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1. Introduction

Let Ω be a bounded domain in RN with C°° boundary 9Ω. Let w be a fixed
point in Ω and J3(£, tΰ) be the ball of radius 6 with the center w. We put

Ω8=Ω\B(£, fit). Consider the following eigenvalue problem

(1.1) — Δu(x) = \u(x)

u(x) = 0

u(x)+kεσ—(x) = 0 XΪΞ 9J3(£, ϋf) .
dvx

Here k denotes a positive constant. And σ is a real number. Here 9/9z>Λ de-
notes the derivative along the exterior normal direction with respect to Ωε.

Let μy(£)>0 be the^-th eigenvalue of (1.1). Let μj be the j-th eigenvalue
of the problem

(1.2)

Let G(x,y) (resp, Gt(x,y)) be the Green function of the Laplacian in Ω
(resp. Ωg) associated with the boundary condition (1.2) (resp. (1.1)).

Main aim of this paper is to show the following Theorems. Let φ^x)
be the Iί2-normalized eigenf unction associated with μjt We have the follow-
ing.

Theorem 1. Assume N= 3 . We fix j and σ ̂  1 . Suppose that μj is simple.

Then, for any fixed s<Ξ(0, 1),

(1.3) μj(ε) = μj+pJε+o(#-<) ( <^2)
- μj+Pjε+0(ε(Γ) (Kσ<2)

where
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Theorem 2. Assume N=3. Wefixjandσ<l. Suppose that μj is simple.
Then,

(1.4)

REMARK. The case N=2 is treated in Ozawa [10] and [11]. The singu-
larity of G(x, y) near x=y in the case N=3 is stronger than that of the case
N=2. When we use the Sobolev embedding; PF2^(Ω)^C2"JV/ί(Π), we must take
p larger as N increases. Therefore we may need some change of the mehtod
devloped in the above papers.

When ΛΓ^>4, we do not know whether the method we have used can be
applied or not.

For the related papers we have Besson [2], Chavel and Feldman [3], Oza-
wa [8], [9], Rauch and Taylor [12] and the references in the above papers.

For other related problems on singular variation of domains the readers
may refer to Arrieta, Hale and Han [1], Jimbo [4], Jimbo and Morita [5]. The
Poisson equation with many small Robin holes is discussed in Kaizu [6], [7].

2. Outline of proof of Theorem 1 and Theorem 2

Hereafter we assume N=3.
We introduce the following kernel pj(x,y).

(2.1) p,(x, y) = G(x, y)+g(8)G(x, tt)G(tij, y)

where
du

d2u
m,n=ι QwmQwn dwmdzvn \Wa,w

when w=(wly w2, w3) is an orthonormal frame of R3. Here g(β), h(ε), i(ε) are
determined so that

(2.2) pe(x,y)+kεσ ps(x,y) x^dB(ε> tϋ)
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is small in some sense.
If we put

(2.3)

(2.4)

and

(2.5)

&) = -&+

h(ε) = (kε'-
= 0

i(e) = *s*«/(
= 0

the above aim for (2.2) to be small is attained.

Here

•y = lim(G(«, U>)-(4a)~l Ix-
x+w

We put

(<?,/)(*)=( Gt(X,y)f(y)dy
JQ8

and

(P./)(*)=( PJi*,y)f(y)dy
JQζ

Let T and Γ8 be operators on Ω and Ω8, respectively. Then, \\T\\p, ||Γt||M
denotes the operator norm on LP(Ω), Z/(Ω8), respectively. Let/ and /ε be func-
tions on Ω and Ω8, respectively. Then, \\f\\p, \\f9\\pt9 denotes the norm on

L^(Ω), £*(Ω8), respectively.
At first we outline the proof of Theorem 1. A crucial part of our proof

of Theorem 1 is the following.

Theorem 3. Fix σ^l and s^(Q, 1). Then there exists a constant Cs

independent of ε such that

(2-6) \\(P<-G,)f\k,<zctε*- ii/ii,..
holds for any /eL*(Ωe) (p>3).

