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0. Introduction

The theory of regular Dirichlet forms (E,3ί) associated with a locally com-
pact separable metric space 3C and a positive Radon measure m s.t. s\ιρp[m]=3£
is a well developed subject, both from the potential analytic and the probabilis-
tic point of view. It has its origins in work by Beurling-Deny and was particu-
larly pursued by Fukushima and Silverstein see e.g. [19], [27] and references
therein. It presents, at least in the symmetric case, a natural extension of the
continuous functions framework of classical and axiomatic potential theory in the
functional analytical (IΛfunctions) direction, covering in particular a stochastic
calculus for generators with coefficients which are not restricted to be functions
(the associated processes need not be semimartingales). This theory has turn-
ed out, in the last 15 years, to be particularly suited for applications in quantum
theory, see e.g. [4], [5], [20], [1], [8]. In this field, but also in other contexts, see
e.g. [2], there is the necessity of studying certain generalized functional of
the processes (of Feynman-Kac type), corresponding to singular perturbations
of a given Dirichlet form (e.g. the one associated with the Laplacian over Rd).
This is discussed e.g. in [2], [10], [28], [29], [30], [16], [3], [1], [IS], [11], [12],
[23], [22] and references therein. Many of the discussions have been con-
cerned with functional associated with measures in the so called Kato class (cfr.
[9], [26]). They are particular cases of smooth measures (in the sense of [19])
for the Dirichlet form associated with the Laplacian. It is natural to ask one-
selves what happens if one tries to carry through similar constructions using
an arbitrary smooth measure associated with a general (regular) Dirichlet form.
In the present paper we initiate such a study. We give results on the structure
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of the space S of all smooth measures associated with a given Dirichlet form, as
well as on their associated Feynman-Kac functionals and generalised resolvents.
By so doing we prepare our way for a systematic study of singular perturbations
of Dirichlet forms, to be carried through in a successive publication [6]. Let us
now describe in more details the setting.

We consider a regular Dirichlet form (E, £F) on L2(3£, m) where 3£ is a
locally compact separable metric space and m is a positive Radon measure on
a? with supp [m]=3£. Let M=(Ω, Xt, ζ, Px) be a Hunt process on X which
is /^-symmetric and associated with (E> £F).

Following M. Fukushima, a function A:[0> oo)χΩ->[— oo, oo] is said to
be an AF (additive functional) if
(i) At( ) is ^-measurable, where ΞFt is the smallest completed σ-algebra

which contains σ{Xs: s<t};
(ii) there exist a defining set Λe£?Όo and an exceptional set N C3? with Caρ(iV)

= 0 such that PX(A)=1 for all x^3£-Ny θtAczA for all t>0 (θt denotes
the shift operator on Ω) and for each ω^Λ, A0(ω)=0> \At(ω)\<oo for
t<ζ(ω), A.(ω) is right continuous and has left limit, At+s(ω)=At(ω)J

ΓAs(θtω)
for s,t>0.
An AF A is called a PCAF (positive continuous AF) if A is an AF and

A.(ω) is non-negative and continuous function for each ω in its defining set Λ.
Given a PCAF A, there exists a unique Borel measure μ on 3f, which is

called the Revuz measure of A, such that

(0.1) l imi-^jV^)^,] = <f'μ,h> := \τKx){f. μ){dx)

for all γ-excessive functions h and /GΞi3+(i3+ denotes all non-negative Borel
functions on 3f, γ > 0 is a constant).

As pointed out by M. Fukushima in his recent paper [18] the above defi-
nition of PCAF is a generalization to the ordinary concept of PCAF (which we
shall refer to as the classical definition of PCAF) with the goal of relaxing the
finiteness requirement on PCAF's in the classical definition and to get a broader
but simpler class of associated Revuz measures.

Denote by S the totality of the associated Revuz measures of PCAF's. The
elements in S are called smooth measures. A simple analytical description of S
has been given as follows [19]:

A Borel measure μ on 3d is in S if and only if μ charges no set of zero ca-
pacity and there exists an increasing sequence of compact sets {Fn}n^1 such that
μ(F»)<oo for each n, μ(3£-υFn)=0 and Cap(i^-FΛ)->0 for any compact
set K.

