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1. Introduction and main results

Let S be a countable space. In the present paper we treat a class of dif-
fusion processes taking values in a suitable subspace of i?s, which are governed
by the following stochastic differential equation (SDE):

(1.1) dx.it) = Σ A.jχ.(t)dt+a(X.(t))dB.(t), i<=S,

where {B.(t)} . e S is an independent system of one-dimensional standard \3ϊt}-
Brownian motions defined on a complete probability space with filtration (Ω,

We here assume
(1.2) A=(A{J) is an SxS real matrix satisfying that A..^0 for iΦj, —Au=
Σ M t ,<°°, and sup | ^ L | < o o ,
yφί 3 i(=8

(1.3) a(u):R->R is a locally 1/2-Hϋlder continuous function satisfying a linear
growth condition: for some C>0,

\a(u)\<C(l+\u\) for ut=R.

The diffusion models described by the SDE (1.1) arise in various fields such
as mathematical biology and statistical physics. We here list several examples.

EXAMPLE 1. (Stepping stone model with random drift [10])

ϊ^ΐή for/ \ ί Vu(l—u) foi
a(u) = < Λ

 v

 t

 J.
[ 0 otherwise.

EXAMPLE 2. (Stepping stone model with radom selection [8])

u(ί-u) for

0 otherwise.
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In these two examples x=(xi(t)) in the SDE (1.1) describes a time evolution of
gene frequencies of a specified genotype at each colony, A., means migration rate
from the /-th colony to the z-th one, and a(u) comes from the effect of random
sampling drift in the example 1 and random selection in the example 2.

EXAMPLE 3. (Branching diffusion model)

fora>0

otherwise.

EXAMPLE 4. (Scalar field in non-stationary random potential [12]) Let S=Zd,

u for#>0

0 otherwise.

A.. = \ -2dκ if i=j

[ 0 otherwise.

EXAMPLE 5. (Ornstein-Uhlenbeck type process)

cx <a(u) <c 2 for uEzR with constants 0 < c 1 < c 2 < °°•

For the example 1 the ergodic behaviors were extensively studied in [10],
[11], whose phenomena are very similar to those of the voter model. For
the example 4 with a small /c>0 it was shown in [12] exponential decay of the
sample paths, from which it follows that the extinction occurs in any dimension
in the sense of Liggett's book [6], Chap. IX. For a class of diffusion models
including the examples 1 and 2 some ergodic behaviors were investigated in [8],
and furthermore Cox and Greven [1] recently obtained a complete description
of Z^-translation invariant stationary distributions for the same model in the
case S=Zd. For the example 3 we refer [2] which treats a corresponding con-
tinuum space model. The example 5 is a generalization of Ornstein-Uhlenbeck
process where a(u) is constant.

In this paper we restrict our consideration to the case S=Zd (ίί-dimensio-
nal cubic lattice space) and A=(Aij) is Zd-translation invariant, namely

(1.4) A.^A^ΈΞA.-. for iJ<=Zd.

To formulate a diffusion process associated with the SDE (1.1) we first
specify the state space as follows.

Let 7 = ( 7 , ), i^Zd be a positive summable sequence over Zd such that
for some C>0,

(1.5) ΊlΎAAijl^Cγj for jtΞZd.
d
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We note that for a given A=(A.j) with (1.4) one can easily construct a posi-
tive summable sequence γ=(<y.) satisfying (1.5).

Let L2(γ) be the Hubert space of all square γ-summable sequences over
Zd with the Hilbertian norm | | v i.e.

L\i) = {χ = (Xi).s2ά

Under the assumptions (1.2)-(1.5) it is known that for each Λ;(0)eL2(γ),
there exists a unique strong solution (#(*)=(**(*))> (£*(*))) °f t^ i e SDE (1.1) such
that

P(x(t) is L2-(γ)-valued strongly continuous in t > 0)=1. (ct. [8])

The solution defines a diffusion process (Ω, £F, £F,, P*, #(£)) taking values in
L2(γ), and its transition probability defines a Feller Markov semi-group Tt

acting on Ob(L2(y)), (the totality of bounded continous functions defined on
L\y)) such that

