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0. Introduction

The aim of this paper is to study the propagation of C-singularities for an
hyperbolic pseudodifferential operator whose principal symbol vanishes at order
m>2 on an involutive manifold, generalizing a well known result obtained by
R. Lascar [8] Chapter III, in the case m=2.

Let X be an open subset of R**!, denote by T™* X=X X R**! the cotangent

bundle with canonical coordinates (x,£) and let o= 23) £;dx; (resp. o=dw
= Zj} dE; \dx;) denote the canonical 1-form (resp. 2-form) on T#X. By T*X\0

we denote 7*#X minus the zero section. Let P(x, D,) be a classical pseudo-
differential operator (pdo) in X of order m, me N, with symbol

P(x) E)~ g}pm—j(x’ E)

and let p=C~(X) be a real-valued function, with dp(x)==0 Vxe X.
We shall make the following assumptions:
(H;) P is hyperbolic with respect to the level surfaces of ¢, i.e. p,, is real-
valued and
i) pu(x, dp(x))+0VreX;
i) for every (x, £)€T*X, ¢ independent of dp(x), the function
DPum(%, E+tdp(x)) is a polynomial of degree m in ¢ having only real roots.
(Hy) There exists a C=-conic, non radial, involutive submanifold N C 7*X\0
of codimension p-1, such that, for j>0, p,; vanishes at least of order
(m—2j); on N(t,=max(¢, 0)).
The above conditions on N imply that, for any p& N, we have T,(N)"C T,(N)
(T»(IN)? being the orthogonal of T,(IV) with respect to o) and w(p) € T,(IN)”.
As a consequence, N is foliated by leaves F,, p&N, which are (immersed) C*
submanifold of N of dimension p+1 transversal to the radial vector field, with
T,(F,)=T,(N)’ (note that p<<n). Moreover, for every p<N, the bilinear form
o induces an isomorphism J,: Tp(T*X)/T(N)—T#(F,) (see [6]).
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Because of the vanishing conditions on p, we can apply the results of [3] and
therefore associate to P a family g,-;,j=0, -+, [m/2], of (m—2j)-multilinear
symmetric forms defined on T'(T*X)/T(N), the normal bundle of N.

For every pEN and v & T,(T*X)/T,(N) we define:

20) @) = 3 0uAP) ) 2n-1(p) (0) = - o(P) (@, -+, 2),
and observe that
0a(0) (0, 1 0) = (@ ) (6) (0, =+, ).

Using the isomorphism J,, ¢,, and g will be considered as C* functions of peN
and veT¥(F,). Thus, fixed a leaf F on N, ¢, and ¢ will be well defined as
C~ functions on T*(F) (see [9]). Let p=gox weere z: T*X—X is the canonical
projection.

Since Hy(p) is transversal to Tp(IV), its class modulo T,(N), say ﬂ;(p), does
not vanish. We shall suppose:
(H;3)  gm(p) (v) is strictly hyperbolic with respect to —ﬁ:,;(p), VpEN.
(H,) The polynomial i—>g(p) (v-+t Hﬁ;(p)) has m real simple roots, Vp& N and

VoeT(T*X)|Ty(N).

Some comments on conditions (Hj), (H,) are in order.
1—As will be shown in §1, condition (H;) is equivalent to requiring that for
(%, £)EN and close to N, the real roots of the polynomial p,(x, E+4tdp(x))
are simple (£ independent of dg(x)), hence p,, is strictly hyperbolic outside N,
at least close to IN.
2—Condiciton (H,), which is obviously invariant by change of coordinates in
X, is more technical. In [10] (when m=2) and [1] (for m>2), the authors
consider the case of an operator P satisfying conditions (H,)-(H,), whereas (H,)
is replaced by a suitable Levi condition on the lower order terms of P, which
in particular implies that YpEN, g,-;(p)=0 for j=1, -+, [m/2].
The case (H,), which we will treat here, is, in some sense, on the opposite side.
3—1It is easy to see that if P satisfies conditions (H,)-(H,), then the same hypo-
theses are satisfied by the transposed operator ‘P, with N replaced by

—N={(x, &)|(x, —§)EN}.

ExampLEs. When m=2, using standard arguments, we can suppose that
@=x,, that the operator P in the form P=—Dj}+A(x, D), x=(x,y),
y=(y",¥"")ER"?X R?, where A is a second order pdo in R" depending smo-
othly on x, with nonnegative principal symbol ay(x, )= X a,(x, n) £’%,
n=(&', ¥")ER*? X R?, and that N= {£,=da,=0}. =
We have, if pEN, vET,(T*X)/T,(N),

0(p) (0) = 5 <Hess p) 0,93, a(p) (9) = 4(p) (@) +£i(p),
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where pi(p) denotes the subprincipal symbol of P.

The hyperbolicity of P means that a,(x, %) is non-negative, while condition
(H,) is equivalent to require that a, is transversally elliptic with respect to £/=0;
condition (H,) is then equivalent to pi(p)>0, Vp&N. This case was treated
in [8].

A typical example in the case m=4, p=x,, is represented by an operator P
which is factored as

P = QM Q®L AP QW AP Q@4 4, ,

with QW= —DZ +a(x, D,)| Dy |?, Q®=—D% +B(x, D,)| Dy-|? where a(x, D,),
B(x, D,) are pdo’s in y of order 0 having real positive principal symbols and,
Vi=1, 2, A{’(resp. 4,) are pdo’s of order 1 (resp. of order 2) in R", depending
smoothly on x,. We have N={§,=&"=0} and

%u(p) (v) = % <Hess ¢§"(p) v, v {Hess g(p) v, v,

(p) (0) = - (af"(p) <Hess g5°(p) v, >-+af(p) CHless g8%(p) v, 03),
0(p) (0) = @), PEN, vET(T*X)T,IV).

In this case condition (Hj) is equivalent to a(p)=+B(p), VpE N, while (H,) means
that the polynomial

4(p) (En &) = (—E5+a(p) | E” %) (—EE+B(p) | E” 17)+af"(p) (—Es+a(p) | E”|?)
+af(p) (—EE+B(p) | E” 1)) +ax(p)

has real simple roots in &, VpEN, VE’€R?.