From the above description it is easy to see that S contains all positive Ra-
don measures charging no set of zero capacity. It is also known that any mea-
sure in S can be approximated by (Radon) measures of finite energy integral.
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In this paper we shall point out two extremely contrasting properties of S.

On the one hand, we shall show in Section 1 that there are many smooth measures

μ which are nowhere Radon in the sense that μ(G)=oo for all non-empty open

sets Gd3£. Thus the class S is much bigger than it has been realized up to date.

Nevertheless on the other hand we shall show in Section 2 that the class S is so

nice that each measure in S can be approximated by measures in Kato class

(see Definition 2.1). Recall that in the classical case of regular Dirichlet forms,

corresponding to the Laplace operator, the measures of Kato class play an im-

portant role in connecting the Schrϋdinger semigroups and Feynman-Kac formu-

la, cf. e.g. [9], [26], [12], [6,7], [23], [24], [13], [14].

As an application of the approximation of smooth measures by the measures

in Kato class, in Section 3 we shall prove some properties of the generalized re-

solvents which are very useful in the study of perturbations of Dirichlet forms.

In the last Section we provide some alternative descriptions of the smooth mea-

sures in Kato class.

For the applications of the above results in quantum mechanics and the study

of perturbations of Dirichlet forms the reader is refer to our sequential paper

[6].

Some of the results in the present paper and in [6] have been described in

m
1. Smooth measures which are "nowhere Radon"

In this section we shall prove that there exist smooth measures μ which

are ''nowhere Radon'' in the sense that μ(G)=oo for all non-empty open sets

G o f X

Theorem 1.1. Let B be a subset of zero capacity and v be a smooth

measure with supp [v]Z)B. Then there exists at least one smooth measure μ which

is equivalent to v and such that μ(G)=oo for all open sets G with the property that

Proof. Set Bx— {x^B: v is finite on a neighborhood of x}. Without loss

of generality we may assume that Bλ is non-empty. Otherwise v itself is a de-

sired smooth measure. Since 3C is separable, there exists a countable subset

B2 of Bly say B2= {xjyj>l} such that B2'^>Bι. For eachj we choose a decreas-

ing sequence of small balls {Gjt^k>x having x. as their common center such that

(1.1) ϋ G > * = *>
and

(1.2) Cap(Gy,i)+KG, ,*)<2-*.

Such a sequence exists because we have Cap({#;})=0 which implies v({Xj})—0,
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and v is finite on a neighborhood of x . Notice that v{Gjtk) is also strictly posi-
tive since supp [Z/]D.B.

Define for each/

— - — when#eG, k—Gik+1, £=1,2, —

(1.3) / , (* )=] KG,.*) '
1 otherwise.

Because/;. is bounded outside Gjk for each £, we can choose a positive number
Cj such that

(1.4) C/.._«*UP,, Λ(*)^ 2" y

Now we define

*) = Σ *,//*)

and

We are going to show that μ is a smooth measure with the required properties.
Since 0 < / < o ° , z -almost everywhere, it is evident that μ=f v is equivalent
to vy and accordingly μ charges no set of zero capacity. Let {En}n^1 be an in-
creasing sequence of compact sets such that ^(£'n)<oo) v(3£—\J n^1En)=0 and
lim Cap (K—En)=0 for any compact set K. We set for each n:

(1.5) Gn = (U «,*,(?,.„,) U (U j>nGhl)

and

F. = En-Gn.

Then μ(Fn)<oo, μ(T— (J -f«)=0 and lim Cap (K-Fβ)=0 for any compact set

i^. Thus /̂  is a smooth measure. Let G be an open set such that G Π 5 Φ 0 .
If G(1(5—504=0 then μ(G)>i/(G)=oo by the definition of Bv Suppose
G Π ( 5 - 5 0 = 0 , then GnSi=f=0, which implies G | Ί 5 2 Φ 0 . Let χ.
Then for k large enough we have GJtkClG and consequently

Letting Λ-»oo we obtain μ(G)=°o. Thus /z, is as desired. •

Corollary 1.2. Suppose that each single-point set of 3£ is a set of zero ca-

pacity. Then for any countable dense subset B of 3£ we can construct a nowhere
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Radon smooth measure μB as in Theorem 1.1, with v=m. μB is "nowhere Radon"
in the sense that μB(G)=oo for all non-empty open sets G of 3£.

