0)  for xEQ,.

It is easy to see that g is harmonic in Q,, g(x)=0 for x€9Q and

n) (2n+1)
g‘,”’(x)—}—ke’——%gg (%) = vg2"+l>(x)+ke‘_—a‘”6= (x)  x<0B,.
Ve

z

Therefore, by Lemma 3.4 and (3.18), we have

[, 1VE1? de mbotes=" Max | o D) -e” a”= %)
<4rk-'e- ’(C,e“”’f)"M,.
Using Fatou’s Lemma and (3.22), we see that

[ 1900w dstim infS Vg™ |2 dx<0.
Qs n > Qe

Thus, u,—w,=constant a.e. Q,. Since uy(x)=w,(x)=0 for x£8Q, u,=w, a.e.
Q,. Therefore,

(3.23) y(x) = io (—1)"s"(x)  xEQ,.

From (3.17) and (3.20), we have
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18 (108l S 3 (ol -l

g:zgo (Clet-C-bieo_ & g1-o) (1/2)" M,
=C,&-lM, .

Using Fatou’s Lemma and (3.23), we see that

Sn |4,(%)]? dx<lim infSo IS (— 1) o) 2 dx
=(CE-M,)z .
Thus we get (3.2). q.e.d.

Proof of Proposition 3.2. Let {2{")(x)}s., be the sequence of functions as
in the proof of Proposition 3.1. Then, by using (3.6), we can get

(3.24) Max |of** ()| <(Ce=)* M,

(2n+1)
e [0 e R0 S (G M,
Be v

(3.25) |6 (x) | <(C&*)** M~ (log(r/(r—é&)))
for n20. Here C is a constant independent of & and M,=Max | M(w)].

Since o<<2, we can take & so that C€-°<1/2. Then, by the same ar-
gument as in the proof of Proposition 3.1, we can see that

(3.26) (%) = §; (—1)"0™() xEQ,.
From (3.24), (3.25) and (3.26), we have
(3:27) ()| < 33 (108() |+ 26 ()])
SC&"My (log(r/(r—E)2  (r>8).
Now (3.3) easily follows from (3.27). q.ed.

4. Proof of Theorem 3

From this section to section 7, we assume o=1. By (2.3) we see that

4.1) 2(8) = —4ne+0(8+¢°) (e>1)
= —47(14+k)6+0(&)  (o=1).

We take an arbitrary fixed point x€9B,. Without loss of generality we
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may assume @=0 and x=&,,. Here we put ¢,=(1,0,0). We put p(x,y)
as before and

S(x, y) = G(x, y)—(4=)~ | x—y| .
Then, S(x, y)€C~(Q2 X Q) and

Pe(x, ) —keo-ga—z’e(x’ ¥)iz=te,
%3

= G(x, y)—kE”

6 Gl o~
G(x, y)—g(E)ke™-2—S(x, m)G(w, y)
ox, ox,

+8(€) ((4=) €7+ S(, W)+ k(47) 16" *)G(@, y)
for =0, x=_¢&e,.

Since y=S(w, W), S(x, D) =7-+O(€) as €—0. By (4.1),

0
Ox,

(42) P!(x’ y)__ksa' P!(x$ y)|x=te1

=Gmw—amw+mﬁamw—w3;a%w
1
for =0, x==¢&e,.

We take an arbitrary f €L?(£,) and let f be the extension of f to Q defin-
ed by 0 on B,. Then we have

(43) (Bof) ()R (Puf) (s

= (Gf)(*)—(Gf)(w)+O0(&)(Gf )(w)—kf’a%l(Gf )(x)

for =0, x=¢e,.
By the Sobolev embedding theorem and a priori estimate

(44) IGSllcr+ @ =CIlIf [, =CIIfllp,e
hold for 7=1—3/p (p>3). Therefore we have

(PP k" L) () coen SCEl e

We put u,=(P,—@G,)f. Then u, satisfies (3.1) because G,f satisfies the given
Robin condition on 8B,. By Proposition 3.1, we have (2.6).