(1.6) TJ-f^i'TtfΛ for/eC0

2(L2(7)),
Jo

where Cl(L2(y)) stands for the totality of such O2-functions / defined on L\γ)
with bounded derivatives and Lf being bounded, which depend on finitely many
coordinates, and

(1.7) L/(X) = I Σ «(*,)2-g-+ Σ ( ^

Let 3?=3?(L2(γ)) be the totality of probability measures on L2(γ) which
is equipped with the topology of weak convergence. Tt induces the dual semi-
group Tf acting on 9? by

(1.8) <TfμJ> = <μ,

where </*,/>

Let <5 be the totality of stationary distributions for the deffusion process
(Ω, 3s ff,, P x , ΛJ(O); i e. S= {μ<EΞS>\Ttμ=μ for ί>0} .
Note that by (1.5) with (1.4) the Z^-translation group acts on L2(γ), and let 3
be the totality of Zd-translation invariant probability measures on L2(<γ). For
α > 0 we also denote by 3Λ the totality of elements of 2 which have finite a-
order absolute moments, i.e.

These sets are closed and convex, so we use the notation Ce x t for a convex set C,
which denotes the totality of extremal elements of C. If C is a compact and
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covex set, the convex closure of C e x t coincides with C by Krein-Milman's theo-
rem (cf. [5]). However notice that <S, 3 and 3Λ are not compact in general.

In this paper we will first obtain a complete description of ZJ-translation in-
variant stationary distributions under the following assumption: Let (Ω, Jδ,
P., ξt) be the continuous time Markov process taking values in Zd generated by
the infinitesimal matrix Ay and let Pt=(Pt(i,j)) be its transition probability.

ASSUMPTION [A]

(1.9) A=(A.j=Aj^i) is irreducible, and the symmetrized Markov process of
(Ω, .S, Pp ξt)9 which is a Markov procefss taking values in Zd generated by As=
A+Ax^Af^A.-.+A.-.), is transient, and

(1.10) lim sup l^ML < Gψ)-1*2

w >- I u I
where Gs is the potential matrix of the symmetrised Markov process, i.e.

(1.11) Gs(0)=\~Pf(0)dt with Pf(i) = P?(j,j+i)=^Pt(i,k)Pt(i+j,k)

Then we obtain the following result.

Theorem 1.1. Assume the assumption [A], Then
(i) For each Θ&R, lim Tfδo=vθ exists and <vθJxt>=θ for i^Zd, where 0=

(#,. = #) eL 2 (γ) and Sβ stands for the Dirac measure at θ.
(i) (SΠ3i)«t= {vθ\θ£ΞR}. For every v^SΓ\2u there exists an m<Ξ&(R) {the
totality of probability measures on R) such that

v — I vθm(dθ).

(iii) If μ^3χ is ergodic with respect to the Zd-translation group, then

lim Tfμ = v0 with θ = <μ, xb .

Moreover for every μ^3ly lim Tfμ exists in S Π 3V

REMARK 1. In addition to the assumption [A], suppose that a(θo)=O
for some ΘQ^R. The state space L2(γ) of the diffusion process (Ω, £F, 3!ty

Px, x(t)) contains two invariant subspaces

*+(*,) = L\Ύ) n [θ0, ooy" and X.(θ0) = L*(7) Π ( - °°, θtf'.

So, if one takes X+(θ0) (or X-(θ0)) as the state space of the diffusion process
(Ω, ff, SΊ, P x , x(t))9 Theorem 1.1 (ii) can be refined as follows.



INTERACTING DIFFUSION SYSTEMS 793

(ii)' (SΠ2U=ivθ\θ>θ0} (or vθ\θ<θ0}).

REMARK 2. It is obvious that if a(θ)=0 for Θ^Ry then vθ=SQ. On the

other hand if a(θι)=a(θ2)=0 for some θx>θ2, the diffusion process can be re-

stricted to a narrow state space [θv Θ2]
z rather than L2{y), then it holds (<5 Π 2) e xt

= {vθ\θ1<θ<θ2}. Thus Theorem 1 is a generalization of the result by Cox and

Greven [1].