We now state the main result of this paper, concerning the propagation of

singularities for P.

For every p,&N consider the following sets:

Cl(p)={pEN| p belongs to the leaf F=F, of N and there exist point {,&
T¥(F), f€T¥F) and a piece of forward (backward) null
bicharacteristic of ¢ on T*(F') joining (pq, &,) and (p, &)},

CY(p)={pEN| p belongs to the leaf F=F, of N and there exist points {,&
T¥(F),£€T¥F) and a piece of forward (backward) null
bicharacteristic of g,, on T*(F) joining (p,, &) and (p, &)} .

The main result of this paper is the following theorem:

Theorem. Let P satisfy assumptions (H,)-(H,) and let fe9D'(X), p,E
N\WF(f). Assume that Pu=f,ucQ'(X), and there exists a conic neighborhood
w of po and a choice of sign—+or—such that

(0.1); WF(u) N N((Cpo) U CE(po)\{pdt = 0 -



914 M. PeETRINI AND V. SORDONI

Then pyce WF (u).

The above result will be easily obtained by constructing (microlocal) left
parametrices for P. We will prove that the methods used in R. Lascar [8] can
be suitably adapted to the more general case we are treating here.

1. Reduction to a normal form

Let us first fix some notations. If U is an open subset of R and S T*U\0

is a C* conic submanifold, we denote by L**(U; 3), uER, k€ Z,, the class of all
classical pdo’s with symbols p(x, E)szz% Du-j(%, £), such that pu_; vanishes at
least of order (k—2j); on X,j>0 (see [2]). With this notation, our operator P
belongs to L™™(X; N).
Working microlocally near a given point of N and using the same kind of
arguments as in [1], Sect. 1, we can find a coordinate system (x, £)=(xq, ¥, &, %),
y=(x',x")ER*"?*XR?(n=(£', £’)) such that, without loss of generality,
X=]-T,T[XYCR, X R’ and N, in these coordinates, is given by:

N = {(% 3, £ 1) ET*X\0| £ = 0, £ = 0} .

By putting M= {(y, )= T*Y\0|£”=0} and disregarding elliptic factors, we can
suppose that, modulo a smoothing operator, we have:

P= D7+ E A%y, y, D,) DT,

for some 4;€C=(1—T, T[, L’(Y; M)), j=1, ++-, m.
Application of Taylor’s formula to the 4;’s easily yields:

[m/2] m-2i . m=1
PaxD)=31 S S A%, D,) Dl Dit 3 By 3, D)) DY,

where AY%(x, D,) and By(x, D,) are suitable pdo’s in y of order j and [m—TIH]
respectively, depending smoothly on x,(4{"=1).

Given a point p=(%, y=(&', &), £=0, &', #’=0)N the leaf through p is
simply:

Fo={xfeEN|s'=%,8=¢}.

Taking (x,, x”/, &, £’’) as canonical variables in T¥(F,), one can easily see that

[m/2] m-2
0

Q(P) (xm x”, Eo Eu) = %

ST aMw %, B 0 E B,

-2
k=0 |@|=m—2j—

<

a$), being the principal symbol of 4Y%, while

4alp) (30 ', B ) = 33 53

haﬂ(’?)k(xm ‘7,) x”: é,’ O) gllw Eg .
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Condition (Hj) amounts to require that for every (x,, #””) and £”=0, and for
every p, the polynomial &—>¢,(p) (%, ¥, &, E') has m real simple roots, whereas
condition (H,) means that the polynomial &-—>g(p) (x,, &/, &, £’) has m real sim-
ple roots for every p and for every (x,, 7, £”) (£ is allowed to be zero).

For simplicity, we will use in the following the notation:

q(p) (%0, ¥, &0, E") = q (20, ¥, &', £, ', E)
QM(P) (xo, .')C”, EO) E/l) = Qm(xo, El) x”; Eo: 5'7 E”) .
ReMarks 1. Since p,,(», &)= ké 3 aOx, &', &, E', E) £ EL, by writ-

=0 l&'=m—Fk

ing 0+&"=rw, rE] 0, + o[, 0=S?! and u=Er, we get

m
" P, Tu, E' 10) = kgo . ka&‘f),,(xo, x', &' E re) o um k.

1Zm-
On the other hand, for p=(x,, ', ¥/, £=0, &, &’=0), we have
77" gu(p) (%0, &, 78, 700) = Zm‘, al(xg, &'y 27, E', 0) "% um*
k=0 |®|=m—Fk

Using Rouché’s theorem, it is not difficult to verify that the strict hyperbolicity
of ¢.(p) is equivalent to require that, for r positive and sufficiently small,
u—r~" p,(x, ru, &', rwv) has m real simple roots, i.e. p,, is strictly hyperbolic near
N. Moreover, using the arguments of [7], Prop. 0.3 (ii), one can show that the
hamiltonian flow of H, in Char (P)\N has no limit points in N.

2. It will be crucial in the sequel to observe that ¢(p) (%, ¥/, &, &"’) has a par-
ticular homogeneity property.
Precisely, for every ¢>0, if p=(&,, y=(&', &), £,=0, &', £’=0), we have

9(‘70, x,) ﬁﬂ, 0) t2 E”O) (xn; x//’ tfo, tg” = tm Q(P) (xo; x”) EO) E”) 1)
i.e., if M, denote the dilations M(&,, &', £")=(t&,, t&', t£"’), we have

q(P) (xo’ x”; EO) E” = 'Zl,;i Q(Mtz(p)) (xo’ x”’ M‘(Eo, E”)) .

2. Construction of a parametrix

From now on we will use the notation introduced in Sect. 1. We fix a po-
int p,€N (without loss of generality we will suppose p,=(#=0, £,=0, 7),
n=(&'=(1, 0, --+, 0), £/=0)) and try to solve, microlocally near p,, a Cauchy
problem of the form:

P,=0
kaov(()) xly x/,) = Sk,,,_lf(x', x”), k = O’ ...,m__l
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for a given f€C§(Y) supported near the origin (5, ,-; denotes the Kronecker
symbol). Following an already classical procedure, we will solve the Cauchy
problem by using a suitable class of Fourier integral operators. As in [8], we are
led to consider operators of the form:

Ef (50.9) = [ e7treom~r0m o, 3, 3, ) f(2) d,

acting on f €C5(Y), having a suitable phase @ and amplitude e.