5. Convergence of eigenvalues for =1

We put p(x, ), P, as before. Then,
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(3.1) P, = Ay+2(8) 4,

where A,=G and

(5.2) (Aif) (%) = G(x, B)Xo(x) (GX f) (@) .
Since

(A f) (@) | =Cla—w| 7 X ) fll, (p>3]2),

we have

(5.3) 4 f1L,=ClIfll,  (2<p<3)
scerifll,  (p>3).

From (4.1), (5.1) and (5.3) we have
I(P.—G)fll.= | &(&)| |4, fll.=Cél|fIl,

for any fe L*Q). Therefore we get the following.

Lemma 5.1. There exists a constant C independent of & such that
(54) |P,—@G|,<Cé
holds.

Next we want to estimate IIX,f’,X,—ﬁ,Hz. It does not exceed
(5.5) I(1—=Xe) PoXol L+ 1| Po(1 =X, -
Notice that (1—X,)X,=0 in g(&) term. By (5.1),

l(1—X,) Po|[,<C | B, |2 ||Go][,< C&# [[o]],
hold for any v L Q). Therefore we get
(5:6) I(1=X) P J,=Ce*
[(1—Xe) PX,|,<C&" .
Since we have the duality
(1=X)P)* = P(1—X,),

we get
(57) 1P(1=Xe) . =CE™.

Summing up these facts, we get the following.

Lemma 5.2. There exists a constant C independent of & such that

795
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“xtﬁlxt" ~l”2§08m
holds.

Notice that the j-the eigenvalue of P, is equal to the j-th eigenvalue of

X PoX, By virtue of Theorem 3, Lemmas 5.1 and 5.2, we see that there exists
a constant C independent of & such that

(5:8) | 1i(8)" ' — 7| SC(E*+e+7)=C ¢

hold.
For the later convenience we estimate H(X,I;,——P,X,) fllse. We put v,=

(X,P:—P.X,) f. Then, v,=(G’92, f) on Q,. Here 72. is the characteristic function
on B,. Thus v, satisfies Av,(x)=0 for xEQ,, v,(x)=0 for x0Q and

(5.9) ol =], 1x—y1"d) |11
_ {Cé‘s”llfll, (3/2<p<)
Slegifl. (p=e)

for x€0B,.
By the maximum principle, we get the following.

Lemma 5.3. There exists a constant C independent of & such that
(5.10) (X Pe— PX)flloe SCEIfl,  (32<p<co)
=C&flle  (p=w)
hold for any f = L*(Q).

6. Perturbational calculus for P,

In this section we consider the behaviour of eigenvalues of P, as & tends
to 0. We put

ME) = N tE(EM
Y(€) = Yrot8(E)Yn

so that A(€) and () is an approximate eigenvalue of P, and an approxi-

mate eigenfunction of P,, respectively.
Let , be a simple eigenvalue of 4, and s, be a solution of

(6-1) (Ao—ho)‘\l"o =0, ”11"0”2 =1.

Next we solve the following equations:

(6.2) (Ao—o)¥r1 = (A—A41) Vo
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(63) (Yo ¥n)e =0,

where ( , ), denotes the inner product on L*2).
By the Fredholm alternative theory, we see that

(6.4) M = (Arros Yoz

is the condition such that the unique solution of «j; of (6.2) and (6.3) exists.
Hereafter we put \p=pgj'. Then yy=¢;. Itis easy to see

(6.5) M= |(GX@))(@)|* = uj"p;(®)*+O(€)
(6.6) (P—(E))(&) = 8(&) (=M
From (5.3), (6.2), (6.4) and (6.6), we have the following.

Lemma 6.1. There exists a constant C independent of & such that

(6.7) I(Pe—2(E)) (&)l = Cele)=Ce
hold.