For example: if T=Rd, d>2 and (E,3ϊ) is the classical Dirichlet form
associated with the Brownian motion, then each single-set point is a set of zero
capacity. Corollary 1.2 asserts that to any countable dense subset BdRd there
exists a smooth measure μB on Rd which is "nowhere Radon' \ In fact in this
case we can exhibit explicitly examples of nowhere Radon smooth measures μB)

as shown in the following proposition.

Proposition 1.3. Let {xj} ^ be a dense subset of Rd{d>2) and {cίj}^ be
an arbitary sequence of real numbers. Then there exists a sequence {Cj} ̂  of strictly
positive real numbers such that the measure μ definited by μ(dx)=f(x)dx with

(1.6) f(χ) = 'Σcj\x-Xj\*t

is a smooth measure on Rd (with respect to the classical Dirichlet form associated with

the Laplacian).

Proof. For each j , we can choose a decreasing sequence of small balls
{Gjtk}k^i with xj a s their common center such that (1.1) and (1.2) hold (with re-
spect to the classical capacity associated with the Laplacian and the Lebesgue
measure v on Rd). Set Ej={x: \x\ <j} and choose positive numbers Cj such
that

cs sup \x—xAΛJ<2-J\
XΈEJ-GM

Let μ(dx)=f(x)dx with/ defined by (1.6). Then similarly as in the proof of
Theorem 1.1 we can show that μ is a smooth measure. Hence {cj}^ is a sequ-
ence with the required properties. •

REMARK 1.4.

(i) Suppose that there exists a natural number j0 such that a.<—d for all
i > jo> then fGf(χ)dx=°° for all non-empty open sets G, i.e., μ is "nowhere
Radon". Suppose that aj=—j for all j , then the function/ defined by
(1.6) satisfies the property:

(1.7) I I f(x) Ip dx= oo for any non-empty open set G and any p>0
J G

(ii) In [29] Stollmann and Voigt constructed a regular potential V satisying
(1.7). Our construction of /by (1.6) is in fact similar to the construction
of V in [29], but with a different choice of {cj}^. Nevertheless, since we
can prove that W\(Rd) Π L\Rd

y μ) is dense in L%Rd, v) for any smooth
measure μ (cfr. [6]), the function / defined by (1.6) (with the choice of
icj}jϊ>i in the above Proposition) is still regular in the sense of [29].
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By Theorem 1.1 we can also construct smooth measures which are con-
centrated on some subsets of 3£, or even singular with respect to the reference
measure m, but such that they are "nowhere Radon" on their support. We
give here several examples.

EXAMPLE 1.5. Consider the case of Rd{d>2) with the classical Dirichlet
form associated with the Laplacian. Let F be a closed d—\-dimensional manifold
and v be the d—\-dimensional Lebesgue measure on F. Then v is a smooth
measure. By Theorem 1.1 we can construct a smooth measure μ which is
singular with respect to the Lebesgue measure m on Rd (since μ is equivalent
to v)y and μ(G)=oo for all non-empty relatively open subsets G of F.