We put

(2.7) &(*, y) = G(x, y)+g(ε)G(x, 0>)G(Λ, y)XJ(χ)XJ(y)
+h(ε) <VUG(X, Λ), VuG(δ),y)y %8W%e(j)

+i(ε) <HWG(X, Of), HaG(0>,y)y X,(X)X,(y)

for the characteristic function %,(#) of (I,.
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And we put

Since Cr8 is approximated by Pζ and the difference between P9 and P9 is small
in some sense, we know that everything reduces to our investigation of the

perturb ative analysis of G-*PS.
Next we outline the proof of Theorem 2. One important part of our

proof of Theorem 2 is the following.

Theorem 4. Fix σ<l. Then, there exists a constant C such that

(2.8) IKP.-CWκ.A.^Cfi*- (O£o <l)

^cε4 ( <r<0)
hold.

We fix j and put

(2.9) pfr, y) = G(x, y)-(4πβ)μ^G(X, ϋί)G(ίD,

where £.(*) e C°°(Λ3) satisfies |^x)| ̂ 1, ξ,(x)= 1 for *eΛ»\B(e,β), £«(*)=<)
for x^B(εj2, ΰ>) and £,,(Λ:— zϊ)) is rotationary invariant.

Furthermore we put

Ω

The other important part of our proof of Theorem 2 is the following.

Theorem 5. Fix cr<l. Then, there exists a constant C such that

(2.10) \\(XePζ-P^)φj\\2t^C^σ (0<σ<l)

^cε4 ( σ^O)
hold.

Since (2.8) and (2.10) are both o(63+62-<r), we know that everything re-

duces to our investigation of the perturbative analysis of G~-*P9.

3. Estimation of //-norm

We write 5(£, w)=Bζ. In this section we show the following proposi-
tions.
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Proposition 3.1. Fix σ^l. Assume that u,(x)eC°°(fit) satisfies

(3.1) AM,(*) = 0 χ(ΞΩ,

« # = 0

i-(x) = M(ω) x =
vx

Wefixs^(0,i). Then,

(3.2) |M2.t^C.€'

holds for a constant C9 independent of 6.

Proposition 3.2. Fix σ<2. Under the same assumptions of ut in Pro-

position 3.1,

(3.3) ||«J|ttiSCtf-'Max|M(»)|

holds for a constant C independent of 8.

We take the same procedure as in Ozawa [9, section 1, pp. 260-262] to pro-
ve the above Propositions. But we need some change of the method developed
in the above paper, since we put the Robin condition on 9B8 and we assume
thatΛΓ=3.

At first we prepare two Lemmas.

Lemma 3.3. Fix αeC%S2) and q>l. Then there exists at least one solu-
tion of

(3.4) Δv9(x) = 0 x<ΞR3\B9

(3.5) v9(x)+kε'^-(x) = a(ω) x = ti)+εω<=QBt(ω<ΞS2)

satisfying

(3.6) I v9(x) I <ZC£?-σ Max | a(ω) \

(3.7) !».(*)! ̂ C^-*7* Max I α(ω) I (r-

for r= \x—tΰ\ >ε and

(3.8) Iklk^C^1-^1)/^) Max I «(«)!

where qr satisfies (l/?)+(l/?')=l

Proof. We put x=fi)+rω (ω^S2) and

>, sin0 sin^, cosθ) (Q^
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Let Pn(z) be the Legendre polynomial and P« (#) be the associated Legendre
function, that is,

It is well-known that {P«(cos θ) cosmφ, P%(cosθ) smmφ\ O^m^n}^ is a
complete orthogonal system of L2(S2) consisting of eigenfunction of the Laplace-
Beltrami operator Δsz whose eigenvalue is — n(n+l).

Therefore we have the Fourier expansion

(3.9) a(ω) = Σ Yn(θ, φ) ,
»=0

where

(3.10) Yn(θy φ) = Σ (an,m cos mφ+bntm sin mφ) P?(cos θ ) .