REMARK 3. Obviously Theorem 1.1 is applicable to the above examples

1-5 except the example 4, since these fulfill the assumption [A]. But for the

example 4 the assumption [A] is fulfilled only for a sufficiently large /e>0. In

fact if /e>0 is sufficiently small, then a different phenomenon occurs as shown

in [12], (also see Theorem 1.2 below).

REMARK 4. In the case that the symmetrized Markov process of (Ω, iδ,

P., ξλ) generated by As=A-}-A*=(Afj=Ai^.-\-A.mmi) is recurrent, assuming the

same asumption on A as in Theorem 4.5 of [6], we can prove the extinction for

finite mass system under a regularity condition on a(u) together with tf(0)=0,

by modifying the proof of [6]. Furthermore we can show the extincion occurs

even for infinite mass system using a duality between finite mass sysetm and in-

finite mass system when a(u)=cu with a constant c. Although it is plausible that

the extinction occurs for infinite system in general, we have no proof for it due

to lack of the duality.

We emphasize that the condition (1.10) of the assumption [A] is crucial for

for the phenomena of Theorem 1.1. In fact, as shown in [12], for the example

4 with a small # > 0 the sample path χ.(t) decays exponentially fast as ί-» oo almost

surely for each i^Zd. Accordingly we would like to extend this exponential

decay result to more general case with some non-linear coefficient a{u).

ASSUMPTION [B]

Let a(u): R-*R be a locally 1/2 Holder continuous function satisfying that

for some 0<£<C<oo

(1.12) c^\u\<\a(u)\<C^\u\ fora&R,

and set

(1.13) a(u) = ic-Waiu) with κ>0.

According to the condition (1.12) the diffusion process associated with the

SDE (1.1) is defined in the state space X+(0)={x=(xi)^L2(7)\xi>0 for all

Then we obtain the following result.

Theorem 1.2. Suppose that a(u) satisfies the asumption [B]. Assume

further that A=(Aij=Aj^i) is Zd-translation invariant and of finite range, namely,
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there is an R0>0 such that

(1.14) A. = 0 for\i\>R0.

Then there exists a c(tc): (0, oo)-»(0, oo) satisfying Hmκ+oc(κ)=O (more precisely,

c(tc) is estimated as c(/c)=O((logl//c)~1+?) as κ->0 for every £>0) such that for

every θ>0, the sample path x(t)=(xi(t)) with x(0)=θ satisfies

pθ^_κC_ < l i m i n f J_ J o g ^ ^ l i m s u p J_
2 t+- t t+~ t

We remark that it is an easy task to extend Theorem 1.2 to the case with

spatially inhomogeneous (a^u)) and A=(Aij) under some uniformity condition.

Furthermore as a corollary of Theorem 1.2 we obtain

Corollary 1.3. Under the situation of Theorem 1.2, if κ>0 sufficiently small,

then S Π 3X= {δ0}, and lim Tfμ=80for every

Although our diffusion processes associated with (1.1) are non-linear mo-

dels, the proof of Theorem 1.1 is very similar to that for linear systems treated

in Chapter IX of Liggett's book [6], which relies mainly upon second moment

calcuations and a coupling technique. (See also [1], [7]). For the proof of The-

orem 1.2 we essentially follow the idea of [12] pp, 61-62 to use Feynman-Kac's

formula. However the arguments of [12] are so crude, and furthermore an

approximation procedure by discrete time process should be improved even in

the linear case. Therefore it would be worthy to present the details in our

setting refining the proofs of [12],

2. Proof of Theorem 1.1

Recalling the assumption (1.10) we have positive constans C and D such

that

(2.1) \a(u)\2^C+D\u\2 forwefl,

(2.2) D<Gs(0)~\

from which we obtain the following second moment estimates.

Lemma 2.1. Let μ<=32. Then Tfμ(=32 for t>0, and <Tfμ, K l2)

is bounded in t>0for i&Zd.