By (5.3), (6.2) and (6.4), we have
(6.8) [nlly, llAull,=CE2 (p>3).

Now we have the following.

Lemma 6.2. Fix s&(0,1). Then, there exist constants C, C, independent
of & such that

(6.9) I(Pe—G) (Xen(€))llz, = C,E*
(6.10) I(Xe Pe— PX (&), < CE?
hold.

Proof. By (6.8), Theorem 3 and Lemma 5.3, we have
”(PI_GU) (x,'\[r(e))llz.,
=CE(1+1ge)|ePN)=Ce*  (p>3)
and
”(xeﬁt‘_P!xt)‘l"(e)Hz.e
=C(&+|ge)| e <sCe  (p>3).
q.e.d.

7. Proof of Theorem 1

Now we are in a position to prove Theorem 1. We fix s€(0,1). Then,
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by Lemmas 6.1 and 6.2, we have

I(Ge—2(€)) (Xeyr(€))l2,e
SI(Ge— Pe) (Ut (€Dl (P Xe— X Poyr(€) e
HIIXe Pe=(E)(E) e
<Cé&*.
Since [|yr(8)l,,e€(1/2, 2) for small &, there exists at least one eigenvalue A*(€) of
G, satisfying

(7.1) IA¥(E)—NE) | =C&.

We here represent A(€) explicitly as follows:

(7.2) A(E) = n7 +8(E) (u7p;(@)'+0(Y)
_(pi' 4w i (W) +0(8+€7) (e>1)

41 4-R) e (@)E+0(E)  (o=1)

By (7.1), (7.2) and the fact (5.8), we see that A*(&) must be u;(&)~"
Then, (1.3) easily follows from (7.1) and (7.2). Therefore we get the desired
Theorem 1.

8. Proof of Theorem 4
From this section we assume o<<1. By (2.3), (2.4) and (2.5), we see that

(8.1) 2(6) = —(4n|R)E"+O(8™)
() = 276+ O(&)
i(€) = (47/9)E+O(657) .

We take an arbitrary x=0B,. Without loss of generality we may assume
that =0 and x=¢&e,. We put S(x, y) as before. Then, the same calculation
as in p. 263 of Ozawa [9] yields

(8.2) VG, ), V.,G(@, y)
— (4n)"'e~? 6Lw(;(w, YLV S(, D), VG(@, 9)>

(8.3) (9.6 ), V.6(@,5)>
— —(2n)e a%lG(w’ y)—f——g%l-(VwS(x, ), V,G(®, y)>

(34) <H,G(x, W), H,G(®, y)) —<H,S(x, w), H,G(w, y)>
— 3(4x) 16~ a?_t;G(w, y)—(4z) 1A, G(@, y)
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(8.5) ai CH,G(x, @), H,G(@, y)> — ai CH,S(x, @), H.G(®, y)>

2
— —9(4r)e a?—MG(w, P)43(4m) e AG(@, y)

for x==¢e,;, W=0. We recall that

(8.6) AG@,y)=0 for yEQ,.
We put p,(x, y) as before. By (8.2), (8.3), (8.4), (8.5) and (8.6), we have
(8.7) Pelx, y)—kE” aax Pel, y)lx:zel = 2_ Lj ’
1 i=1

where
L, = G(x, y)
L, = g(&) (4z&) ™'+ 7+ (4n) k™ )G(w, y)
L; = g(6)0(e")G(@, y)

L, = (4z)" (&4 2ke")h(6)—2—G(w, y)— k&"-2—G(x, y)
ow, 0x,
Ly = 3(4m)" (&3 3ke"-4Yi(e) a?j _G(w, y)
1

LG = h(e) <VwS(x’ w)v VwG(w’ y)>
—k.s"h(e)—a% (V.S(x, M), V,G(@, )

L, = i(&) <H,S(x, w), H,G(®, y)>
—ke"i(s)a—a%(HwS(x, @), H,G(, y)>
for =0, x=¢e,.
Here we used the fact that
S(x, @) = y+0(€) as &—0.
By (2.3), (2.4), (2.5) and (8.6), we get the following.

s 0

(8.8) P ) —e"
X1

Pe(, y)|x=!e1

e 0
ow,

0 _ 0°
G(w, y)—&
ow, (@, 5) ow?