EXAMPLE 1.6. Let 3C=D{J dD where D is a bounded domain of Rd(d>2)
with C3 boundary dD. Let m be the Lebesgue measure on 3C and (E, £?) be
the maximal Markovian extension of the form

E(u,u) = -1 j I Vu\hn(dx),

Then (E, ί?) is a regular Dirichlet form on L2(3£, m) corresponding to the
Laplacian operator with Neumann boundary condition on dD. Denote by v the
area measure of dD. Obviously v is singular with respect to m. But v is a
smooth measure. In fact v is the Revuz measure of the boundary local time of
the reflecting Brownian motion on 3C (c.f. [23]). We can also prove that each
single point of dD is of zero capacity. Thus by Theorem 1.1 there exists a smooth
measure μ concentrated on dD (hence singular with respect to m) such that
μ(G)=oo for all non-empty relatively open subsets G of dD.

EXAMPLE 1.7. Let 3C=R3N and let us write x<=R3N as {xly ••-,,%} with
X ζΞR3. Set

1 *
*(*) = -^ Σ I xi~xj I"' exp (—λ I Xi-Xj I)

for some λ > 0 . Let m(dx)=Φ2(x)dx and define

Vv m(dx)E(u} v) = I

for u and v in Cl(R3N). Then E is positive and closable and it produces a
regular Dirichlet form (£, 3) on L\3C; m) ([5]). The energy operator H (asso-
ciated with E) is a realization of a Hamiltonian of N particles interacting by δ-
interactions. Notice that in this case each single-point set is of zero capacity.
Let us set

D = {x = {xly •••, xN} : x. = xj for some l<t<j<N}.
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Applying Theorem 1.1 we can construct a smooth measure μ such that μ(G)=
oo for all open sets G such that G Π DΦ0.

Now consider the positive quadratic form Eμ\

EP{μ, v) = E(u, v)+ j ^ w)μ{dx), n, ϋ eff Π L\μ).

It can be shown that Eμ is a Dirichlet form (c.f [6]). We then obtain a self-ad-
joint operator Hμ=H-\- μ which describes a Hamiltonian of N particles interact-
ing by δ-interactions plus Coulomb-like interactions.

2. Smooth measures in Kato class

Let us denote by B(2C) the family of Borel functions on 3£. For /

| | / | | f = inf sup
Cap(Λ0=0 T

set

(where the index q reminds us of "quasi everywhere'').
For a given smooth measure μy we shall denote by Aμ the unique (up to equiva-
lence) PCAF such that μ is the Revuz measure of A* (we say that two PCAF
A] and A) are equivalent if P*(A\=A\) = \ for quasi everywhere » E l , in the
sense of [19]).

DEFINITION 2.1. A smooth measure μ is said to be in Kato class (μ^Sκ in
notation), if

l imP.i4 # % = 0.

REMARK 2.2. In the classical case of M being Brownian motion on Rd,
Sκ coincides with the generalized Kato class GKd introduced in [12], and a
function/is in Kato class of functions if and only if f dx^Sκ (c.f. [9]).

Some analytic descriptions of Sκ will be given in Section 4.
The importance of the class Sκ is its connection with the Feynman-Kac

semigroups by the inequality contained in the following proposition.

Proposition 3.3. Let μ e Sκ. Then there exist constants c and β such that

\\E.eAlt\\q<ceβt

}

Proof. This is easily proven by applying Khaminskii's inequality and using
the semigroup property of the Feynman-Kac functionals. (c.f. [9]) •

We denote by So the positive Radon measures of finite energy integral and
introduce the family SKo as follows:
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Theorem 2.4. A positive Borel measure μ on 3C is smooth if and only if
there exists an increasing sequence {F^n^i of compact sets satisfying the following
properties

(2.2) (i)

(2.3) (ii)

(2.4) (iii) lira Cap (K—Fn) = 0 for any compact set K.

Proof. It suffices to prove the "only if" part. First we assume
Let us set

and

v,(x) = E.

