Harada, M. Osaka J. Math. 28 (1991), 751–758

DIRECT SUMS OF ALMOST RELATIVE INJECTIVE MODULES

MANABU HARADA

(Received November 21, 1990)

Let R be a ring with identity. When we study almost relative injective modules, the following problem is essential: Assume that an R-module V is almost U_j -injective for R-modules U_j $(j=1, 2, \dots, n)$, then under what conditions is V also almost $\Sigma_j \oplus U_j$ -injective?

This problem is true without any assumptions, provided V is U_j -injective [2]. Y. Baba [3] gave an answer to the problem, when all V, U_j are uniform modules with finite length, and the author [6] generalized it to a case where the U_j are artinian indecomposable modules. Extending and utilizing the arguments given in [6], we shall drop the assumption "artinian" in this short note.

The proof will be completed by following the arguments given in [6]. Hence we shall explain only how we should modify the original proof in [6].

1. Preliminaries

Let R be a ring with identity. Every module in this paper is a right unitary R-module. We shall follow [3] and [6] for the terminologies. In [6], Theorem 2 we assumed that every module contained the non-zero socle. In this note we shall drop this assumption. Let W_1 and W_2 be R-modules. Take a diagram with V_2 a submodule of W_2 :

(1)
$$W_{2} \stackrel{i}{\leftarrow} V_{2} \leftarrow 0$$
$$\downarrow g$$
$$W_{1}$$

Consider the following two conditions:

1) There exists $\tilde{g}: W_2 \rightarrow W_1$ such that $\tilde{g} | V_2 = g$.

2) There exist a non-zero direct summand W of $W_2: W_2 = W \oplus W'$ and $\tilde{g}: W_1 \to W$ such that $\tilde{g}g = \pi | V_2$, where π is the projection of W_2 onto W. If either 1) or 2) holds true for any diagram (1), then we say that W_1 is almost W_2 -injective (if 1) always holds true, then we say that W_1 is W_2 -injective [2]).

We assume in the above that W_2 is indecomposable. If W_1 is almost

 W_2 -injective,

(#) we always obtain 1), provided g is not a monomorphism.

Lemma 1. The above (\sharp) is 'equivalent to the following fact : W_1 is W_2/W -injective for any non-zero subomdule W of W_2 .

Proof. If g is not a monomorphism, then taking $g^{-1}(0) = W$, from (1) we obtain the diagram:

$$\begin{array}{cccc} W_2 & \longleftarrow & V_2 & \longleftarrow & 0 \\ \downarrow \nu & \downarrow \nu & \\ W_2/W & \leftarrow & V_2/W & \leftarrow & 0 \\ & \downarrow & \vec{g} & \\ & & W_1 & , \end{array}$$

where \vec{g} is the induced map from g and $\nu: W_2 \rightarrow W_2/W$ is the natural epimorphism. Hence if W_1 is W_2/W -injective, we have $\tilde{g}': W_2/W \rightarrow W_1$ such that $\vec{g} = \tilde{g}' | V_2/W$. Putting $\tilde{g} = \tilde{g}'\nu$, $\tilde{g} | V_2 = g$. The converse is also clear from the above diagram.

Lemma 2. Let U be an R-module and U_1 an indecomposable R-module. Assume that U is almost U_1 -injective. If U is not U_1 -injective, then there exist a non-zero submodule T of U_1 and a monomorphism $g: T \rightarrow U$, which is not extendible to an element in $\operatorname{Hom}_R(U_1, U_1)$. In this case we obtain the same situation for any non-zero submodule T' in T and g/T'.

Proof. The first half is clear from definition. Consider a diagram for a non-zero submodule T' in T;

$$U_1 \stackrel{i}{\leftarrow} T' \leftarrow 0 \\ \downarrow g \mid T' \\ U .$$

Assume that there exists $\tilde{g}: U_1 \rightarrow U$ such that $\tilde{g} \mid T' = g \mid T'$. Put $g^* = g - (\tilde{g} \mid T)$: $T \rightarrow U$. Then $g^{*-1}(0) \supset T' \neq 0$. Then from (#) there exists $\tilde{g}^*: U_1 \rightarrow U$ such that $\tilde{g}^* \mid T = g^* = g - (\tilde{g} \mid T)$. Hence $\tilde{g}^* + \tilde{g}$ is an extension of g, a contradiction.