By the Parseval relation, we see

(3.11)

We put

»t(«) = Σ (Σ (ί«,«. cos mφ+tnttn sin mφ)Pΐ(cos θ))r-<*+l> .
»=0 w=0

Then, it satisfies Δτ>8(#)=0 for
We see that

OcW. - «(«)

= Σ3 (Σ («».» cos mφ+bnιm sin mφ)PZ(cos θ))

implies

for
Thus we have

(3.12) v,(x) = f j F.(β, φ) (ί/r)"+1(l+(»+l)*e'-1)-1 .
11=0

and

(3.13)
Λ=0 »=0

Since (3.9) holds in L\S2)9 we see that
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Σ
n-0

C(Max I α(ω) | )2(Σ (£/r

<ί C(Max I «(ω) I )2(£/r)2(Σ (θ/

Therefore, we have

ιwιt^j*(5Mes2
^C,(Max I α(ω) | )

Thus we get (3.8).

Using the Schwarz inequality and the relation

Pβ(cos 0)2+Σ (2 •(»-»!) !/(»+«) !)P?(cos )̂2 =
f» = l

we see

(3.13) I Yu(θ, φ)\2ίίa2

nto+£((n+m)/\2 (n-
m=l

From (3.11), (3.12) and (3.13), we have

I υjx) I ^C Max | a(a>)\R(S, σ,
ω

where

Λ(£, <r, r) = Σ3 (£/r)2»(»
«=0

Since

and

(β+l) (ε/r

x(Σ(«
»=0



790 S. ROPPONGI

^(ri(r-ε))2/ί'(k-^-'r
J

hold, we get (3.6) and (3.7). q.e.d.

Lemma 3.4. Fix β e C°°(35ε) . Assume that g <Ξ #2(Ωε) satisfies

(3.14) Δ£(#) - 0

(*) - β(x)
vx

Then,

Proof. Since g^H2(Ωe), we have Green's formula:

By (3.14), we can see that

Therefore, we have

(3.15) ( \Vg\'dx+kt?\ \^-
Jog Jθ5ε 9z/Λ

Using the Schwarz inequality, we have

ί A i » rfσ> ̂  ί ^
Jθ5ε Qz; JθBg

Thus,

(3.16)
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From (3.15) and (3.16), we get

β(x)zdσs
9B,

q.e.d.

Now we are in a position to prove Propositions 3.1 and 3.2.

Proof of Proposition 3.1. Let ut(x) be as in Proposition 3.1. We take an
arbitrary c[>σ. Firstly we put a(ω)=M(ω) and we take ^ε

0) so that it satisfies
(3.4), (3.5), (3.7) and (3.8). Then *;8

0) may not satisfy v<0)(*)=0 for xEΞdΩ,.
Let v(

s

1} be the harmonic function in Ω satisfying v(^\x)= v(

ζ°\x) for ,re3Ω. Put

Then from (3.7) we see that Max{ 1 1;̂ 1 )̂ | x<ΞΩ} ^Cqe
l-*ίq Mε and Max{ | v™(x)

+ke<rdv[l\x)/dvx I x^dBz} ^OqB
l~v/q M8, where Cq is a constant independent of

€. Secondly, we put a(ω)=v(l\x)+k£(Γdv[1\x)ldvx for x=tO+8ω^dBf and we
take v(^ so that it satisfies (3.4), (3.5), (3.7) and (3.8). Let v^ be the harmonic
function in Ω, satisfying v(

ζ

3\x)=v(*\x) for #e9Ω. Then, Max{ | v(*\x) \ x^Π}
σ/«)2Mz and

By repeating this procedure we

1 ) Λ; = 0

and
2 ) Λ ; - 0

ίTi

(*) = v<?*+ί\x)+ker °v (x) xtΞdBt
dvx

forn^O, 1,2, —.
Then, by induction,

(3.17)
Ω

(3.18) Max I v' s
2n+1\x)+kε'r 8p«2'+1) (x) | £(0^
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(3.19) \v?a\x)\^(Otε
1-''') +lMt(r-ε)-1'<' (r>ε)

(3.20) IK'ΊU. ̂  ofi-r-w™ (όtε
l-*'«)*Mt

hold for

Since #><r, we can take £ so that OqS
l~*ίq<\β. We put

fl=0

From (3.17) and (3.19), we can see that the right hand side of (3.21) is uniformly
convergent on Π\B^ for any η>8. Since v("} is harmonic in Ωβ, we see that

wt(x) is harmonic in Ωf, w9(x)=0 for #e9Ω and

= Σ (- , ,'=1,2,3.