Proof. It is easy to see that Tfμ^32 for ί > 0 , and fij(t)=Eli(xi(t)xJ(t))=

jXj) satisfies
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(2.3) j- f^t) =

where (A'+A2)/.. = Σ Λikfkj+

h(t)=Eμ>(a(xo(t))2—Dxo(t)2)y and δ l 7 stands for the Kronecker symbol.
Let (ζt, P(itj)) be the direct product process taking values in ZdxZd of two

copies of the Markov processes (ξt, P{), which has the generator Aι+A2 and the
tranition probability

P?\(hj)> (*• 0) = P*(i> k)Pt(j, I) for (ι,; ), (*, /) G ^ .

Noting by (2.1) and (2.2) that h(t) is locally bounded in t>0 and h(t)<C for
every *>0, one can apply Feynman-Kac's formula to get

ftJ(t) = i?c, .y

ζr(=A)h(t-r)dr,

hence

(2.4)

where Δ = {{i,j)^ZdxZd\i=j}.
Using Taylor's expansion for the exponential function it is easy to estimate as
follows:

Γ EUjJo J

5J j
o o</,<... </„<«•

, (by (2.2))

and

Hence by (2.4), < Γ ^ , |xξ\
2>=fii(t) is bounded in t>0 for

, set
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£J2(0) = {μ^32 lim ζμ> I Σ Pt(hj)Xj—θ\*> = 0 for ii

Lemma 2.2. Let μ e 32(θ) for Θ^R.

(i)

(ii) // lim — [tn T*μ ds=vfor some {tΛ with tn f oo, *fo?w i/G22(Λ
!»->-«• ί n JO

Proof, (i) is easy. For (ii) use (2.3) and the Z^-translation invariance of
μ to get

(2.5) /„.(*) = Σ Σ P#(ί,

Using the assumption of (ii) and (2.5) to together with μ^32(θ) we see

< lim inf J - Γ" <T*μ, IΣ Pt{i,j)x-Θ\*>ds
n-*- tn Jo y 7

= lim inf J - ('" { Σ Σ Pt(h k)Pt(i, l)fk,(s)-2θ Σ Λ
«->«» ί r t Jo * / *

= lim inf J - f'" {ΣΣ P ^ ί , WUh 0/«(0) +

Γ Pί+s_r(0)£"(α(^
Jo

p
*>o

0 as f->

which concludes

Following [1] let us introduce a diffusion process taking values in L2(y) X
L2(y) which is governed by the following SDE:

(2.6)

(dx}(t) = Σ A(Jx)
jez"

dxϊ{t) = Σ A,
Λ

= (χ\ x2) SL\Ύ) x L2(τ), (*

By using a method of one-diemnsional SDE, one can show if xι>x2, then
#*(*) ;>#*(*) holds for every £>0 with probability one. This means that the
diffusion porcess (x(t), Px) associated with the SDE (1.1) has monotonicity pro-
perty.
We denote by (x(i)=(x}(t)> x2i(t)), P*) the diffusion process associated with (2.6).
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Clearly each component process of (#(£), P*) is equivalent to the original diffu-
sion process (x(t), Px). Let denote by Tt> Tf, S, 3, 3Λ the corresponding semi-
group, the dual smei-group, the totality of stationary distributions, the to-
tality of Z^-translation invariant probability measures on L2(τ) X L2(y) and
so on.

Lemma 2.3. Let λ e Sd 3V Then

\{either x}>:x2for all i^Zd or x\<x]for all i<=Zd) = 1 .

Proof. Let (%(t), Pλ) be a stationary Markov process with λ as its marginal
distribution associated with (2.6), namely, x(t) is a soluiton of (2.6) with λ as the
law of x(0). Setting Ai(i)=x)(t)—x2

i(f), and applying Ito's formula to f(u)= \u\>
we have

(2.7) ^(|Δ,(0l)-^ λ(|Δ,.(0)|) = J^Σ A{jE* (sgnA^A .(s))ds

I I for ,
0 for w=0,
- 1 for u<0. (cf. [9], pp. 404.)

By the stationarity of λ,

Σ ^ , y<λ, (sgn Δ, ) Δ . - IΔ, I > = 0 ,

Since <λ, |Δ/|> is constant in i by the translation invariance of λ, we see

(2.8) IΔ. I = (sgn Δ, )Δ. λ-a.e. if A,y>0 ,

which implies that when Au>0, if Δ ^ O , then Δ y > 0 , and if Δ f ̂ 0 , then
Δy^O λ-a.s. Therefore combining this with the irreducibility of A we ob-
tain the desired property of λ.