Since @ and e will not be classical symbols, we first fix the corresponding no-
tation. Let CR’ be an open set and let TCR™\0 be a conic nieghborhood
of (8'=¢,=(1, 0, ---, 0), &’=0).

By S“¥V'xT'; M), u, kER, we denote the class of all functions a(z, &', &)
C=(V XT') such that the following inequalities hold:

|87 02 02" a(z, &', &) | S(1E' |+ 187|110 aj 17 (2, 9), 7= (8, E),

12 12

where dy,(2, n)= IIE llz —l—ﬁ) . The notation <means that the left hand side
7 7

is dominated by a positive constant times the right hand side on every

V'XT'CVXT, for || large.

When I'=R"\0 we simply write S“¥(V; M) (cfr. [2] for further details).

We also denote by OPS™¥ V' XT'; M) (resp. OPS**(V'; M)) the related class of
pdo’s. We will use phase functions @ of the form

2.1 P(%0, ¥, 1) = <&, ED+ 9D (%0, 3, 1) 5

with @®(x, y, ) €S* (U X G; M), where U is some neighborhood of the origin
in X and GCR"\0 a suitable conic neighborhood of (£'=e,, &’=0), @ real
valued. On ¢@® we will impose the condition

| det <__62‘P(1) >| >c>0,
ox}’ Oy

when (x,, y, 7)€ UX G7, for T large, GT={nE€GCG| || =T}.

For the amplitudes, we will look for symbols e(xy, y, 2, 7) ES*Y(V X G; M) with

V= {(xmy’ 2)| (xov NE U, (0,2) e U}.

Our first task will be the construction of the phase functions. It will be con-

venient to use the following dilations in Ry, n=(&’, £”):

0';(7?) = (tz E,, tE”)’ t>0 .

Accordingly, a function g will be a-homogeneous of degree & iff g(o((n))=t* g(n)
for t>0 and 0. We also put {p>=(|&"|*+|&'| )

2(a). Eikonal equations

As first step we need the asymptotic expansion of
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e %M P(x, D,) (677 e(x, 7)),

where @ is as in (2.1) and e€.S*°.
We claim that, modulo terms belonging to S7-%m-2

(2.2) e7*@=M P(x, D,) (%" e(x, 7)) = p(x, ,¢)—I- g :g (%, V, )

1 1 9°p 6”’ o,
zu?z,elagﬂ( Vep) =5

In faet, it is easily verified that D¥ (e'” e)=e"’ &y Where

) = @EJ)» e+:" ( 2 ) @Z,)k ) g:co +<k 1) <%;?;)k—l D e STHE.

Moreover:

J

" A8Ms, D) DE DA(e" )= 7 AEhs D) D4 g~

’B‘T‘;'o B' 6 5 (a ’*(x’ 7]) 77”&) (x’ qu)) De(gk(x(b Z, ’7) eiP) Ix=y

with P(x: 2, 7])=¢(x0> 2, 77)—¢’(x01 Y, 77)——<Vy¢)(x0) Y, 77), z_y>
Therefore:

(23) e A%, D,)D,,u e €)= o, V) (22) auto m)+

/. ag
1 a()) \ %) (%, V 54
+z“ ( W%, ) 7' (% ﬂ’)ay,,+
1 65 () /e et ) e
2 GT oy (B M) 1) (5, V. 9) (7g" AN .

As a consequence, the asymptotic expansion in (2.3) is given (modulo terms
in Sm-2m-%) by

D, (ch“’ w[ 6¢(”>" 1 k) A\ -2 P (6¢(l)>k-1D ]
@i V) ax”) <6xo 3 <2 6x0) o T, €|t

(a(’)k(x, 2) 7' («, V,tp) o (<6¢“)> e)+

P 16 GEN
+%"3"§2%661 a$(x, n) 7*) (x, Vyfp) <a¢<1)> <6;y(1))e
= et V) () ()
o s (O (55)”

ST Ve 99"\ 9
+ B @) 69 () P fer
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1 {( k) ) 3pMY* (8D \? PPt
-+ ; 2 Ay, k(‘x Vf¢)< ) ( 6x0 ) 6x§ +
" __a__ (), /10 6¢(1))k_1 62¢(1)
(a$%(x, 1) 7') (=, V’¢) < 0x, 0x, ayh

=1 07,
1 6_ A /10 6?’(1) § 85¢(1)}
Ej BT 7 (a2, 7) n'"*) (%, Vﬂ”)( ax0> oy* -

In the same way we get:

e™** By(x, D,) (¢ a;) NI%O B' 6 B

— b5, V) (22) et smormt, k=0, m1

0

(bk(x’ 77)) (x V.ﬂ’) Dﬂ(ak(xm 2, 77) e )z=y

Hence (2.2) is proved. Furthermore, taking into account that S™-*m-2C Sm-Lm
by using the asymptotic expansion of the symbol p and by applying Taylor’s
formula in (2.2), we can get rid of the terms which are in S”~»” and obtain:

(2.4) e7*=" P(x, D,) (e*=" e(x, 7)) =

_ m © , a¢(1) a¢(1)> 6<p(1) @ a¢(1))k
2 < _kaw,k<x’§ + ax,: ax,, <6x”> ( axo +

mz_;zj_ afy(x, &', 0) <6¢<l>) <6<p<1)> LS,

where L,(e) = i Ep}a, ——+c} e, with suitable g;&8""t»" j=0, -, p,
ceSntm-1 ¢ = 7 oy

In fact, we have:

) Im/2l m=2i 5 dpW\#
_ %) P op
() 26.0) = pule V)t 3 53 s £,0)(327)7(227) +
[m/2]1 m-2j a(la, ) (1) 6¢(1) a¢(1) k
+§1 IPEOlw!mZJk(IIEI 6§h( & )axh)<6x”> 6x0>+
6 (1)
+ B0 £,0)(02) 457
(if) -;"i,@, V.p)ESn-in;
B 0p® ., 9pW —y
(iii) Vj=0,-,p: 3{: ( \ )— oE) (x, axo,f, o >+S
. (1)
) 3 L2