We put

Then,

(3.22) V^^-^Vίii.— w f)(Λr) («->oo) for jc

It is easy to see that g^ is harmonic in Ω8, gγ\x)=Q for Λ?e9Ω and

dvx

Therefore, by Lemma 3.4 and (3.18), we have

5 a_,(2«+l)
I Vg™ 1 2 dx£47rk-l&-* Max | v^^+kf^ - (x) \

Qε *Bz OVX

Using Fatou's Lemma and (3.22), we see that

f \V(ue-w9)\2dx^limi
Jog «->«» Qβ

Thus, us—we— constant a.e. Ωβ. Since ut(x)=w1ί(x)=Q for x&dΩ, ut=wβ a.e.

Ωt. Therefore,

(3.23) «.(*) = j (-l)V )̂ ^eΩβ .
«=o

From (3.17) and (3.20), we have
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11=0

«'

Using Fatou's Lemma and (3.23), we see that

I iφ) 1 2 dx ζ lim inf ( | *Σί (- 1) "»<">(*) | 2 <£*
Qg

Thus we get (3.2). q.e.d.

Proof of Proposition 3.2. Let iιή?\x)}?.0 be the sequence of functions as
in the proof of Proposition 3.1. Then, by using (3.6), we can get

(3.24) Max 1 0<2«+1)(*) | £(&~*) +l Mt
Q

Max K2"+J)(*)+te*- - (χ)\ ̂

(3.25) I v?»

for «2ϊO. Here C is a constant independent of £ and M,=Max \M(a>)\.
ω

Since σ<2, we can take 6 so that (J62~σ<l/2. Then, by the same ar-
gument as in the proof of Proposition 3.1, we can see that

(3.26) «,(*) = f j (- 1)X">(*) ^
» = 0

From (3.24), (3.25) and (3.26), we have

(3.27) I ««(*) I £ f j ( I *f" >(*) I + I ttf ί̂*) I )

Now (3.3) easily follows from (3.27). q.e.d.

4. Proof of Theorem 3

From this section to section 7, we assume σ ̂ l. By (2.3) we see that

(4.1) g(6) = -

We take an arbitrary fixed point x^dBt. Without loss of generality we
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may assume w= 0 and x^βe^ Here we put e^^O, 0). We put pj(x>
as before and

S(X,y) = G(x,y)-(4π)-1 \x-y\-1.

Then, S(x,y)eC~(ΛxΩ) and

y)

for ί&=0, ^=£6!.
Since 7=S(ίΰ, iff), S(x, ί»)=γ+O(6) as £^0. By (4.1),

(4.2) P<(χ,y)-kε°--pt(x,y)^teι

= G(x, y) — G(0, y)+O(82)G(w, y)—k8<τ-^—G(x, y)

for tΰ=Q, x=8e1.
We take an arbitrary/^Z/(Ω8) and let /be the extension of / to Ω defin-

ed by 0 on Bζ. Then we have

(4.3)

for ti)=Q, x=8t1.
By the Sobolev embedding theorem and a priori estimate

(4.4)

hold for τ=l—3/p (p>3). Therefore we have

We put uζ=(Pζ—Gs)f. Then us satisfies (3.1) because (?ε/ satisfies the given
Robin condition on dBζ. By Proposition 3.1, we have (2.6).

5. Convergence of eigenvalues for a ̂  1

We put ps(x,y), Pz as before. Then,
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(5-1) P, =

where A0—G and

(5.2) (A/) (*) = G(x, «)%.(*) (GX,f) (&) .