Lemma 2.4. For μ^3x and

2?μxv( \x)(t)-x2(t) I) is non-increasing in t>0.

Proof. In the same way to get (2.7), for s<t,

) - IA{(s)\)ds<:0 ,

since 5 μ x v ( | Δf(ί) |) is independent of i.

Lemma 2.5. Let Θ^R. For μ^32{θ) and v^32{θ),\mιEμ'^{\x]{t)—

x2{t)\)=0foritΞZd.
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Proof. Using Lemma 2.1 one can esaily see that {— I Tfμ Xvds} is a tight
t Jo

family as *-»oo. Let X be a limit point, i.e. X=lim — I " TfμXvds for some
«->*» t n Jo

{tn} with tn f oo. Then λ E S f ) 3 2 , so by Lemma 2.3,

(2.9) X(either x\>x\ for all it=Zd or x\<x] for all i e Z ' ) = l .

Hence, by (2.4)

= l ί m < — ( ' " f f ^ X y Λ , |Λ?5—Λ?5|> (byLemma2.4)
»>~ * Jz

Here we used Lemma 2.1 and a simple fact that if μn^3>(R) converges weakly
to μGίP(2?) as »->oo, and if <μΛ, Λ;2^ is bounded in n>\, then ζμn> \x\y also
converges to ζμ, \x\y as w-^oo. Furthermore noting that each marginal of
X is in 32(θ) by Lemma 2.2, we see by (2.9) and the translation invariance of X
that

/"\ I "\ 1 P /.* Ί I I V Ύ» . I I >
\ / v ) I Y i •*• t \ ) J ) \ i ΐ) \s

<<λ, IΣP t(U)*}-β|>+<λ, IΣP,(i,i)*?-

+ <lim - I ('" T*v ds, IΣ P,(i,j)x-θ I >

= 0, letting ί-^oo, (by Lemma 2.2).

We are now in position to complete the proof of Theorem 1.1.
1°. We first claim that for each Θ^R, there exists a vθ^Sf)32(θ) such that
<V0, x{y=θ and lim Tfμ=vθ for every μ^32(θ), which proves (i).

Let vθ be a limit point of {— I T*8θds} as ί^oo, i.e. z;β=lim — I " T*8θds for
t Jo »->°° ί n Jo

some {tn} with ί»-^oo. From Lemma 2.2 it follows that vθ^Sf)32(θ) and
<„„ ^ > = (9 for iGZ r f, Next, let μe 22(^). For /eCj(L 2(τ)),

< Const. Σ ^ x v ( Ix\{t)-x](t) I)
» : Cfinite sum)

->0 as ί->cχD by Lemma 2.5, which yields (i)
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2°. Suppose vΘ=cv'+(l—c)v" with 0<c<l and v\ v"^SΓ\3. Since vθ&32(θ)
by Lemma 2.2, it follows z/e£Γ2(0) and v"<Ξ32(θ) so that by the step Γ, z/=
v"=v9 holds. Hence i/β is extremal both in SΓ\3 and <SΓl2i. To prove the
converse, suppose / i G ^ be ergodic w.r.t. the Zrf-translation group. For iV>0.
Let πN: L\<γ)-+L2{<γ) be defined by

(πNx)i = (Λ?,ΛΛ0 V(-ΛΓ) for i(ΞZd.

Denote by μN the image measure of μ by πN. Then μ^ also is ergodic. More-
over it is easy to check μN^32(θN) with θN=ζμN9 x^. (cf. Lemma 5.2 in [7]).
In the same way to use the coupling process as in the proof of Lemma 2.4.

μ{dx)E''**'{\x\{t)-X]{t)\)<<.μ, !*,-(*«*), |> ,

hence for every /eCo((L2(γ)) we have a constant Cf<0 such that

I <T*Φ, /> - <Tf,W> I = IJ β{dχ)E' *«'{f{χ\t))-f{xi{t))) I

<Cf<Jl, I*,—(

By 1°, lim Tf μN=vβjf. Since θN-*θ=<μ, x,> and <^, | *,-(»*«), I >->0 as JV-*

oo, we obtain lim Tfμ=vθ, from which (ii) and the first part of (iii) follow.