= G(x’ y)_G(w’ y)_ G(ZT), y)+L3+Ls+L7

_ke"(aixlc(x, y)— G(w, y))
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for =0, x==¢&e,.

We take an arbitrary f €L#(Q,) and let f be the extension of f to Q defin-
ed by O on B,. By (8.8),

(89) (Pf) ()R (Pf) (e
= (@) (A~(6F) @)~ {6 @) +1(& )
o 0 0 s 0
RG] ) (=5l G @)~ (6D @),
where

Iy(&, f) = g(6)O(&")(GS ) (w)
() <V, S(, @), V (GF)(®))

_kevh(e)aix<v,,s<x, @), V.AGF)(®)>

+i(€) <H,S(x, @), H,(Gf )(®)>
_keci<e)3%<ﬂws<x, @), H,(GF (@)

for W=0, x=¢&e,.

By (4.4), we have
810 (€)@)ISCIfll
|(6)()—(GF ) (@)—~&-52(GF)(@)| CE- i,
PG WG @) SCE I i,
for =0, x=¢e,, p>3.
Furthermore,
61 e Gh@)|SC 1y—o1 ) 171,
<[C Il (1<)
S, @>9)
for 1=n<3, where p’ satisfies (1/p)+(1/p")=1. Also,
(612) o G @|C( | Ly—a1ap,

=C& N fllpe (£>1)
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for 1=<m,n<3.
Summing up these facts, we get

|(Puf) ()R T Pof) @) e SCE I

for p>3.
Therefore we have the following by Proposition 3.2.

Lemma 8.1. For a constant C independent of &,
(8.13) I(Pe—G)fll,e = CE2[I fll,e
holds for any f € L*(Q,) (p>3).

The right hand side of (8.13) is not O(&%). On the other hand, the right
hand side of (2.8) is 0o(&%). Therefore we need some sharper estimate to get
Theorem 4.

We put o,(x)=((P—G) (Xe@)) (x). As we get (8.9),

(8.14) Vg(X) —k«f:“'W V(%) 1526,

1

= I(&)—I,(6)—ke*(I(&) — (&) + I5(€) ,

where

1(8) = (6;) (x)—(Gp) (@) —&- (6o, (@)

ow,

1) = (@) () (@) (@)~ 2(Gu) (@)

L©) = 2@ ()~ (ot e Go @)

0

ow,

16) = (@) ()t & 2D G @)

for =0, x=_&e,, and (&) is given by replacing f with X,; in the term I(&, f)
of (8.9).
Since Gp;= ni'p;,

(8.15) |1(e)| =C&, | L) =Cé&.
Using (8.11), (8.12) with f=X,p;, we have
(8.16) | I(e)| =C(e+€+) .

Furthermore,
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(8.17) |L(&)| SC& 1 |Xopill,  (p>3)
<C&¥|B,|*<Cé.

Now we want to estimate I,(§). We put L(x, y)=(4=)"|x—y|™*. Then, we
have

(8.18) 1) = I(e)+ () +1x(€) »

where

0

Iy(&) =
) 0x,

(], 265 ) @A)~ 21N

0
ow,
62

—e || L)@ i)— i) () 52 )y

(@i (%) F(%)) 12206, (

[, L. 9) @s0)— o )dy

0 0
axl awl

e O (Oo;
6312 (22w, (w)

(S)’ee(pi) (x)|x=ee1—(

L&) =

6.2 ) (@ (@)F)
w1

d

ox,

0 169 )(Sko) (@)

I(8) = .
{8) dw, ow?

for w=0. Here we put operator S and functions F, K, as follows:
(SN =[St »f(s)ay

F(x) = Le L(x, y)dy

and
K@) = |, Lo y)s—w)dy  (1=12,3).