1m2=z B! ogP

- 1 a(ﬁoﬂ g (x op® ., 6¢(1>> 8B
KBO B =2 :3 |BII| ag 50 E//B// ’ axo ) ) 6x// 6x0ﬁ0 ax,/ﬂu
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122 0,V
181= zﬁ ' 65'5
FIC ) P
181=1 agopo 6E/ﬂ/ 6E”B/’
1(BosB"O1=1
2 1 6(p° B,l) q (x, 6¢(1), ,) a¢(l)) 6(30,5”) ¢(l) Sm-l,m .
Kﬂo BhI=2 B 'BH' 65 p 6E/Iﬂ’/ 8x0 axll axopo axllplz

6ﬂ (1)
) E 2

(x’ V,¢)

+

- 1
0 EN PO | i

dx,o 0x'® 0"

As a consequence (2.4) holds with

, 1,2 0 op® ., dp®
eay L= 152 (0. 5) e e,

ox, ' 0x
where
. Im/2l m—2i 0a'\) % 0™\ 10™M\* [0\
. o) 02 ()
Im-1 =1 {,Eq =0 {M]=m—zi-lt<lx 1 0F, (* €', 0) (8x” 0x, T

m—-1 (\*

+ S b 2,0 (222) 1+
k=0 0x,

L= 1 0®F") ¢ <x, 6¢(”’ ' a¢(1)> G4 gpa).
o=z Bol B71 0gfo g N Bxy - 0%/ oot

From (2.4) we are naturally led to impose that " satisfies the eikonal equation:

3D a%, (x, g +6(p(1) a¢<1)) (a¢<1)>u <8¢(1))k "

20 1w S ax’’ ox"/ \ ax"’ dx,
(25) [m/2] m~2j I , (an(l) <6¢(1)
+ :zjx l§> l¢l=§2i—haw'k(x’ £:0 ax”) 0, )

PP sgmo = <&, E"D
The following result holds:

Proposition 2.1. If UCX is a sufficiently small neighborhood of the origin
and G is a conic neighborhood of 77=(&'=e,, ¥’=0) in R"\0 of the form

= {(&,&)eR"\0| |&"|<¢&|E'], | é a7 —e, | <&}, with €>0 small enough,

then equation (2.5) is solvable in UX G, for T=T, large, and it has m independent
solutions @V (x, ) €S (U X G; M), j=1, -+, m

Proof. We look for a solution ¢ in the form

) — w(, & & 181" <p
) = 9 (s 57 £ 155 )

with P(x, o', ", 2, §)€C~(UX Q,), where
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Q, = {(0’, 0", 2,8)ES* "' XR*XR X R|
lo'—e| <€, | <€ 1—6<2?+ | |2<1+6

(€ small) and @ solves the Cauchy problem:

z"': 3 af%%(x, o'+ ap" ¢ 8¢(1)) (3¢(n>u (6 (75(1)),,_}_

#=0 |af=m~k ax' " ax"/ \ax" 0%,
(2.6) [m/2] m-2j ™ , j<6¢(l) @ a¢(1))k .
T F kg«": lml=§-2j—k as.H(x, ', 0) 3* 6x”> ( ox, / 0

To prove the existence of m independent solutions of the Cauchy problem (2.6)
in UxQ,, we first observe that for x=0, o'=¢,, 2+ |0’ |?=1, equation (2.6)
reduces to

(26 St a0, te") 0 rht

E=0 |®|=m—2j-
[m/2] m=-2j . 2 k
_,_2 2 2 a«;l.)k(oa €, O)ZJQ’ "’7-020
i=1 k=0 |@[=m-2j-%k

ag®

%o

If {=2=0, equation (2.6)" becomes

where o= | s=o-

In(0, 70 e, @) =31 31 a0, e,0) 0" Th=10.
=0 |

k=0 |@|=m=2j—Fk

Since |w”|=1, (Hy) guarantees that this equation has m real simple roots in .
On the other hand, if {=0 and 0<2<1, (2.6)" reduces to

m
p
0 k=0

(2.6)"

tm/2] m-25 o 2  Ie _k
S>3 adk0,6,0)2¥ " 75 =10
i= 10| =m-2j -k

which is equivalent to

7/ m/2] m-2j . "\ o k
2(0, 7,0, C) =% 5 51 a0,6,0) (2_) (_To) —0.
P4 2 2

7=0 k=0 |@|=m-2j-k 2

By assumption (H,) this equation has m real simple (smooth) roots in 7 for any
2
77
w”, say \; <0, el,L>, j=1, +++, m, so (2.6)"” has m real simple roots in 7, of
=

Ui
the form 2 ; (0, e, 2 >
2

By using a compactness argument, it follows that (2.6) has m real simple
roots. Hence, by applying a version with parameter of a classic result (see Th.
6.4.5 in [5]), it is possible to construct m independent solutions of (2.6), say
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P, j= ,m. Clearly, for any j, the @{" corresponding to @$ solve equa-
tion (2. 5) in U>< G7, where

G = (&, EﬁeRNO|wﬂ<uew|,H§|—ﬁr<&,T 7,>0.

We leave to the reader to verify that @$", j=1, :--, m, belong to S*(UXG; M).
. 2 (1)

Since 6—63&,—;32{:7—)[,0_0~I we get |det (Wﬁ >c¢>0 for (x, n) e UX GT,

Vj=1, «+-, m (by possibly shrinking U).

We observe that the phases @;’s, which are the main technical tool in the
construction of the parametrix, are neither homogeneous nor o-homogeneous.
On the other hand, for a precise description of the singularities of the parame-
trix we will need other phases which take care of the propagation within N and
on the simple characteristic set of P.