From the above proof we obtain

Corollary. Consider the diagram (1). Assume that there exists a non-zero submodule V in V_2 such that g/V is extendible to an element in $\operatorname{Hom}_R(W_2, W_1)$ and W_1 is W_2/V -injective. Then g is extendible.

Lemma 3 ([6], Proposition 2). Let U, U_2 be R-modules and U_1 an in-

decomposable R-module. Assume that U is almost U_1 -injective, but not U_1 -injective. Under those assumptions 1): if U is U_2 -injective, then U_1 is U_2 -injective. 2): Assume that U_2 is indecomposable. If U is almost U_2 -injective, but not U_2 -injective, then we obtain th following fact: i); U_1 is U_2/V_2 -injective for any non-zero submodule V_2 of U_2 and hence ii); if U_1 and U_2 do not contain isomorphic submodules, U_1 is U_2 -injective. iii); Assume that U_2 (resp. U_1) contains non-zero submodule T_1 (resp. T_2) such that $g: T_1 \approx T_2$. Then we have the following equivalent conditions:

a) U_1 (resp. U_2) is almost U_2 -(resp. U_1 -) injective.

b) Either g or g^{-1} is extendible to an element in $\operatorname{Hom}_{\mathbb{R}}(U_1, U_2)$ or in $\operatorname{Hom}_{\mathbb{R}}(U_2, U_1)$ for every pair (T_2, T_1) .

Proof. The first half and 1), 2) are dual to [7], Proposition 1. However we shall give a proof for the sake of completeness.

1) By Lemma 2 there exist a submodule V_1 of U_1 , a monomorphism $g: V_1 \rightarrow U$ and $f: U \rightarrow U_1$ such that $fg=1_{V_1}$. Put $E_i=E(U_i)$, the injective hull of U_i . Then there exist $\lambda: E_1 \rightarrow E_0$ and $\sigma: E_0 \rightarrow E_1$, which are extensions of g and f, respectively. Since U_1 is uniform from [6], Theorem 1, $\sigma\lambda$ is an automorphism of E_1 and hence $E_0=E_1'\oplus \ker \sigma$, where $E_1'=\lambda(E_1)$. Further since $\sigma \mid E_1'$ is an isomorphism, we can take a submodule U_1' in E_1' with $\sigma(U_1')=U_1$. On the other hand $\sigma(U)=f(U)\subset U_1=\sigma(U_1')$. Hence $U\subset U_1'\oplus \ker \sigma$. Now we may show that U_1' is U_2 -injective. Let s be any element in $\operatorname{Hom}_R(U_2, E_1')\subset \operatorname{Hom}_R(U_2, E_0)$. Since U is U_2 -injective $s(U_2)\subset U\subset U_1'\oplus \ker \sigma \subset E_1'\oplus \ker \sigma$ by [1], Proposition 1.4 (cf. [4], Lemma 9). Hence $s(U_2)\subset E_1'\cap (U_1'\oplus \ker \sigma)=U_1'$, and so U_1' is U_2 -injective again by [1], Proposition 2.5.

2), i-ii) Since U is U_2/V_2 -injective by Lemma 1 for any (non-zero) submodule V_2 of U_2 , we can see from the above argument that U_1 is U_2/V_2 injective.

2), iii) a) implies b) from definition. Assume b). Take a diagram with V_2 a submodule of U_2

$$U_{2} \stackrel{i}{\leftarrow} V_{2} \leftarrow 0$$
$$\downarrow g$$
$$U_{1}$$

If g is not a monomorphism, then there exists $\tilde{g}: U_2 \rightarrow U_1$ with $\tilde{g} | V_2 = g$ from 2), i) and Lemma 1. Hence we can assume that g is a monomorphism. As a consequence U_1 is almost U_2 -injective by b).