Since

I (A/) (*) I ̂ c \x-β> i -1 χ.(*)
we have

(5-3) IIA/H^CII/H, (3/2<j><3)

SSCfi*"-1 11/11, (ί>3).

From (4.1), (5.1) and (5.3) we have

\\(p,-G)f\\2^ \g(ε)\ ||Λ/H2^Cε||/||2
for any/^L2(Ω). Therefore we get the following.

Lemma 5.1. There exists a constant C independent of £ such that

(5.4) \\P,-G\\^C€

holds.

Next we want to estimate ||X8P,%e— Pt||2. It does not exceed

(5.5) ll(i-Wx.ll»+IIΛ(i-x.)ll2.

Notice that (1— %t)Xε=0 in j (ε) term. By (5.1),

hold for any weL2(Ω). Therefore we get

(5.6) IKl-

Since we have the duality

((
we get

(5.7)

Summing up these facts, we get the following.

Lemma 5.2. There exists a constant C independent of £ such that
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holds.

Notice that the ^-the eigenvalue of Pt is equal to the j'-th eigenvalue of

%tPt%f. By virtue of Theorem 3, Lemmas 5.1 and 5.2, we see that there exists
a constant C independent of β such that

(5.8)

hold.

For the later convenience we estimate ||(%8Pf— P8%8)/|l2,e We put vt=

(X8P8— P8%8)/. Then, vβ=(GX,9f) on Ω8. Here %8 is the characteristic function
on J98. Thus vt satisfies Δv9(x)—Q for #eΩ8, τ;8(tf)=0 for #e9Ω and

(5.9) K(*)l^0(( \x-y\-*

By the maximum principle, we get the following.

Lemma 5.3. There exists a constant C independent of 6 such that

(5.10) m^-PMflk^Cε2^ \\f\\p

Λo W /or Λiiy /

6. Perturbational calculus for Pe

In this section we consider the behaviour of eigenvalues of Pf as £ tends
to 0. We put

so that λ(f) and ψ(£) is an approximate eigenvalue of Pβ and an approxi-

mate eigenfunction of P8, respectively.
Let λ0 be a simple eigenvalue of A0 and ι/r0 be a solution of

(6.1) (

Next we solve the following equations:

(6-2)
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(6.3) (^0,^1)2=0,

where ( , )2 denotes the inner product on L2(Ω).
By the Fredholm alternative theory, we see that

(6.4) λi = (Atfa, ψ0)2

is the condition such that the unique solution of ψi of (6.2) and (6.3) exists.
Hereafter we put \0=μJ1. Then ψ0=<z>y. It is easy to see

(6.5) λ, = I (GX,φ})(β>) |2 = μ72φj(β>y+0(f?)

(6.6) (P,-λ(£))ψ(£) = g(εY(A1-\1)^ί .

From (5.3), (6.2), (6.4) and (6.6), we have the following.

Lemma 6.1. There exists a constant C independent of ε such that

(6.7) \\(P,-\(ε^(ε)\

hold.

By (5.3), (6.2) and (6.4), we have

(6.8) \\in\\,, HAII^CS3"-1

Now we have the following.

Lemma 6.2. Fix s^(Q, 1). Then, there exist constants C, Cs independent
of 8 such that

(6.9)

(6.10)

hold.

Proof. By (6.8), Theorem 3 and Lemma 5.3, we have

and

||(X.F.-Λκ.H (β)||M

^ C(£2+ 1 g(ε) I &-w&/t-i) ̂  cε2 (p>3) .
q.e.d.

7. Proof of Theorem 1

Now we are in a position to prove Theorem 1. We fix ίe(0, 1). Then,
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by Lemmas 6.1 and 6.2, we have

Since || ψ>(£)||2>8e(l/2, 2) for small 6, there exists at least one eigenvalue λ*(£) of
<τβ satisfying

(7.1)

We here represent λ(£) explicitly as follows:

(7.2)

By (7.1), (7.2) and the fact (5.8), we see that λ*(£) must be
Then, (1.3) easily follows from (7.1) and (7.2). Therefore we get the desired
Theorem 1.