Then we have HJ^SF, which implies ΊJ^ζF and ^,-^0 (as t->0) in 2^-norm.
(Recall that \\f\\2

El : = E(f, f)+SχFm(dx)). Moreover each °Ut is quasicontin-
ous. Thus similarly as in the proof of [19] Th. 3.1.4 we may find a de-
creasing sequence of open sets {Gn} n^.λ and a subsequence of {tk}k^ι such that
Cap (GΛ)-*0, tki0 and ^ - ^ 0 uniformly on each 3C—Gn. Notice also that cUt

is decreasing pointwise on 3C—N as 11 0 (N denotes the exceptional set of Aμ).
We have actually proved that

(2.5) lim sup I ΊJt(x) 1 = 0 for each n.
/*o 2C(G{jN)

Let {En}n^λ be an increasing sequence of compact sets such that μ(En)<oo and
lim Cap (K— En)=0 for any compact K. We define Fn=En—Gn. We claim

that IFn μ^SKo. It suffices to show that IFnμ^Sκ. Let us set

for fixed n. Then we have

(2.6) lim sup | HΪAx) \ < lim sup | °Ut(x) | = 0 .
^° X<EΞFn-N '*° XΈΞFn-N

Define

τ = Iίf {t>0:XteΞFn}

and

ί- j , Λ?) = Ex

o

By the strong Markovian property we have for q.e. x^3£—Fny
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(2.7) <Uf(*) = J?x[/ { f > T,

= Ex[I{t>τ]e-τg(t-τ,Xτ)]< sup

Comparing (2.6) and (2.7) we obtain

which is equivalent to IFn*μ^Sκ. It is easy to check that {FJ ̂  satisfies (2.3)
and (2.4). Thus the theorem is proved for μ^S0.
For a general measure μ^S, we may take an increasing sequence of compact
sets {Ej} ̂  such that IEj-μeSOy μ(I£—ΌEj)=0 and Cap (K-E.)-+0 for any
compact set K. For each/, we can find a sequence of compact sets {Fjt}n^ι s u c h
that {Fjt}n^ι satisfies (2.1)—(2.4) for the measure IEί μ. Now we define

Then {Fn}n^1 is an increasing sequence of compact sets such that IFn

for each n. It is also easy to check (2.3) and (2.4) for {FH}n^1 by the obser-
vation that for any compact set K>

K-FuC(K-Ej)U (K-Fj.), j<n.

The proof is thus completed. •

Corollary 2.5. Let B be a Borel set of X. Then Cap (B)=0 if and only
ifμ{B)=Oforallμ£ΞSKo.

Proof. This follows from Theorem 2.4 and [19] Theorem 3.3.2. •

3. Generalized resolvents

We first introduce some notations.
Let μ=μ+—μ~ be a signed Borel measure on 3ζ. If \μ\=μ+-\-μ" is a

smooth measure, then μ is called a signed smooth measure, and we shall write
μ^S—S. It is evident that μ^S—S if and only if μ+ and μ" are both smooth
measures. For μ<=S—S we shall set Aμ:=Aμ+—A11-. We shall call μ the
Revuz measure of A11.

Let μ^Sκ. By Proposition 2.3 we know there exist constants c and β such
μ,

that WE.e** \\q<ceβt. Let us introduce the notation

(3.1) β(μ) : = inf {/3>0 : \\E.eAΐ\\q<ceβt for some

For / and g in 1B(!£) and a Borel measure μ on X we shall sometimes use the

notation </,£ μ> or </,£>/* to denote the integral I fgμ(dx). </,£>* will be

simply denoted by (f,g).
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For a>0 a constant, μ and v in S—S a n d / e ^ ( 3 f ) , let us introduce the

notation

(3.2) V^f(x) = E

provided the right hand side makes sense. In particular, if v=m, we shall
simply write ΊJ"+μf instead of HJ%+μf.

Theorem 3.1. Let a>0, μ<ΞS-S, {μu μ2, v}czS and f(Ξ$+(2C). If
cUζJHίf(x)<oo,then

(3.3)

If cU:+"+fΊ-"2/(Λ;)< oo, then

(3.4)

Proof. It suffices to prove (3.3). Assume that cU"+μ'f(x)<oo. By the
Markovian property we have

Ex[\~e-«*-^f(X,)dA»\3^ = e-«>-*ΐ<υt+ >f(Xt) Px a.s.