Lemma 4. Let U be an R-module and U_1 , U_2 LE R-modules. Assume that 1): U is almost U_1 -injective, but not U_1 -injective, 2): there exist submodules T_1 , T_2 as in Lemma 3 and 3): U is almost $U_1 \oplus U_2$ -injective. Then either g or g^{-1}

is extendible, and hence U_1 is almost U_2 -injective.

Proof. Since U is almost $U_1 \oplus U_2$ -injective, U is almost U_2 -injective. We show that U_1 is almost U_2 -injective. If U is U_2 -injective, U_1 is (almost) U_2 -injective by Lemma 3-1). Hence we assume that U is not U_2 -injective. Now there exist a non-zero submodule V_1 and $h: V_1 \rightarrow U$ given in Lemma 2. Since U_1 is uniform by [6], Theorem 1, we may assume $V_1 \subset T_1$ from the last part of Lemma 2. Take a diagram

$$U_{1} \oplus U_{2} \xleftarrow{i} V_{1} \oplus g(V_{1}) \xleftarrow{0} 0$$
$$\downarrow h + hg^{-1}$$
$$U$$

Since *h* is not extendible, by assumption there exists an indecomposable direct summand *Y* of $U_1 \oplus U_2$ and $\tilde{h}: U \to Y$ such that $\tilde{h}(h+hg^{-1}) = \pi | (V_1 \oplus g(V_1))$, where π is the projection. Then either $g | V_1$ or $(g | V_1)^{-1}$ is extendible (cf. the proof of [5], Proposition 5). If $g | V_1$ is extendible, so does g from Corollary to Lemma 2, since U_2 is U_1/V_1 -injective by Lemma 3, 2)-i). Finally assume that $(g | V_1)^{-1}$ is extendible. Consider the diagram

$$U_{\mathbf{2}} \xleftarrow{\mathbf{1}} T_{\mathbf{2}} \supset g(V_{1}) \xleftarrow{\mathbf{0}} 0$$
$$\downarrow g^{-1}$$
$$U_{1}$$

Since U_1 is $U_2/g(V_1)$ -injective by Lemma 3, 2)-i), we obtain an extension \tilde{g}_2 : $U_2 \rightarrow U_1$ of g^{-1} from Corollary to Lemma 2. Therefore U_1 is almost U_2 -injective by Lemma 3-2), iii).

2. Main Theorem

In this section we shall give the desired theorem related to [3] and [6]. First we show the first half of the main theorem.

Lemma 5. Let $\{U_i\}_{i=1}^{m}$ be a set of uniform R-modules and U an R-module. Assume that U_i and U_j are mutually almost relative injective for any pair (i, j) and U is almost U_i -injective for all i > 0. Then U is almost $\sum_{i=1}^{m} \bigoplus U_i$ -injective.

Proof. Put $W = \sum_{i=1}^{m} \bigoplus U_i$, and consider a diagram with V a submodule of W:

$$W \stackrel{i}{\leftarrow} V \leftarrow 0$$
$$\downarrow h$$
$$U$$

In order to show the lemma, we may assume that

(*) V is essential in W (see [3] or [6], (#)).

Putting $V_j = V \cap U_j$ and $h_j = h | V_j$, we obtain the derived diagram:

(2)
$$U_{j} \xleftarrow{\iota_{j}} V_{j} \leftarrow 0$$
$$\downarrow h_{j}$$
$$U$$

Since U is almost U_j -injective, there exists

- a) $\tilde{h}'_{i}: U_{i} \rightarrow U$ with $\tilde{h}'_{i}i_{i} = h_{i}$ or
- b) $\tilde{h}_j: U \to U_j$ with $i_j = \tilde{h}_j h_j$.

We quote here the arguments given in [6]. From the argument in Step 3 in [6], namely from [3], Lemma C, (*) and induction on m, we know

if we obtain a) for all *i*, then there exists $\tilde{h}: W \rightarrow U$ with $\tilde{h} | V = h$.

Hence we assume that we have b) for some i, say i=1, i.e.