8. Proof of Theorem 4

From this section we assume σ<l. By (2.3), (2.4) and (2.5), we see that

(8.1) g(ε) = -(
h(ε) =

We take an arbitrary x^dB,. Without loss of generality we may assume
that zt>=0 and x=£el. We put S(x, y) as before. Then, the same calculation
as in p. 263 of Ozawa [9] yields

(8.2) <yaG(X,ϋ)),

(8.3) --<VβG(*,β),
uXi

-<yaS(x, a), Vn

(8.4) <H.G(xt 0>), HmG(w, y)> - <HJS(x, Of), H.G(ϋ>,

>, y)
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(8.5) -ϊ-(HwG(x, 0), HwG(ίυ, y)> —ϊ-<HJS(x9 w\,

dw\

for x=εeι, tΰ=0. We recall that

(8.6) ΔWG(M), ̂ ) = 0 for

We put ρ,(x,y) as before. By (8.2), (8.3), (8.4), (8.5) and (8.6), we have

(8.7) A(*,y)-k?-2-p9(x9y),s.tβl - Σ^ ,

where

L6 = h(ε) <VKS(x, a), VaG(tt,

-kε'h(ε)^-<yκS(χ, a), vmG(β>,
0%ι

LΊ = i(ε) < t̂t5(*, ώ>), ̂ G(*, y)>

(x, to), HwG(a,

for $=0, #=£€!.
Here we used the fact that

S(x, w) = 7+O(8) as

By (2.3), (2.4), (2.5) and (8.6), we get the following.

(8.8) P,(χ>y)-kε*-£-p9(x,y)lx^eί
OXi

= G(x, y)
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for $=0, x=βeι.

We take an arbitrary /eZ,*(Ω8) and let / be the extension of / to Ω defin-

ed by 0 on Bt. By (8.8),

(8.9)

where

,S(X,

YrΛ 9

By (4.4), we have

(8.10) l(β/)(0)lSC||/||,.,P.*

Θw1

for ίΰ=Q, x=ξel9

Furthermore,

(8.11)

for 1^M^3, where/)' satisfies

92

(8.12)
QwmQwn

')=l. Also,
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for l<£w
Summing up these facts, we get

Therefore we have the following by Proposition 3.2.

Lemma 8.1. For a constant C independent of S,

(8.13) \\(P,-GM,^C?-v>\\f\\pt<

holds for anyf^L^Ω,,) (ί>3).

The right hand side of (8.13) is not O(ε3). On the other hand, the right
hand side of (2.8) is o(&). Therefore we need some sharper estimate to get
Theorem 4.

We put v,(x)^((P^G,}(^φj)) (*). As we get (8.9),

(8.14) Vt(x)

where

4(β) =

ίι(£)=

for tf>=0, x=βeι, and 75(£) is given by replacing /with %8<p, in the term /0(£,/)

of (8.9).
Since Gψj^=μjlφ^

(8.15)

Using (8.11), (8.12) with /= %,?>,•, we have

(8.16)

Furthermore,
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(8.17)

Now we want to estimate /4(ε). We put L(x,y)—(4τt)~1\x— y\~l. Then, we

have

(8.18)

where

for w=0. Here we put operator S and functions F, Kn as follows:

X)= L(X,y)dy

and

(n=l,2,3).

It is easy to see that

(8.19)

(8.20) \ϋ>-y\-*dy

+Cβ{ lίΰ-
jBy

The simple calculation yields
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(8.21) F(x) = (έ>l3)\x\-1 for
2 6 for

/O OO\ Γ^ / \ / I l 2 / C r»2\/'J Γ^o.ZZj A,Λ(^0j = wn( I ftj I /.)—c j / j tor

Therefore, we see that

(8.23) F(x) = 82/3 , QF(x)/dx1 = -6/3

for Λ;—fej, and

(8.24) F(w) = 82/2 , QF(w)/dw1 = 0 , 92F(w)/8z(;? - -1/3

for w=Q, where δ1>Λ is the Kronecker delta. Summing up these facts, we have

(8.26) 77(£) = -β(φj(εe1)--φj(0))/3+O(ε2) = O(ε2).