Applying the above equality and Fubini's theorem we obtain

(3.5) EJ[~ -°"-A'([> e-A'1+A'2 dAϊλf(Xt)dA)j = HJ^^-^HJ^11 f(x).

Similarly

(3.6) Exϊ[° e-*>-Al>(V e-A^1+A^ dA^f(X,)dA\\ = cU%μ+μi-'kιtiJΐHif(x).

Now (3.3) follows from (3.5), (3.6) and the following identity:

e-Ap+Jp+ V e-Af*+ΛF dA^ = 1 + (' e-A?+Ap d A > .
Jo Jo •

REMARK. (3.3) and (3.4) are in fact a generalization of the resolvent proper-
ties. For this reason we call (3.3) and (3.4) the generalized resolvent formula
and accordingly HJ^^f (provided it makes sense) is called a generalized re-
solvent.

In what follows a will always stand for a non-negative constant without
explicitely mentioning it.

Theorem 3.2.
i) Let μ e SKo and a>β(μ). Then
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(3.7) ' ϋ - ' / e f f Π L\T; μ) for aUfeL\X; m).

(ii) Let μ=μ+—μ~ such that μ + e S and μ~^SKo, and f eL\3£ m) be non-

negative. If HJ'^ftΞLXX;m), then V ^ / e f f Π L \ T ; \μ\). (3.8)
(iii) Let μ<ΞS-S andf^L\3£; m) be non-negative. If V ^ / e i ^ ; m+μ~),

then c U* + '7eff n L \ T \μ\). (3.9)
(iv) Let μG.S—S, then for all vλ and v2 in S and non-negative Borel functions /,

andf2>

(3.10)

and

(3.11) E,vVt [\'g e-*MX.)dA^ = £ / r V l [ J [ e~Λ MXt)dA>\, ί>0 .

Proof. The proof is splitted into several lemmas.

Lemma 3.3. Let μ^Sκ and a>β(μ). Then

Here 1 stands for the function on 3C identically equal to 1.

Proof. It is obvious that | | c U β - μ l | | f <°o for a>β(μ). That ll'US^lllf<
holds can be seen from the formula

(3.12) e-*t+A?+a V e-«s+AΪ ds=l+[t e~"s+A* dAμ

s.
Jo Jo

Lemma 3.4. Suppose that μSΞSKo,a>β(μ) and f(ΞL2(3£;tn)f)$qb{3C),
then HJ-rffES (where Sqb(2£) := {f^${X): | |/ | | f<oo}).

Proof. Without loss of generality we may assume that / > 0 . Since / e

3£)j applying the above lemma we can see that | | c U*" f A / | | ί <
o ° . Thus

^ / J . ^ e S o because μ<=SKoClSo. Consequently ^tc0Λ--μ'f=cUΛ

{cυΛ-^fyβ 1

. But by Theorem 3.1 we have cU*-μ'f=cU«f+cUΐcU«-μ'fi hence <&-»/&

•
Lemma3.5. Let μy p^SKQJa>β(μ). Then V^ί^^F f)L2(3C; μ).

Proof. Take a large number β>β(μ+v). Then

Consequently

By Theorem 3.1 we obtain
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Again by Theorem 3.1 and Lemma 3.3 we obtain

<U/-M = vv

β-n+(β-a)Va-ιicυv

ίS-

Now we can write

'Uv*-" 1 = 17/ H - t U / < U v - 1 ' 1

and hence

Lemma 3.6. If μ^SKg, a>β(μ), then

/or off ZΊ,

Proof. Let IΊ, V2&SKO. We have

Consequently

Ejpjj-n, HJ,

Similarly

E.eυ*rμ i. ^
Comparing the above two identities we obtain

Noticing that V^SKQ and 0<f<<Bqb(3£) imply f p^SKo, the proof can be
completed by applying the monotone convergence theorem. I

Lemma 3.7. If μ^SKo,g<=L2(3£; μ)} α > 0 .