(3)
$$U_{1} \xleftarrow{i_{1}} V_{1} \xleftarrow{0} 0$$
$$\tilde{h}_{1} \swarrow \qquad \downarrow h_{1}$$
$$U$$

is commutative, which corresponds to (4') in [6]. Before proceeding the proof, we note the following fact from the argument in Steps 7 and 8 in [6]: We assume

(3) and there exists $\tilde{h}'_j: U_j \rightarrow U_1$ for all $j \neq 1$ such that

(4)
$$U_{j} \xleftarrow{i_{j}} V_{j} \xleftarrow{0} U_{j} \xleftarrow{h_{j}} V_{j} \xleftarrow{0} U_{j} \swarrow h_{j} \swarrow h_{j} \swarrow U_{j} \overbrace{l_{1}} \widetilde{h}_{j} \swarrow U_{1}$$

is commutative, which corresponds to (8) and step 7 in [6]. Then we obtain a new decomposition of $W:=U_1\oplus U'_2\oplus\cdots\oplus U'_m$ and $h^*: U\to U_1$ such that $U'_i\approx U_{p(i)}$ (ρ is a permutation on $\{2, \dots, m\}$) and

(5)
$$U_{1} \oplus U'_{2} \cdots \oplus U'_{m} \xleftarrow{i} V \longleftarrow 0$$
$$\downarrow \pi_{1} \qquad \qquad \downarrow h$$
$$U_{1} \xleftarrow{h^{*}} U$$

is commutative, which corresponds to (7) and step 8 in [6], where π_1 is the projection.

(In [6] we needed the assumption "artinian" to get the above (4). We note that the above (5) is shown by induction on m and the argument given after (10) in [6].)

Now we resume the proof of the lemma. Put $W_k = \sum_{i \leq k} \bigoplus U_i$ and hence $W = W_m$. We shall show by induction on k that there exist a new decomposition $W_k = U'_1 \oplus U'_2 \oplus \cdots \oplus U'_k$ and $\tilde{h}^{(k)}: U \to U'_1$ such that $U'_i \approx U_{\rho'(i)}$ (ρ' is a permutation on $\{1, \dots, k\}$) and

(5,k)
$$U'_{1} \oplus \cdots \oplus U'_{k} = W_{k} \xleftarrow{i} W_{k} \cap V \xleftarrow{0} \\ \downarrow \pi'_{1} \qquad \qquad \downarrow h \mid (W_{k} \cap V) \\ U'_{1} \xleftarrow{\tilde{h}^{(k)}} U$$

is commutative, which implies

(6)
$$\widetilde{h}^{(k)}h'_{1} = 1_{(V \cap U'_{1})} \text{ and}$$
$$\widetilde{h}^{(k)}h'_{j} = \widetilde{h}^{(k)}h|(V \cap U'_{j}) = \pi'_{1}(V \cap U'_{j}) = 0 \text{ for } j \neq 1, \text{ where}$$
$$h'_{j} = h|(V \cap U'_{j}) \text{ for all } j.$$

(3) is nothing but k=1 in (6). We assume that W_k has the above decomposition and $\tilde{h}^{(k)}: U \to U'_1$. $W_{k+1} = W_k \oplus U_{k+1} = U'_1 \oplus U'_2 \oplus \cdots \oplus U'_k \oplus U_{k+1}$. Take the diagram:

$$U_{k+1} \xleftarrow{i_{k+1}} V_{k+1} \xleftarrow{0} \\ \downarrow h_{k+1} \\ U \\ \downarrow u \\ \downarrow h_{k+1} \\ \downarrow \\ \downarrow H_{k+1} \\ \downarrow H_{k+1$$

Put $g = \tilde{h}^{(k)} h_{k+1}$. Since U'_1 is almost U_{k+1} -injective, we obtain either

- i) there exists $\tilde{h}_{k+1}: U_{k+1} \rightarrow U'_1$ with $\tilde{h}_{k+1}i_{k+1} = g$,
- or
- ii) $\tilde{g}: U'_1 \rightarrow U_{k+1}$ with $i_{k+1} = \tilde{g}g$.