It is easy to see that

(8.19) | 1) <C¢
(8:20) &) | SC [ 14=3 1 ramie+C | 10—y|dy
+Ce SB |@—y|~'dy

<Cé&.

The simple calculation yields
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(8.21) F(x) = (&83)| x| ! for xSR3\B,
= &2—|x|?6 for x€B,,
(8.22) K (w)=w,(|w|?}5—&)3 for weB,.

Therefore, we see that

(8.23) F(x) = &3, 0F(x)/0x,= —&/3

for x=¢&e,, and

(8.24) Fw) = &2, 0F(w)/ow,=0, 0*F(w)/owi= —1/3

(825) K, (w)= K, (w)/owi =0, 0K, (w)/0w, = —3,,(€3)

for w=0, where §, , is the Kronecker delta. Summing up these facts, we have
(8.26) I(8) = — (@ (e)—(0)/3+O(8) = O(€Y).

From (8.14), (8.15), (8.16), (8.17), (8.18), (8.19), (8.20) and (8.26), we see
that

| Ve(%) —RET—— 0g(%) | mpe, SC(E+E) .

0
0x;
By Proposition 3.2, we have

l[2el e < CE(1+€77) .

Therefore, we get the desired Theorem 4.

9. Convergence of eigenvalues for o<1

We put A4,, 4, as before. Then,

9.1) P, = A,+g(6)A,+h(8)A,+i(6) 4,
where

9.2) (A.f) (%) = KV, G(x, @), V. (GX, ) (D)) Xe()
9:3) (A4sf)(x) = <H,G(x, @), H,(GX,f)(@)> Xo(x) .

Using (8.11) and (8.12), we have

04 141, <C(J 15| 2de)#V(GXu )l
<{CE M, - Grr<r<d
Sleseis, >,

and
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95) 4f SO 12—|de) | H(GXu )l
=cedfll, (p>1).

Here we put

Ho)@) =3 —22 ().

w1 B, 0w,
From (5.3), (8.1), (9.1), (9.4) and (9.5),

(Pe—@fll.=C(1 £(&) |+ | (&) [ €7+ [i(€) | €I f I,
=CE+ENISIl

hold for any f € L*(Q).
Therefore we get the following.

Lemma 9.1. There exists a constant C independent of & such that
(9-6) | P,—Gll,< C(e*+&)
holds.

Notice that Lemma 5.2 is valid for o<<1 because (1—X,)X,=0. As we
get (5.8),

9.7) | 1i(8) 7' — pi'| SC(8 4 £4- 8-+ 8F) S C(eF+€7)

hold for a constant C independent of &.

10. Perturbational calculus for P,
We recall (2.9). Then,

(10.1) P, = A+ 3(8) A+ (&) A, +i(6)A;
where
(10.2) 2(8) = g(&)—(4=/3) u;€

and 4,, 4,, 4, is given by replacing X, with £, in (5.2), (9.2), (9.3), respecti-
vely.
Furthermore we put A= 7, Y=¢; and
A(€) = Mot Z(EMFA(EN+H(ENs
V() = YotZ(ENn+A(ENratH(ENs -
Then,
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(10~3) (Ao“ho)ll"o =0, ”\Po”z =1.

Next we consider the following equations:

(104)  (Ao—2n = A=A (Yo ¥a)=0  (n=1,2,3).

By the Fredholm alternative theory, we see that

(10.5) A= (Ao Vo) (1=1,2,3)

is the condition such that the unique solution 4, of (10.4) exists.

Since £,=0 on B,,, A4, 4, A4y satisfies the same inequality as in (5.3),
(9.4), (9.5), respectively. Then, by the Fredholm theory and the estimate of
the L?(Q) norm of the right hand side of (10.4), we get the following.