We are led to solve the following Cauchy problems:

tm/2] m-2j . , 61},.(1) @ (a,\l,U) k

() —

@.7) { pIEP .a,:g_,,-h““-k(x’g’o)< 6x"> o%, )=
POl = <, B

3 4 (x, g,_l_aq;(l) 6d>(1)> (6(1)“’ )w (6(13“) )k _0

k=0 |@|=m—*k ox’ ~ ox ox” 0x,
(I)(l)lxo=0 = <x”’ §H>

. 0 QTW\® (YD
(2.9) {§Mm i ,0) (%) a%)—
WO, o = o, BT

(2.8)

By putting as in (2.1)

’\l"(x9 77) = \P‘(l)(x, 77)+<xl) E’>) q)(xs 77) = q)(l)(x’ 77)+<xl) E'> )
W(x, n) = ¥O(x, n)+<x', £,

we have the following existence result:

Proposition 2.2. If U, G are as in Prop. 2.1, the equation (2.7) (resp. (2.8),
(2.9)) are solvable in UX GT (resp. UX GT N {&”’=£0}), for T=T, large, and each
of them has m independent solutions {"(x,n), DV (x, 7), ¥P(x, 5), j=1, -+, m,
respectively.  Moreover, \pV(x, 1), j=1, +++, m, are c-homogeneous symbols of degree
1in S*(Ux G; M), whereas ®{(x, n), ¥ (x, n), j=1, --+, m, are positively hom-
ogeneous symbols of degree 1 in S UX G N {£”#0}).

Proof. If @{V, j=1, -+, m, are the m solutions of (2.6) we found in Prop.
2.1, it is easy to verify that
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roen 2
PP (%, ) = <’7>¢(1)( lgl <§7]> |f<7]|> 0) j=1,em,

solve (2.7) in UX G, whereas

e = 18198 (o i o O )

\1’51)(“" 77) E/II¢(I)( IEE:I 7'@%, Oa O), j= 1, e, m

are defined in UX G7 for £’=0 and there they are solutions of (2.8) and (2.9)
respectively.

It follows from the definition that +»{"(x, n) are o-homogeneous symbols of
degree 1 belonging to S} (U X G; M), while ®{(x, ) and ¥{’(x, ) are homo-
geneous symbols of degree 1 in S{UX G N {£”0}).

We now show how the phases 4» and ® are related to @ on suitable subsets
of UXGT.
Precisely, we have the following:

Corollary 2.3. Under the same assumption of Proposition 2.2, we have:

0) 245, 7) = s ST i, )

where p;(x, n)= |<;7>l pi(x, n) verify estimates of type S*° in any o-conic set of the
Jorm T'=={(x, n) EUXGT| |E"|*<c"|E'[};

(i) P80, 7) = 0P n)+E ] 7,2

where o (%, n)= é”‘ oi(x, n) verify estimates of type S®~! in any o-conic set of the

form T'={(x, n) €UXGT| |E"|*=c"|E'|}.

Proof. Using Taylor’s formula at {=0 we get:
P85, m) = 9 T i) with piESUHUX G M).
<

H verify estimates of type S™° on every set

I {(%, )€ UXGT| |§"|*<c'|¢'|}, we obtain (i),
On the other hand, on any o-conic set of the form
TV'={(x, 7)€ UXGT||E"|*>c"|E'|}, by the uniqueness of the solutions of the
Cauchy problem (2.6), we can also write
’ i r1/2 lg//'
E”, ® X, E, ’ g, ’ IE,I ] 7 .
o (o o e e

Since

¢§1)(x’ ) = |
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Application of Taylor’s formula at z=0 yields

P95, 1) = BP(, 7)+1E

l E” ;(x7 77)

for some o€ S*(UXG; M). Since 1&'] verifies estimates of type S»~* on I,
claim (ii) follows. 1€

It will be useful to considerall the o, ¥, @V, ¥® j=1, ... m, as smo-
othly defined on the whole U X G, trivially extending them as 0 in UX G when
|7 <T.

2(b). Transport equations

If @; is one of the phases determined in Sect. 2(a) and eSS, from (2.4)
we get:
(2.10) e~*%i P(e'%i ¢) = L{(e)+R¥(e) on UXG,
where L§ is the first order operator (2.4)" with p=g¢; and RP: S%0 Sm-1m,
Let us observe that, possibly after shrinking U and G, we can suppose that the
coefficient aq, of 0 i L’ is different from zero on Ux G7, as follows by ob-

Xo
serving that from (2.4)" we have:

ol £, ) = o B (5,922, 1 820

9%, ox"’
[m/2] m-2j . . a 1 a M)\ k-1
_ o ’ j P; P )
j=0 k=1 'm|=§zj—kau'k(x’ o', 0) 'k <8x”) < 0x, ’
which for x=0, o'=e¢,, 2?+ |0/ |?=1 and =0 reduces to
[m/2] m-2j . :
(2.11) TS Y a@i(0, e, 0) 2% ok TE!

j=0 k=1 |®|=m-2j-k

. m
Wlth 'To=6¢, Ix=0‘
0x,

Since the roots in 7, of equation (2.6)” are simple, (2.11) is different from
zero and, as a consequence, ay(x, &', &) >c(p>" ! on UXGT if U is a small
neighborhood of the origin and G is contained in the set described by (&, £”)
’ i 1/2 < >

when = ( £, £ 1€ <
GIROERONY

Q, = {(0', 0", 2,5)ES* "' XR*XRXR |
lo'—e | <&, |T] <&, 1—6<2+ | 0" |2<1+&},

> belongs to

with a suitable small &.
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Let us fix some notation. If V={(x,y,2)|(%, )€U, (0, 2)€U}, we put
T'=VxG, aT'={(y, 2, 7)1(0,9, 2, )T} and

Pc.T — Fﬂ {(x — (xo’y)’ 2, = (Z_f', E”))ER”HXR”XR”\O[
|E”|2>c |E'|, |E'| =T}, ¢, T>0.

In this section we will look for suitable amplitudes e;(x,2,7) € S*(R*+1 x R"\0; M),
with supp(e;) CT7, for any j=1, -, m. We will construct every e; as a sum of
two amplitudes.

More presisely we have the following result:

Proposition 2.3. If T is sufficiently small, w is a small neighborhood of 0 in
R ¢, T are large enough, for any k(y, 2, 7) €S° supported in a small neighborhood
of (0,0,& =e, E’=0)=(0,0, 7) in OT7, there exist ¢;&S"°(R***'x R"\0; M),
supp (¢;)CI7 and 7, SYR*"' X R"\0), supp(7;)CI*7, j=1, «--, m, such that
e;=¢;+T; satisfies

e P(6% €;) | ux rux gm0 €S (0 X R" X R"\0)
eilxo=0:k mOdS—w’ j:l, -..,m'

(2.12)

To prove Prop. 2.3 we need two preliminary results.