From (8.14), (8.15), (8.16), (8.17), (8.18), (8.19), (8.20) and (8.26), we see
that

By Proposition 3.2, we have

Therefore, we get the desired Theorem 4.

9. Convergence of eigenvalues for σ< 1

We put A0y Al as before. Then,

(9.1) P, = Al>+g(ε)Al+h(ε)A2+i(ε)A3 ,

where

(9.2) (A2f)(x) = <yaG(x, 0>),

(9.3) (A3f)(x) = <HaG(x, Λ), Hu(GX,

Using (8.11) and (8.12), we have

(9-4)

and
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(9.5)

Here we put

From (5.3), (8.1), (9.1), (9.4) and (9.5),

2<;C( I g(€) I + \h(ε) \ ε~l+ \ i

hold for any/<=L2(Ω).
Therefore we get the following.

Lemma 9.1. There exists a constant C independent of ε such that

(9.6) IIF.-GΊkϊSC^+ε2-')

holds.

Notice that Lemma 5.2 is valid for σ<l because (1— %8)%e=0. As we
get (5.8),

(9.7) I μ/ε)-1- μf \ ̂  c(ε3-3»+ε2+ε2-*+έs/2)

hold for a constant C independent of ε .

10. Perturbational calculus for P,

We recall (2.9). Then,

(10.1) P, = A0+g(ε)A1+h(ε)Λ2+i(ε)Λ3 ,

where

(10.2)

and Aί9 A2, A3 is given by replacing %8 with ξ 8 in (5.2), (9.2), (9.3), respecti-
vely.

Furthermore we put \Q=μJ1

y τίr<f=φj and

Then,
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(10.3) (Λ-λ0)ψ0 = 0, lhM,= l .

Next we consider the following equations:

(10.4) (Λ-λo)ιK = (λΛ-Λ)ψo> (ψ*ψ.)ι = 0 (ιι=l,2,3).

By the Fredholm alternative theory, we see that

(10.5) λn - (Anψ» ψ0)2 (if=l, 2, 3)

is the condition such that the unique solution -ψ>M of (10.4) exists.
Since £g=0 on Be/2, Aί9 A2ί A3 satisfies the same inequality as in (5.3),

(9.4), (9.5), respectively. Then, by the Fredholm theory and the estimate of
the LP(Ω) norm of the right hand side of (10.4), we get the following.

Lemma 10.1. For a constant C independent of ε,

^Cf1 (3/2</><3)

(p>3)

(p>i)
hold.

In view of (10.1), (10.3) and (10.4), we have

(10.6) (P.

By (10.5), (10.6) and Lemma 10.1, we see that

Therefore we get the following.

Lemma 10.2. For a constant C independent of 6,

holds.

On the other hand, by Lemmas 8.1, 10.1 and Theorem 4, we see that
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(p>3)

Therefore, we get the following.

Lemma 10.3. For a constant C independent of ε,

(10.8) ll(P.-Gβ) (xtγ(ε))\k,^cε\ι+ε

holds.

11. Proof of Theorem 5

We put

(11.1) J,(x; v] = (X,P,v-P,Xtv)(x)

Then, we see that

(11.2)

As we get (8.9), we have

(11.3) Jt(x;v)-kε°

11

= Σl 4(£; *>)—
»=9

where 79(£; v) is given by /„(£;/) in (8.9) with/=f fXtv=(ft—Xt)t; and

'{x,Λ)(Gξ9v)(ύ))

for z?)=0, Λ ^fe!.
It is easy to see that

(11.4)
(11.5)
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(11.6)

We have

(11.7)

j£g

J Bξ

iCi-V'IMI, (3/2<p<oo)

and

(11.8) l/aίe; v)\ <SC(( \x-y\-ΐp'dy)\'/.leι \\o\\t
J Bζ

Summing up these facts, we have

\J,(x; v)-kεf^-J,(X; v)\.-
OXi

for p>3. By Proposition 3.2, we get the following.