The latter part of (iii) is immediate since μ^3λ is represented as a mixture of
ergodic ones in 3V

Finally we give the proof of Remark 1, (ii)' after Theorem 1.1.
Proof of Remark 1, (ii)'.

We may assume θQ=0. Let v^(Sn3)e*t with <z/, #,.>= +oo. By the proof
of Theorem 2.19, pp. 439 of [6] it holds that v>vθ for every 0>O. (This part
of the proof of [6] works in the present situation without any change.) Using
Lemma 2.1 we have a O>0 satisfying

(2.10) <„,, \xt\*>£CΘ2 f o r 0 > l .

From ζvθy x{y=θ it follows

<vΘ>xiI(xi>θl2)y>θβ.

So, using (2.10) and Schwarz's inequality, we get vθ{xi>θj2)>\I^C, so that

for

which yields a contradiction; i/(^=oo)>l/4C. Thus (Sf]3)eκt=
and the proof of (ii)' is complete.
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3. Proof of Theorem 1.2

First note that under the assumptions (1.12) and (1.13) for the solution
x(t) of the SDE (1.1), the rescaled process y(t)=x(tct) satisfies the following
SDE:

(3.1) dyfi)=κ Σ Aijy#)&+yjt)dMM (i^Z%
)<=Zd

where {MJtf)} iezd are continuous square-integrable martingale such that their
quadratic variation processess satisfy Mi(0)=0 for i^Zd, and

(3.2) cSijdt^dζM;, M Xή^CSijdt for ij<=Zd and t>0.

Notice that we are now considering a continuous time Markov process
(ξt, P{) taking values in Zd, generated by the infinitesimal martic κAy instead of
A. As in [12], the proof is based on the following Feynman-Kac's formula with
respect to the process (ξt, P{). To avoid confusion in the subsequent we will
use the notation (ίl, £F, 3U PB) for the probability space where {#,(*)} ( 0 Γ

{Λf .(*)}) are defined.

Lemma 3.1. Let y(Q)=θ with θ>0. Then

where I(A) stands for the indicator function for an event A, i.e. I(A)=1 if A
occurs and I(A)=0 otherwise.

Proof. It is easy to see that the equation (3.1) with y(0)~θ is equivalent
to the following integral equation which is uniquely solvable:

(3.3) yi(t) =

Using Ito's formula we get

(3.4) exp(Σ

= Γ exp(Σ (' /(e<..=; )(Λkf/ί)-4^<Mi>(*))) Σ I(ξf.f=k)dMk(r).
Jo j Jo Z *

Taking the expectation of (3.4) with respect to Piy and using Markov property
of (ξt, P{) together with a stochastic Fubini's theorem (which is easily justified),
one can see that

Σ [ i(ξt_=j)dM}{s)-±-
^ad Jθ Z
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solves the equation (3.3). Therefore the proof of Lemma 3.1 is complete by
the uniquencess of the equation (3.3) with y(0)=θ.

For simplicity we hereafter assume Au=A0= — l, and it suffices to show
the exponential decay for j>0(0 Let Nt be the number of jump times of ξt

between the time interval [0, t]. Clearly Nt is a Poisson process with parameter
K. In order to estimate the Feynman-Kac expression of yo(i) we approximate
(ξt, Po) be a discrete time process.

Lemma 3.2. There is a discrete time stochastic process ̂ m}m^o taking val-

ues in Zd such that 370=0, and

(i) IVtn-Vm-iI <:RQ for m>l,

(ii) [l(ξ.Φnu)dt£2Nt,
JO

where [•] stands for the Gauss symbol, namely, [s] is the integer part of s.
(iii) fin =#{ί£m£n\VmΦVM-ά ^Nn for n>ϊ.

Proof. Let τo=O and let τv τ2, ••• be successive jump times of the pro-
cess ξtf and set ζM=ξTm for m>0. Clearly | ζm-ζm-x\ <K

Define a sequence am(m>0) by

tfo=O, and am=min{am^ί+ly Nm} for m>\.