Lemma 10.1. For a constant C independent of &,

(Il 1A, =C (3/2<p<3)
<cgmr-t (p>3)
el 1], =Ce™ (3/2<p<<3)
sCgir-? (p>3)
[lslly, 1 A5ll, = C&~° (p>1)
hold.
In view of (10.1), (10.3) and (10.4), we have

(106) (B EN(6)
= Z(E(Ai— M)A (A=A )ra+H(E)(As—Aa)rs
+Z(E)M(E) (A—)pa+(Ar—22)yr)
+h(€)i(€) (A=A W5+ (As—Ag)yra)
+4(6)Z(8) (As—ralri+(Ai—2Aa)rs) -
By (10.5), (10.6) and Lemma 10.1, we see that
I(Pe—ME(E)l.=C(g(e)*+ &) =CE(1+67).
Therefore we get the following.
Lemma 10.2. For a constant C independent of &,
(10.7) (Pe—M(&))yr(E)ll. = CE(14-677)
holds.
On the other hand, by Lemmas 8.1, 10.1 and Theorem 4, we see that
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”(P,——G,) (Xz"l/'(e))nz,z
SCE(1+&)+18(e) 18+ [ME) |6+ |i(e) | 67)  (p>3)
SCe(1+¢€).

Therefore, we get the following.
Lemma 10.3. For a constant C independent of &,

(10.8) (Pe—G) (X (Dl = CE(1+67°)
holds.

11. Proof of Theorem 5
We put
(11.1) Je(x; 0) = (X Po— PX,0)(x)

for vELX(Q)).
Then, we see that

(11.2) AJ(x;0)=10 xEQ,
Je(x50) =0 xE0Q .

As we get (8.9), we have

(11.3) T 0)— k-2 J (23 0) mey
0x,

ll

31 1,(85 0)— ke (L(E; 0)+ (€3 )

where I4(&; v) is given by Iy(€; f) in (8.9) with f=§,92,-zz=(.f,—x,)fv and
0

0w,

14(&; v) = —(4n/3) n;6°G(, ) (GE.v) ()

aaxl (G?AC,‘Z)) (x)—( 6301 62:% ) (Gf,f(,‘v) (w)

L(€; 9) = (GX,0) (%) —(GE X ) () — E—2—(GEX,0) ()

Iy(&;0) = +&

Iu(&3 0) = —(4n[3) 160G, ) (GEw) (@)

for =0, x==¢&e,.
It is easy to see that

(11.4) |I(&; v) | <C(&++)|lol],  (p>3)
(11.5) [Iy(&;0)| =C&l0ll,  (p>3/2)
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(11.6) [ 11s(&;5 v) | = Célloll, (2>3/2).
We have
(117) | es I SO 15—y 1)t ol

+a(f, 10317y ol

+Cel[, 18—y1 7 dyy I,

S{CE"a'fnvu, (3/2<p<oo)
=lceoll.. (p=2°),

and
(118) e )| SO 13— )t Il
([, 1=y ay o,
s, 1a—y1dy ol
sSCe 1 o]l, (3<p<co).

Summing up these facts, we have

| J (s v) —ke® aa Ji(550) | o0, SCE"5 |9,
X1

for p>3. By Proposition 3.2, we get the following.

Lemma 11.1. There exists a constant C independent of & such that
(11.9) 1)+ 0)llpe = CE 0],
holds for any v € L*(Q) (p>3).

Next we estimate || [(+; @;)|l.. We see that

(11.10) Lo(&; @) = 14(6)+"‘:il‘4 1,(€)

where

62

L%

1) = -2 | L, ) (1—E()0,0M1e-o
‘w1 Be

62

ow}

)(S(1—Eo)Xep;) ()

1) = (0 ¢
1

L&) = ¢

S Be L(w, ) 1—£()@ /)3 10=0 -
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Since S(x, y)€C~(Q X Q),
(11.11) |1 ()| =Cé€.

In section 8, we have already showed the following.