Lemma 2.4. If T is small enough, £>0is small, j€ {1, -+, m} and he Z,,
then, for any fFeSm-hm-i+h(R¥+1x R™\0; M), supp (f)CTI7, and for any
e S (R x R"\0; M), supp (&) C oY, there exists e S™*(R**' X R"\0; M) with
supp (e) CTI'7, such that

{L§”(e) =f i Ixl<e

(2.13)
5 l z0=0 =e€.
Proof. By dividing the coefficients a;, i=0, «-+, p and ¢ of the operator L{”
for {p>™!, we are led to study a first order equation with respect to x, with
coefficients in S*(UX G; M). We must verify the possibility of solving this
equations globally with respect to &.
Let us observe that it is possible to express &;=<{y>'"" a;, i=0, -+, p, T={P* " ¢,
; : g g " <
as C* functions of x and of the parameter 7\=<—;—, =_ e L/), to be
[E'] <> <> €]
more precise, &;(x, 1), &(x, A) are C=(U X Q,), £>0, where Q, is the set described
by A when £ varies in G7. As we noted at the beginning of this section, we can
also suppose that d(x, A)==0 when (x, )€U X Q,.
By integrating the Hamiltonian flow starting from x,=0, when U is sufficiently
small, we get a diffeomorphism X: (x, A)> (x,, ¥, ¥’(x, ), A), from U X Q, onto
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. . _ ’ 4 1/2 < > .
its image, such that X/’ (x, —= £ 1EN" <n =1, -+, p are in
( HIROIED e ?
S%(Ux GT; M) and verify | det(%) | >¢>0 for (x, 7)€ UX GT. Moreover, in
X3
these coordinates, the vector field —6~—l— é az' a; 9 is transformed 1nto—§—
Ox, i=t ox?’ 0x,

In fact, assuming that a cutoff function with respect to x”” is applied to the coef-
ficients &' &;, i=1, -+, p and putting o=(x', A), we obtain the system

{ ®(t)=F (t x'(t), o)
//(0) — x

with x)=t, F=(&;" &, -+, 5" @,) and F(¢, x”, 0)=0 when || >C.

Thus, for |t| <T, there exists C;>C such that ¥’(¢, ¥/, ¢)=x"" for |x”|>Cy.
On the other hand, when |x”|<Cy, since %:-: (0,x”,6)=1,, the map
¥’ —>®'(t,«”, ¢) is locally invertible for || <T for some T'<T.

Finally, we observe that if f&S"*(R**x R"\0; M) has sufficiently small sup-
port then f defined by f(X(x, 7))=f(x, ) still belongs to S%*(R?*+x R"\0; M)

and that exp (@5' €) is in S*(UX G; M), because G5! € S*(UX G; M).
We can thus construct e S**(R***! x R"\0; M), supp (¢) CI'7?, satisfying (2.13).

For the next result, we first need a definition.

DerINITION. If g= 87 we say that g is “flat” on M iff

1\ -N
vN>0, (LE 1Y es.
<|£1> g
We have:

Lemma 2.5. If T is sufficiently small, c, T are sufficiently large and €>0 is
small, then for any he S™~'"{(R™+' X R"\0) flat on M, supp (h) CT*7, there exists
reS (R X R"\0) flat on M such that

e ® P(é®r) = h modulo a symbol in S™*~* flat on M, if |x,| <&

(2.14) o

oo
for any t€ Z,., where P is any of the D} s in Proposition 2.2.

Proof. We have to verify that, in spite of the singularities of the function
@ for £”=0, it is possible to perform the classical construction by means of
flat symbols. Let r&S~*(R*+'xX R"\0) be flat on M. We claim that:

¢"i®P(x, D,)(¢'®) = pm(*, V,®)r-+L(r) modulo a symbol in S”~2~* flat on M,
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where L= %{‘2"]0 aiaiac,-_i—c}

is the usual transport operator i.e.

a,- = 6Pm(x, Vz¢) ) i: 0) R n’

0&;
o=
|5122,8' agﬁ —l(x’ V q‘))( %X,
- " DD\ HD®
+1 g 1a>|=m22 Ay, k(x v q)) ( ox" ) 9%, ) .

In fact, by considering the expansion (2.2) corresponding to @ and proceeding
as in Sect. 2(a), we have

. o DD\ /HDM *
() 2w V.0) =pule VY | 3 et V() ()
+banls, V,0)( 22N s

0
(ii) gp (x’ qu)) = %P_m(x’ Vx(I))+Sm_2; Vl:Oy AN
(iit) 1 97 P( v.® )65Q) 1 6p?»l( v, ® )apq)( +Sm-2,

,3' il YIS
It comes out that the a s, 1=0, <., n, belong to S"‘ 1 »=HUxGT), while
Re ce S t» Y UXGT) and Im ce S 7Y UX GT).
By the same kind of arguments used in the beginning of this section, we get
la| = |&”|""". Hence, since |§"”|~|n|dy on T*T, we get |a5| =|n|" " d5™
on any o-conic set I'7T.
Let us point out thta p,(x, V,D)=0.
In order to establish the global sovability with respect to & of the equation
L(r)=h, for x sufficiently close to 0, we can go on in the same way as in Lemma
24. Putting ¢;=|&"|*"a;,i=0, -, n,&=|E"|* "¢ and integrating the Ham-
iltonian flow starting from x,=0, we obtain the existence of a diffeomorfism

transforming the vector field 08 + E as'a; 0 into -2 on

X ji=1 6x,— 6x°

UX(G N {n=(&, £")ERN\O||E"|*2c|E'|, |&'|=T})

for a suitable choice of a neighborhood U of the origin and of the conic set G.
Then for any t€ Z, and for any he S 1~ (R™*x R"\0) flat on M with
supp (k) T, it is possible to find a solution » &S~ flat on M of the usual
transport equation L(r)=h, with 7| s0=0=0.