Then, as easily seen, {am} is a non-decreasing sequence of integers with am—

orw-i<l, and

(3.5) %i\<m^n\am*Nm}<Nn ίoτn>\.

Setting ηm=ζΛfn for w ^ O, we see (i) and (iii) immediately. For (ii), from (3.5)
it sollows

'i Γ + 1 N a + ι = Nm)ds

because ξm3=ηm implies NmΦam.

Let

Notice that the expectation is taken with respect to (ξt, Po) so that I(t) is a
stochastic process on the probability space (Ω, ff, 3?t, P

B). We now want to get
an exponential estimate for the process I(t). Note that the probability law of
iξt—ξt-s}o£i<;t under P o coincides with that of {(ξs)0^s^tf Po), so it holds

(3.6) /(/) = ^0(exp ( Σ £ I(ξ-ξ9 = j
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In particular, for a fixed n>ly we apply Lemma 3.2 to the process ({£» —
%m-άo£s£n> A)> a n d denote by iηm}o^m^n the resultant discrete time process.
Then we have

L e m m a 3.3. For a fixed integer n>\ there is a discrete time stochastic

process {ηm}0^m^n taking values in Zd such that 370=0 and

(i) |*i-tfi-i| <R0for l<m<ny

(iii) i^«=

For an integer n > l , let

(3.7) Rn) = sup ϋWexp (2 Σ (' /(,^_ 5 ] = j)dM,(*))),
n-l^t^n 3 JO

(3.8) J 2 («)= sup

Lemma 3.4.

sup

Proof. Let n— ί<t<n. Since [NtΦNn] is independent of (?,)0^,^ί under
Po, we see

Σ

I(ξn~ξ, = j)dMj

so using Schwarz's inequality, we get

] .-ζ. = j)dM\(

Lemma 3.5. There is a constant C > 0 independentof K such that

PB(lim sup — log J2(n)^Cκ) = 1.

Proof. Let

M(t) = 2
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M(t) is a continuous martingale with respect to PB with quadratic variation
process

= 4 f' Σ I i(ξ.-ξ.=/)-«-o= )Id<M.χs)
JO J

o

< 16CΛΓM, by Lemma 3.3.

Since M(t)=B(ζMy(i)) for some standard Brownian motion B(t)> using a simple
formula on Brownirn motion:

£(exp ( sup B(t))) = 2£(exp B(T); B(T)>0)<2eτ'2,

we obtain

<2B0(exp(8CNn))

so by Chebyshev's inequality

PB(J2(n)>exp 2e*° κn)<2 e x p -

Thereofre we complete the proof of Lemma 3.5 by using Borel-Cantelli's lemma.

To estimate the main term/^tt) we divide it into three terms. Let

Jn(ή) = sup J?0(exp (2 Σ Γ/fog,-.] =j)dM(s)); 0<ftn<n),
n-l^t^n j JO

JJn) = sup i?0(exp (2 Σ [' / ( * - . ! = j)dMJs))
n-\<.t^n j JO

JJn) = sup (
j Jo

The estimate of /j3(») is trivial, and for /12(») we obtain by the same method as

J2(n) that

P0(Nn >ή)^2 exp ((««- l)«ι) ,

hence

PB(lim sup — long/12(w)<C/c) = 1 for some C > 0 independent of K.

Now we proceed to estimate /n(w). Let 8(r) be a positive function on
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(0,1), which is specified later. For 0<Ξ&<n, let W\ be the totality of sample
pahts of the discrete time process ηtι=('ηm)o<m^n having just k jumps. Then
the cardinality of W\ is trivially estimated by

Then

PB(M») ^ Σ u PβίΛ, = k) exp (δ (•£»)

Σ Σ PB(svLP2^\Ί(wln^=j)dM.(s)>S(^-)n)

Σ - | = ( " exp(~)ίίr (for some C>0),
2

Const. s Y i ) ^ exp (-Cδ(—)2») (for someOO),
* 1 \«/ «

Const. Σ , ,* exp n(h(A)+(dlog Ro)—- C8(—)2),
,+ k K ft ft ft

where h(r)=—r log r—(1—r) log (1— r) for 0 < r < l . For the last inequality we
used Striling's formula.