(11.12) |I,(8)| =C&

(11.13) o Ll Vo )y = 0(E)

(11.14) T, L D))y = —(1[3)@)+O0(E)
for w=w=0.

On the other hand, we see that

A, Lw y)E0My = —(k) @)
Since &,(w)=0 for w EB,;, and £,(w) is rotationarv invariant, we have

(11.15) S L(w, )E{(y)dy = Constant = O(€%)  for w&Byy,
Be
and

(11.16) [€(9)| =E(y)—Ex(w)| =CE7H y—w|

for weB,), yEB,.
Therefore, we have the following.

(11.16) o |, Ll DEN (s
= o § L0 ) A~ 2N
(@) |, L, DE)) e
= O(&)
(11.17) e 1, L DB
= 21, Hw 80 @)~ ians
W1 JBe

o) | L DEOIDen
= 0(€)
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Summing up these facts, we have

(11.18) 1u(& @) = —(3),(@)+ O(&) .
It is easy to see that
(11.19) I(&; @) = (&13),(@)+ O(&).

Thus, by (11.3), (11.4), (11.5), (11.7), (11.18) and (11.19), we have

| T @) ke 2] 93) e SC(EHE4)
1

By Proposition 3.2, we get the desired Theorem 5.
Furthermore, we have the following.

Lemma 11.2. There exists a constant C independent of & such that
(11.20) [ Te(+ 5 Y (E))le,e = CEH(1+€7)
holds.

Proof. We recall that Jn(&)=@;+ Z(EWn+H(EWr+-1(E)rs. We put p>3
in Lemma 10.1. Then, (11.20) easily follows from Lemmas 10.1, 11.1 and

Theorem 5. q.e.d.
REMARK. By neglecting I;;(€; v) and Ij4(€; ) in (11.13), we have

(11.21) (X Po— PXo)@,llp, = CE°

where

P, = P,4-(4z)3)u;84, .

Since the remainder term of an asymptotic formula (1.4) is O(&*) for o< —2,
the estimate (11.21) is weak in the sense that the right hand side is O(&°).
Therefore, the existence of the term (47/3)u;8 G(x, @)G(W, y)E (x)E(y) in
(2.9) is essential to get Theorem 2.

12. Proof of Theorem 2

Now we are in a position to prove Theorem 2. As in section 7, by Lem-
mas 10.2, 10.3 and 11.2, we have

I(Ge— () (Xetr(&))llo,e = Ce(14-67*) .

Since |[yr(E)ll,e €(1/2, 2) for small &, there exists at least one eigenvalue A*(&) of
G, satisfying

(12.1) [A*(&)—\E)| =Ce(14-677).
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We here represent A, \,, A3 explicitly as follows.

(122) = ([ 6@, DEGI@ ()
— Wi+ O0(E)
(123) n=321 | G nEIe -

n

(12.4) o= 3, 2| G DEOIRINens
mn=1 wmawn Q

Since &,(y)=0 for yEB,,
(12.5) nl=C(|  y—a|ayp=Cllogel?.
Q\Bg/z

On the other hand, by (8.25) and (11.15), we see that

2 6@ a-eeindy

D

n

S(w, YV(A=E(y);(y)dy

[ L@, ) (1—EN @A) o @)y

Wy

+ 2 o) | L) (1—E0)D)

=0@©) (n=1,2,3)

for w=w=0.
Thus, we have

(12.6) A = u5* |grad @, (@)|*4O(¢) .
From (12.2), (12.5) and (12.6),
(127 ME) = w'—piHQE T+ RE)FHOEH+e "+ 6,

where Qj;, R; are as mentioned before.
By (12.1), (12.7) and the fact (9.7), we see that A*(€) must be ;)"
Then,
(12.8) | 1(8) ' — ni (1= p5(Q;6" "+ R, |
éC(ES-ZG‘__i_ely)
holds.
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Theorem 2 easily follows from (12.8).
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