Proof of Proposition 2.3.
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By a well known argument, using (2.10) and Lemma (2.4) we can find a
symbol &;&S*(R**1x R"\0; M) with supp(¢;)CI7? such that for a suitable
neighborhood w of the origin

e‘“’iP(e”’!E,-) I oXR*X R™\0 = fi
€;|sp=0 = kmod S~

with f;€ n S"“l"‘(co X R*X R"\0, M)=S8""1"(w X R" X R"\0, M), supp(f;) CI7.
IfxeCy (R) X(#)=1 when t<¢/2 and X(t)=0 for t>c¢, ¢ large enough, we write

=2 1,

and we observe that the term X( I|EE l ) f; belongs to S~ since

X ) St 1 ELEED S o pag fgove

VN >0 (being |&”]?<E 5 |€'] on supp (X)).

On the other hand, g; is of class S”Y(R**x R™0)), flat on M, with
supp (g;)CT'T since

IE"I)“” g” ( 1”1 ) ( E”l) || m-t(LE7 1P |E71)M
1), = , - (EZEEET)™
() "= () (=) =<( [l
<ln|™*.
To conclude the proof of Proposition 2.3 we need to solve
{e‘”’fP(e"’ii’,) = —g; mod §~~
Pilemo=0 mod S~

We first observe that, given a symbol g of class S’(R***' x R"\0), v Z, flat on M
with supp (g)cT7, for ¢ sufficiently large, then by Corollary 2.3 (ii), we have

ge'%i = (ge’e®  Vj=1,-m

with ¢; €S8 (UX G; M).

Then, by Lemma 4.33 in [8] Chapter III, ;=ge'"s is still a symbol of class
S°(R*+'x R™\0)) flat on M.

By applying Lemma 2.5, we can find a symbol 7§’ € S° flat on M such that

{e""’iP(e"“’irS")) = —e’ig;  mod S™%flat on M
rsj) ,80-0 = 0 ‘
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Then 7{=e~%ir§ is still a symbol of calss S° flat on M such that, modulo
S-=, we have
{ e ?iP(ei%i(e;+-7§)) € S™* flat on M
Ej_l_?S]) |xo=0 = k .
By repeating the same argument, we can construct an asymptotic sum 7;~
7 with 7§ .S ~* flat on M such that Proposition 2.3 holds.
h

2(c). Solution of the microlocal Cauchy problem

Consider now the Fourier integral operators
E;f(x) = S EP 100,050 e (x 3z 0)f(2)dxdd , j=1,em,

where the phases @; are given by Prop. 2.1 and the amplitudes ¢; by Prop. 2.3.
It is important to observe that we are still free to choose ¢;|, _,—=Fk since we
only required k€S, supp (k) CoI7.

It is clear that, since @;(%q, ¥, )| ;,=0=<Y, 0D, DSE;| 1y=o(r==0, ---, m—1) are pseu-
dodifferential operators having principal symbol equal to (8,,9;(0, v, ))"-k(y, 2, 9).
Moreover, we can find a conic neighborhood of (0, 7) in R” X R"\0 in which the
Vandermonde determinant det [(9, @;(x, 0)] ,0=0)'];:(},.“,,:'_1 is elliptic in the class
S mim=1/2,m(m-DI2 hecause near (0, 7), taking into account the independence of the
@}’s, we have

[det [6xo¢j(‘x1 0) I zo=0)'];:(l).:::.’:t—l | =
= L @uupi— e (0, 3, 6)| Zconst Oy dgn-vt.
Si

By using this ellipticity, we can find a combination of the “pure” solutions E;
by means of pdo’s on x,=0 acting on the right hand side, in order to suitably
adjust the traces of the operators £}, as stated in:

Proposition 2.6. If vy is a sufficiently small conic neighborhood of (0, %) in
R" X R™\0, for a suitable choice of k(y, 2, ) there exist
ai(y, D,)EOPS="1="(R"X R"\0; M), j=1, +++, m such that

WE' (3 DiEjteyms0y—8,mn )N (THRNO)X7) = 0, Vr=0, 0, m—1.

(see R. Lascar [8)], Chapter 111, Prop. 4.38).

From Prop. 2.6 it follows that the operator N:g_,‘ E= SE jo; solves (modulo
C=-functions) the Cauchy problem: = =
{ PEf=0
DaEf|x0=0 = ar.m—lf: r = 0) " m—1
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for every f€CF(Y) (actually for every f €&'(Y) with WF(f)Cy).
We can rewrite the kernel of the operator £ as:

215)  E(x, 9, 2) = 2 Ey(%, 3, 2) = 3 g GO -,080G (3 2 0)d0

where ;& S'"™!"” vanish outside a closed conic neighborhood T of (0, 0, %) in
R x R"\0.

If we want to construct a microlocal right parametrix for the operator P, the
usual procedure consists in applying the Duhamel’s principle. To this purpose,
we first observe that the whole preceding construction which was performed
taking x,=0 as the initial surface, can be actually done for all the initial surfaces
x,=s with |s| small enough.

More precisely, we can construct for |s|<<X,<T a kernel

(2.16) E(s, x, 5, 2) = é E(s, %y, y, 2) = i‘, Se‘(“":‘("’o""”“"i(""""))éj(s, x, 2, 0)d0,
ji=1 Jj=1

where @;(s, %, v, 0)=<x', 0">+@$ (s, %, ¥, 0) and p{’solve the eikonal equation
in (2.5) with @{(s, %, ¥, 0) | ;p=s =<&7, 07, &; €EST™1""(]— X, X[ X R¥ X
R™0; M), satisfy equation (2.12) with ¢;= <p,(s %, Yo, 0) (and suitable initial

condition at x,=s), so that the operators E(s)= E E (5) satisfy (modulo C* func-
tions) the Cauchy problems

PE(s)f =0
{DBE(s)flxo=t = Sr,m—lf’ ¥ = O, ooy m—1.

At this point, by applying the Duhamel’s principle, we define (microlocal) for-
ward and backward parametrices for P

%o

B )@ =i [* X EQore N5, feCs,
(BN = —i | X EQoroA) s,  fC5

where XeCF(R), supp XC]—X,, X[, X=1 on [s]|<X§<X,, 4 is a fixed
compactly supported pseudodifferential operator with support near p, and 7,
is the restriction operator to x,=s. Since the normal directions to these surface
are not in WF’(A4), the operators y,04 are well defined for every fe&'(X)
with WF(f) concentrated near p,.