Next we choose a function δ(r) such as

hence

(3.9)

exp -»(/t(—)+cA) (fOΓ s o m e c>0 and C>0)

Since it is not hard to show that (C(n)) is summable, by Borel-Cantelli's lemma,

(3.10) P B (/ n (»)< Σ P0(fi*=k) exp (δ {—)ή) for sufficiently large n ) = l .

Next we claim

(3.11) lim sup -1 log Σ *Ό(&=*) exp (8 (—)n = C(ie)->0 as /c->0.
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Note that δ(r) is non-decreasing in (0, r0) with some 0 < r 0 < l , and set
δo(r)=δ(rΛro). Using $n<Nn9 by Lemma 3.3 we have

Σ Pβ(Λ=*) exp (δ (A)n) < J%(exp (S0(^-)n))+e^ P0(Nn >ron)

where | δ | =suρ δ(r).
By a classical large deviation result on Poisson process with parameter #>0, we
know

lim-1 logE0(exp (nS0(^-))) = sup {S0(r)+r l o g - + r - 4 = C , ( « ) .

(eg. see [4]).

On the other hand by using Chebyshev's inequality we have

ro

Also, by elementary calcuations one can check that there exist £>0 and £ t > 0
for every 6>0 such that

c(log 1/zc)-1 <,€,(/€)<c9(log 1/Λ:)-1+8 as /c->0,

hence from these two estimates, we obtain (3.11).

Now we can complete the proof of Theorem 1.2. Summarizing Lemma
3.4, 3.5, (3.10), and (3.11) we have

P5(limsup — logI(f)^C(*))=l with some C(Jfe)=O((log l//c))/T1+8 as /c->0

for every £>0.
Also, by (3.2)

hence the sample path yo((i) satisfies y^^θ exp (—ct)I(t)> and after all we
obtain

P*(limsup jlogyo(t)<LC(κ)—|-) = 1,

which yields the upper bound in Theorem 1.2.
The lower bound in Theorem 1.2 is not difficult. In fact, by (3.2) it is suf-

ficient to show

(3.12) liminf —log/(ί)^liminf —log( inf
/»-> t "+09 ΐl l£t
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Let n—1 <^t<,n. Using (3.2) and Jensen's inequality we see

(Σ

= N . ^ e x p ( Σ ( ' P o ( ξ α - ξ , = j \ N . = J
j Jo '

Note that M(t)= Σ Γ Po(?« —f,=7 I N ^ i V ^ d M . ^ ) is a square integrable
> Jo J

continuous martingale with quadratic variation process <M>(ί), which satisfies
<M>(ί) <,Ct by the assumption (3.2), so that there is a standard Brownian motion
Bn(t) such that

inf M(t)> inf

Using this together with a Gaussian estimate and Borel-Cantelli's lemma, it is
easy to see that

liminf— inf M(*)>lim J_ inf Bn(Ct) = 0, P 5 - a . s .

Since PQ(Nn=Nn^)=e'κ9 we obtain (3.12). Therefore the proof of Theorem
1.2 is complete.

Proof of Corollary 1.3.
Let μ&3v We want to show lim Tfμ=80. By Theorem 1.2 it holds lim

Tf8B=8Q for 0>O. Using the coupling process introduced in the section 2 and
its monotonicity:

Px'xAΘ(x)(t)>x2i(t) holds for all / G Z J ) = 1 for ί>0, where *Λ0=(tft Λ0) for
, we see that for i£>0,

= j μ(dx)E^\(x2

i(t)+(x}(t)-x2

i(t)))AK)

E>(Xi(t)ΛK)+

Letting t->oo and ^-^co in this order, we get

lim <T*tμ, x{ΛK> = 0 for ί e Z ' and

which implies lim Tfμ=8θ, completng the proof of Corollary 1.3.
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REMARK. In this section we actually treated a linear model (3.1) with
martingales as its deiving random force. Accordingly we can prove exponential
decay of sample paths for more general SDE with coefficients a^x) in place of
a(x.) of the SDE (1.1), which may depend on other coordinates variables {Xj},
but should be assumed some uniformity conditions.
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