Proof. Let us set |l^μ-11| f=c. We have

Applying the previous lemma we obtain

J ^ \CU»*g\2μ{dx)<c(cυμ«\g\\ μ>= C^ϋ^h \g\*μ>£<*\\g\\2

L9(X;β)<oo.

Similarly we can prove
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Now applying the relation (0.1), we have

( f g t f g , fg)

By [19] Lemma 1.3.4 we get <ϋμ"ge&. •

3.8 Proof of Theorem 3.2 (i)
Let μ(=SKo, a>β(μ) and/GL2(a?; tn).
Let us set c=\\cU"-lkl\\q+\\cUμ*-μl\\q. By Lemma 3.3 we know c<oo.

Similarly as in the proof of the above lemma, we have

-M, \f\2)<<?\\f\\bec;m)

Thus cU"->if^L2(DC; μ). By Theorem 3.1 we have cUΛ-'Lf=cUΛf+cϋμ

aCΌ*-μf.
Applying Lemma 3.7 we get cU'*~μ'f^S, which completes the proof of Theorem
3.2 (i).

To prove Theorem 3.2.(ii) we still need a Lemma.

Lemma 3.9. Let μ—μ+—μ~ with μ+^S and μ~^SKo. Then

cu«+*f^riL2(X; \μ\)

for all a>β(μΓ) andf(=L\3£; tn).

Proof. Without loss of generality we may assume that/>0. By Theorem
3.2. (i) we have

; m).

By Theorem 3.1 we can write

(3.13) cUΛ+μ'f+cU^cU06+μίf =

Hence

(3.14) HJ%+

cUΛ+μ-f<c

By Lemma 3.7 we have cUΛ

μ-
cϋΛ+μ'j(Ξ3'. Thus by [19] Lemma 3.3.2

cU*+cU*+μ'f&3ϊ because both sides of (3.14) are α-excessive functions. Now
(3.13) enables us to write

which shows cUΛ+μf &L\!£\ μ+). The proof is completed.
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3.10. Proof of Theorem 3.2 (ii)
Let μ=μ+-μ~ with / G S and μ~ζΞSKoy 0</(ΞL2(3C; m) and <U*+<7G

L2(3f; w). We first take a large number β>β(μ~). Then by the above lemma
we have

; \μ\), V^V

But using Theorem 3.1 we can write

<V«+of= cU»"f+(β-a)cUβ+μcUΛ+ltf.

Consequently ΊJ^ftΞEFΠL2(3£; \μ\), which proves Theorem 3.2. (ii). •

We now proceed to
3.11. Proof of Theorem 3.2 (iii)
Let μ=μ+—μ~ with / G S and μ'&S. Suppose that 0<f^L\3C;m)

and cUβ>+μ/eZr2(a?;jfi+^-). By Theorem 2.4 we can take an increasing se-
quence of compact sets {Fn}n^ι such that IFn μ~^SKo> μ~(3C— l)Fn)=0 and
Cap (K—Fn)-*0 for any compact set K. Let μn=μ+—lFn μ~>

Applying Theorem 3.2 (ii) we get

Employing (3.13) we can write

(3.15)

In particular

Since cUΛ+μfGL2(3£; tn+μ~), by the monotone convergence theorem we obtain
<W+lkfeL\%; μ+). Now by virtue of the fact that RJ**1" f tΞL%X\ m+\μ\),
(3.15) enables us to conclude that {cUβt+μ'nf}n^ι is an JS^-cauchy sequence. Thus
lim cU^tι"f=cUcί+μf^ζF. The proof of Theorem 3.2 (iii) is thus completed.

To prove Theorem 3.2.(iv) we first prove the following

Lemma 3.12. Let μ=μ+-μ- with μ+(ΞS and μ~^SKo. If HJ06^/^
L\3£; nήfor anyfϊΞL2(3£; rn), then ^ U / ^ l e f f Γ\L2(3£; \μ\)for any VΪΞSKQ.