(2.17)

3. Calculus of the wave front set of the parametrix
Let us consider the kernel E(x,, v, 2) in (2.15) as an element of @'(R*X

R"). Then WF’ (E)C U WF(E) and by the same arguments as in R. Lascar
[8], Chap. III, we get:
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WE’ (E‘,)c{(x, £, 2, 7)€ T*R*\0x T*R™\0| 7" +0, z = aa‘f;f =, 7),
£ =2 (a, )} U & 5, DS THR=NOX THRNO & = & = ' =0,
¥ =2 ¢ = and RN, ' = o', 2/ = g‘é’;(x, 0)}u
U {(x, £, 2, 7)€ T*R™\OX T*R™\0|£, — £/ = o' = 0, x'—2", &' = 7’

and 30R"\0, ' = ', §”7+0 2" = 6:91:/](9", 0)}

In the same way, for the forward microlocal right parametrix E, defined in
(2.17), we have WF'(E,)C U WE'(EY), where
i=1
EP P =i ° X Eor:0A)(F)(w)ds.

By regarding the kernels E(s, %, ; %) as elements of @'((RXR**)x R"), we
find:

WF'(EI(S))C {(S, X, Oy E)’ (.Z', 77) Is<x0’ 77,,4:()’ B = aaq:,j(s’ X, 77)»
n

E= 6(I)j(s’r_x) 77)’ Oy = &(8, Xy 77) = _Eo} U
ox os

U {(s, % a0, E), (%, ) |s<xp Eo=0o=8"=79"=0,x" =2/,

£ = ' and IDER™N0: 0’ = ', 2 — 6”’(s,x a)}

u {(3» Xy 00y E)} (.Z’, 7])Is<x0) §o=o0y= g = 77” =0, ¥'=2,

E' =15"and I9R™\0: §' = 7/, 0”7 =*0, 2"’ = 6:91:/1 (s, , 0)}

U{(S X, UO)E) (z;ﬂ)ls——xo’ 77”:|:0 =2, E —77’5”—77 :El]:_a'o}u
U{(s)x)o-mg)) (2,7))|S=x0, Eo=0'a='f”=’7 ZO,yZz,f =77}'

As a consequence, for the WF(E{) we obtain:

WFEP) = {(x,8), (%, E)| |%|<Xjand
either %,>% and (%, ¥, E—E&, 7), (3, 7)€ WF'(Ey(®),
or X%y = X,and IuER:

(%0, %, p—E0, E—ps, ), (7, 1) EWF'(Ej(xy)),
or xg="%, n=170=0,&=E}.
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In particular, (xo, x, u—&g, &— 1, 1), &, 7)EWF ’(E',(xo)) means x==%&, E=F.
For our choice of the operator 4 in (2.17), the terms x,==&, n=7%=0, £,=§, do
not give any contribution to WF'(E,) and we can conclude that there exists a
conic neighborhood T of p, such that

WF'(E,)CC(T)UCLT)UCY(T)UA*¥T)
with:

CH(T) = jl:Jl{(x, £), (%, E)ETXT|%,>%, E'+0, § = 6;;)" (%o, 2, 7),
n = %‘j’)—j(ﬁm X, ﬁ), go = EO = %%i:(ﬁﬂ’ %, ﬁ)}’

cur) = U{(s ), (% B)ETXTIs,>5, {=F = =F'=0,5' =7,

£'—F and I0SR™N0: 0’ — E', #' — a‘é’;( %, 0)}

cy@= U {(x, £), (%, E)ETXT |%,> &, £,=E =F'=F'=0,x =%,

g =¥ and 30R"\0: §'=E', 0" +0, ¥’ = g;l’,’ (%o, , 0)},

A*(T") being the diagonal in T' X T".

The relations C,, C’%, C% have the following geometrical interpretation:

1) (x, &), (& E)eC, if (%, E) belongs to the forward null bicharacteristic of
p starting from (x, £) (i.e. %> %,);

(i) (x, &), (% &) Ch(resp. C¥)if (x, &) and (%, ) belong to the same leaf
FCN and there exist (A, ') & T 6(F), (Rey N') € TE 5(F) such that
(%, &, N, \’) and (&, &, X, X) are connected in T*(F) by an integral curve
of H,(resp. H,,) contained in ¢~*(0) (resp. ¢='(0)) with x,>X,.

Clearly, similar arguments give the description of the wave front set for the

backward right parametrix E_ changing the relations C,, C%, C'¥ into C_, CZ,

cz.

We observe that PE.(f)=f, Vfe&'(X) with WF(f)CT, modulo smooth func-

tions.

4. Proof of the theorem

Let us suppose that P verifies assumptions (H))—(H,), v€9'(X) satisfies
Pu=f with f€D'(X), p,c N\WF(f) and (0.1), holds.
As we already observed in remark 3, !P verifies the same assumptions of P on
—N={(x, £)|(x, —E)€N}. Hence we can use the same arguments of the
previous Sections to construct microlocal right parametrix E, for ‘P, near the
point —p,=(%, —). It is easy to verify that, in some conic neighborhood I'
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of p, we have:
WF(E.)N(—N)NTc(—CHT)U —CH(T),

where —C#% (resp. —C¥) is the relation obtained from C% (resp. C¥) by chang-
ing the sign of the fiber variable in both terms.

Passing to the transposed operator *E., we get microlocal left parametrices for
P with

WF'(‘E,) = —WF'(Es) .

Now, if e is a conic neighborhood of p, in which (0.1), holds, by using standard
cut off procedures, we can suppose that WF(u)Cw and WF(*E_Pu—u)No=0.
Arguing by contradiction, let us suppose that p,& WFu)\WF(f) ie.
pEWF(E_f\WF(f)No.

Then, since simple bicharacteristics for P do not have limit points in N, it would

exist p' €N N N WF(f), p'=py, such that (p,, p')E WF'(E_) i.e.

P'EWF(f)NoN(Ched UCY(p))\{pok) S WF(u) NN ((Ch(po) U
UCY(po)) U\{po}) = 0,

which is impossible.
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