Case i) By taking $\tilde{h}_1 = \tilde{h}^{(k)}$, $\tilde{h}'_j = 0$ $(1 < j \le k)$ and $\tilde{h}_{k+1}' = \tilde{h}_{k+1}$, the condition

(4) on W_{k+1} is satisfied from (6). Hence we obtain a new decomposition $W_{k+1} =$ $U'_1 \oplus U''_2 \oplus \cdots \oplus U''_k \oplus U_{k+1}''(U''_i \simeq U'_{p(i)})$ and $\tilde{h}^{(k+1)}: U \to U'_1$, which satisfies (5, k+1).

Case ii) If we put $\tilde{h}_{k+1} = \tilde{g}\tilde{h}^{(k)}: U \rightarrow U_{k+1}$, then from (6)

and for $j \neq 1$

are commutative. Therefore from (3) and (4) there exists a new decomposition $W_{k+1} = U_{k+1} \oplus U_1^{\prime\prime} \oplus \cdots \oplus U_k^{\prime\prime}$ such that

(5, k+1)
$$U_{k+1} \oplus U_{1}'' \oplus \cdots \oplus U_{k}'' = W_{k+1} \longleftarrow W_{k+1} \cap V \longleftarrow 0$$
$$\downarrow \pi_{k+1}'' \qquad \qquad \qquad \downarrow h$$
$$U_{k+1} \longleftarrow U$$

is commutative. Thus we have completed the proof.

In general let $\{D_i\}_{i=1}^{p}$ be a set of indecomposable *R*-modules and *U* and *R*-module. Assume that U is almost $\Sigma_i \oplus D_i$ -injective. Then U is almost D_i -injective for all *i*. We shall divide $\{D_i\}$ into two disjoint parts $\{D_i\}$ $\{U_i\} \cup \{I_k\}$ as follows:

- (7)
- U is I_k-injective for all k and
 U is almost U_j-injective, but not U_j-injective for all j.

Then we note that all U_j are uniform from [6], Theorem 1. Finally we give the

main theorem

Theorem. Let U be an R-module. Further let $\{U_j\}_{j=1}^m$ be a set of indecomposable R-modules and $\{I_k\}_{k=1}^n$ a set of R-modules. We assume that $\{U_j, I_k\}$ satisfy (7). Then if U_i , U_j are mutually almost relative injective, then U is almost $\sum_{j=1}^m \oplus U_j \oplus \sum_{k=1}^n \oplus I_k$ -injective. Conversely if U is almost $\sum_{i=1}^m \oplus U_j \oplus \sum_{k=1}^n \oplus I_k$ -injective and the U_j are LE modules, then U_i , U_j are mutually almost relative injective for any pair (i, j).

Proof. The second half is clear from Lemmas 3,2-ii) and 4. We study the first half. From (7) and Lemma 3 U_j is I_k -injective for any j and k. If U'_1 is U_{k+1} -injective in the proof of Lemma 5, then we always obtain the case i). Therefore using Lemma 5, we can follow the proof in [6], Theorem 2 and get the theorem.

References

- [1] T. Albu and C. Nastasescu: Relative finiteness in module theory, Textbooks Pure Appl. Math. 84, Marcel Dekker, Inc., New York and Basel.
- [2] G. Azumaya, F. Mbuntum and K. Varadarajan: On M-projective and M-injective modules, Pacific J. Math. 59 (1975), 9-16.
- [3] Y. Baba: Note on almost M-injectives, Osaka J. Math. 26 (1989), 687-698.
- [4] Y. Baba and M. Harada: On almost M-projectices and almost M-injectives, Tsukuba Math. J. 14 (1990), 53-69.
- [5] M. Harada and T. Mabuchi: On almost M-projectives, Osaka J. Math. 26 (1990), 837-848.
- [6] M. Harada: Almost relative injectives on the artinian modules, Osaka J. Math. 27 (1990), 990-999.
- [7] M. Harada: Almost relative projectives over perfect rings, Osaka J. Math. 27 (1990), 655-665.

Department of Mathematics Osaka City University Sugimoto-3, Sumiyoshi-Ku Osaka 558, Japan