Proof. Take a large number β>β(μ~). By Lemma 3.5 we have
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for any V^SKQ. By Theorem 3.1 we can write

Thus similarly as in the argument used for proving Lemma 3.9 we may conclude

<US+*leE&riL\X; \μ\), for all

Applying again Theorem 3.1 we have

By Theorem 3.2 (ii) we then obtain RJS^lEίSί(MJ{X\ \μ\) for all v<=SKo,
which concludes the proof of Lemma 3.12.

3.13. Proof of Theorem 3.2 (iv)
Let {μn}ΛΞ>J be specified as in the proof of Theorem 3.2 (iii). Let n>\

be fixed, by Lemma 3.12 we have for a large enough,

2(3£ \ μ n \ ) for all v<= S K Q .

By Theorem 3.1 we can write for a>β(IFn*μ~)

Thus similarly as in the proof of Lemma 3.6 we obtain

(3.16)

For fixed vlyv2&SKo, the above equality holds in fact for all a+β instead of
a with β>0. Thus by the uniqueness of the Laplace transform we get for vλ

and v2 in SKQ:

(3.17)

The above implies

(3.18) £

for all non-negative Borel functions /ei3((0, oo)). In particular taking f(s)=

e*s> we get

(3.19) £V 2[J[ e-^ ' dA±] = £ V l [ j[ «-^" ,M>] , Vί>0 .

Now (3.11) and (3.10) follow easily from (3.19) by the monotone convergence
theorem. I

REMARK 3.14. Some special cases of (3.10) were first observed by M. Fuku-
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shima and Y. Oshima. Using a different method, they proved in [21] Lemma
3.1 that for any μ^S and / ^ G C O ( Ϊ ) , one has (HJ^g^^HJ^f.g). In
[25] Th. 4.2.1 and Th. 4.2.3 Oshima proved that

and

& f μ>

for all p, q>0 real numbers, μ^S and f,g^SB+(3C). His results are available
for the non-symmetric regular Dirichlet space. For applications of our results
we refer to [6].

4. An analytic description of Kato's class

Recall that || \\q is defined at the beginning of Section 2.

Lemma 4.1. Let μ^S. Then

(4.1) I IU*iy =

(4.2) \\EJHt\\q =

Proof We prove only (ii), (i) being easier. Obviously we have

To prove the inverse inequality, suppose that ||cL7fl,
α5l||Z(co(lw)=C<c>o. Take an

increasing sequence of compact sets {FM}M^1 such that μn:=IFn μ^So, μ(3C—
U FΛ)=0 and lim Cap (K—Fn)=0 for any compact set K. Then k]μn 1 is quasi-

continuous. By [19] Lemma 3.1.4 there exists a set Nn of zero capacity such
that HJtnl(x)<C on X-Nn Set NQ=X-U~.xFn and N=\J7m*Nn. Then
Cap (N)=0 and HJμ* ί(x)<sC for x^3£—N by the monotone convergence theo-
rem. That is:

In the sequel let (pt)t^o be the Markovian transition function of M and μ be a
given Borel measure on 3£. We make use of the following notations (whenever
the expressions involved make sense).

μTJ :=

μHJ'f : = <JJ e—ptfds, μ> : = £ „ [ £ e-«<f(X,)ds~j .

Theorem 4.1. Let μ be a smooth measure. Then the following assertions
are equivalent to each other:

(i)
(ii)
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(iii) μTt is a bounded functional on L1 (3£; m) and lim \\μTt\\=0;
/ o

(iv) μHJ* is a bounded functional on L\3ζ; m) and lim | | / U " | | = 0 .

In (iii) and (iv) | | | | denotes the operator norm of a functional on L\3£; m).

Proof By the additive property of A1} we have

HJfl = E. [~ e-«sdAt = E.
Jo

Consequently

from which the assertion (i)=Φ(ii) follows. On the other hand obviously we have

which implies the assertion (ii)=#>(i). Noticing that L°°(3C; m) is the dual space

of L\3£\ m), the assertion (i)<^(ϋi) follows from (3.11) and (4.2). Similarly the

assertion (ii)«=>(iv) follows from (3.10) and (4.1).
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