Lemma 11.1. There exists a constant C independent of 8 such that

(11-9) \\JH- ,e)\\t..gC#-V*\\V\\t

holds for any t>eL*(Ω) (/»3).

Next we estimate ||/,( <py)|l2,t We see that

(11.10) /12(ε; φ)) = I4(e)+ Σ /.(«),
« = 14

where

Ms) =
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Since S(x,y)&C~(ΩxΩ),

(11.11) |/u(£)I^C£2.

In section 8, we have already showed the following.

(11.12)

(11.13) -

(11.14) - L(w, y)φ}(y)dy = _
OZϋi JB9

for w=tϋ=Q.
On the other hand, we see that

Δ.ί L(w,y)ξHy)dy =
JBs

Since ξ9(w)==0 for weJ5e/2 and ξ*(w) is rotationary invariant, we have

(11.15) ί L(w, y)ξ*(y)dy = Constant = O(82) for w(=Be/2
JBZ

and

for

Therefore, we have the following.

(11.16) - L(w,y)ξs(y)φj(y)dy^
dWl JBs

r\ f

= -̂  — \ L(w,
QWi J Be

pjW \
J Bs

(11.17) L(w,y)ξt(y)φj(y)dy^ΰ
OW\ JBy

Q2 r

= -̂ -T L(™> y)S,(
OW\ JBt

= 0(6)
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Summing up these facts, we have

(11-18) /u(6; Ψi) = -(£/3)φJ(0>)+0(ε2) .

It is easy to see that

(11.19) ιl3(ε; Ψj) = (εβ)φj(ϋi)+θ(ε2) .

Thus, by (11.3), (11.4), (11.5), (11.7), (11.18) and (11.19), we have

By Proposition 3.2, we get the desired Theorem 5.
Furthermore, we have the following.

Lemma 11.2. There exists a constant C independent of 8 such that

(11.20) ||/8( ψφ)||M£C#(l+O

holds.

Proof. We recall that ^(8)=φJ+g(£)^1+h(ε)^2+i(6)Λ}r3. We put p>3
in Lemma 10.1. Then, (11.20) easily follows from Lemmas 10.1, 11.1 and
Theorem 5. q.e.d.

REMARK. By neglecting /u(£; v) and /13(£; v) in (11.13), we have

(11.21)

where

Since the remainder term of an asymptotic formula (1.4) is O(£*) for σ^—2,
the estimate (11.21) is weak in the sense that the right hand side is O(£3).
Therefore, the existence of the term (4τr/3)μ, £3 G(x, ti))G(tΰ, y)ξ 8(#)f β(jy) in
(2.9) is essential to get Theorem 2.

12. Proof of Theorem 2

Now we are in a position to prove Theorem 2. As in section 7, by Lem-
mas 10.2, 10.3 and 11.2, we have

Since ||i/r(£)||2,e^(l/2, 2) for small £, there exists at least one eigenvalue λ*(£) of

£?8 satisfying

(12.1) |λ*(£)-λ(£)| ̂
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We here represent λi, λ2, λ3 explicitly as follows.

(12.2) λl = ( G(w,

(12.3) λ2 = Σ (-A- ί
«=ι 9z6* J

% ΛΓΊ /
A/3 — 2^ \

m,« = l

Since ξt(y)=0 for y^Btj2,

(12.5) I λ a l ^ C

On the other hand, by (8.25) and (11.15), we see that

9

9

L(w,y)(l-ξt(y))dy)

= 0(8) (n=l,2,3)

for w=ί{?=0.
Thus, we have

(12.6) λ2 = μf I grad vχβ) 1 2+O(ε) .

From (12.2), (12.5) and (12.6),

(12.7)

where Oy, Rj are as mentioned before.
By (12.1), (12.7) and the fact (9.7), we see that λ*(£) must be

Then,

(12.8)

holds.
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Theorem 2 easily follows from (12.8).
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