AN ELEMENTARY PROOF OF A THEOREM OF BREMNER

Luo MING

(Received May 7, 1990)

In the paper [1] Bremner proved that the Diophantine equation

$$
\begin{equation*}
3 x^{4}-4 y^{4}-2 x^{2}+12 y^{2}-9=0 \tag{1}
\end{equation*}
$$

has only two positive integer solutions $(x, y)=(1,1)$ and $(3,3)$, which was suggested by Enomoto, Ito and Noda in their research on tight 4-desings (see [2]). However, he used some of results of Cassels in biquadratic field $\boldsymbol{R}(\sqrt[4]{3})$ and the \mathfrak{p}-adic method of Skolem, so his proof is somewhat difficult. In 1983, Ko Chao and Sun Qi indicated that an elementary proof of Bremner's theorem would be significant (see [3]). Now such an elementary proof is given in this paper with nothing deeper than quadratic recipricity used. We describe our method as follows.

Since (1) may be reduced to $\left(3 x^{2}-1\right)^{2}-3\left(2 y^{2}-3\right)^{2}=1$, we have $\left(3 x^{2}-1\right)+$ $\left(2 y^{2}-3\right) \sqrt{3}=u_{n}+v_{n} \sqrt{3}=(2+\sqrt{3})^{n}$, the latter equation denotes the general solution of the Pell's equation $U^{2}-3 V^{2}=1, n$ is an integer. Thus

$$
\begin{equation*}
2 y^{2}=v_{n}+3 \tag{2}
\end{equation*}
$$

First we assume $n=3 m$. By

$$
u_{3 m}+v_{3 m} \sqrt{3}=\left(u_{m}+v_{m} \sqrt{3}\right)^{3}=\left(u_{m}^{3}+9 u_{m} v_{m}^{2}\right)+\left(3 u_{m}^{2} v_{m}+3 v_{m}^{3}\right) \sqrt{3},
$$

we get

$$
v_{3 m}=3 v_{m}\left(u_{m}^{2}+v_{m}^{2}\right)=3 v_{m}\left(4 v_{m}^{2}+1\right)
$$

so that

$$
2 y^{2}=3\left(4 v_{m}^{3}+v_{m}\right)+3,
$$

which leads to

$$
6 y_{1}^{2}=4 v_{m}^{3}+v_{m}+1=\left(2 v_{m}+1\right)\left(2 v_{m}^{2}-v_{m}+1\right),
$$

where $y=3 y_{1}, y_{1}>0$. Since $\left(2 v_{m}+1,2 v_{m}^{2}-v_{m}+1\right)=1$ and $2 X\left(2 v_{m}+1\right)$, $3 X\left(2 v_{m}^{2}-v_{m}+1\right)$ we have

$$
2 y_{2}^{2}=2 v_{m}^{2}-v_{m}+1, \quad y_{2} \mid y_{1}, \quad y_{2}>0
$$

Thus

$$
\begin{aligned}
& \left(4 y_{2}\right)^{2}=\left(4 v_{m}-1\right)^{2}+7, \\
& \left(4 y_{2}+4 v_{m}-1\right)\left(4 y_{2}-4 v_{m}+1\right)=7, \\
& 4 y_{2} \pm 4 v_{m} \mp 1=7, \quad 4 y_{2} \mp 4 v_{m} \pm 1=1,
\end{aligned}
$$

which gives $y_{2}=1, v_{m}=1$. Hence $m=1, n=3$. That is, if $3 \mid n$ then (2) holds only when $n=3$, this case gives $(x, y)=(3,3)$, a positive integer solution of (1).

Next we list the following relations which may be derived easily from the general solution of the Pell's equation:

$$
\begin{array}{lll}
u_{n+1}=4 u_{n}-u_{n-1}, \quad u_{0}=1, & u_{1}=2 \\
v_{n+1}=4 v_{n}-v_{n-1}, \quad v_{0}=0, & v_{1}=1 \\
v_{n+2 k} \equiv-v_{n} \quad\left(\bmod u_{k}\right) \tag{5}
\end{array}
$$

If $n \leqslant-2$ then $v_{n}+3<0$, (2) cannot hold, so we only consider the cases $n \geqslant-1$, Since, by $(2), v_{n} \equiv 1(\bmod 2)$, then $n \equiv 1(\bmod 2)$ by (4). Take modulo 8 to (4) we find that if $n \equiv 1(\bmod 4)$ then $v_{n} \equiv 1(\bmod 8)$, leads to $2 y^{2} \equiv 4(\bmod 8)$, which is impossible, so that it is necessary for $n \equiv-1(\bmod 4)$.

Again, take modulo 37 to (4) we obtain a seqeunce with period 36 as follows (only the terms with foot indices of the form $4 k-1$ are listed):

$n(\bmod 36)$	-1	3	7	11	15	19	23	27	31
$v_{n}(\bmod 37)$	-1	15	25	25	15	-1	13	7	13
$\left(\frac{v_{n}+3}{37}\right)$	-	-	+	+	-	-	+	+	+

Since (2) implies $\left(\frac{v_{n}+3}{37}\right)=\left(\frac{2 y^{2}}{37}\right)=-1$, so according to the above table we can exclude $n \equiv 7,11,23,27,31(\bmod 36)$. Furthermore $n \equiv 3,15(\bmod 36)$ belong to the case $3 \mid n$, which has been solved in the previous paragraph, then may be exclused, so that there remain the cases $n \equiv-1,19(\bmod 36)$.

Now by taking modulo 3 to (4) we can exclude $n \equiv 1(\bmod 6)$, so also $n \equiv 19$ $(\bmod 36)$, since it implies $v_{n} \equiv 1(\bmod 3)$ and $2 y^{2} \equiv 1(\bmod 3)$, which is impossible. Thus the only case left is $n \equiv-1(\bmod 36)$.

Suppose that $n \equiv-1(\bmod 36)$ and $n \neq-1$, we can write $n=-1+(12 k \pm$ 4) $\cdot 3^{r}$, where $r \geqslant 2$. Let $m=3^{r}$, by repeated application of (5) and the relations $v_{-n}=-v_{n}, v_{n \pm 1}= \pm u_{n}+2 v_{n}$, we get

$$
\begin{aligned}
& v_{n} \equiv v_{-1 \pm 4 m} \quad\left(\bmod u_{3 m}\right), \\
& 2 y^{2} \equiv v_{-1 \pm 4 m}+3 \equiv-v_{-1 \mp 2 m}+3 \equiv u_{2 m} \pm 2 v_{2 m}+3 \quad\left(\bmod u_{3 m}\right) .
\end{aligned}
$$

Since $u_{3 m}=u_{m}\left(u_{m}^{2}+9 v_{m}^{2}\right)$ and $2 \nmid m$ implies $u_{m} \equiv 2(\bmod 8), v_{m} \equiv \pm 1(\bmod 8)$, $u_{m}^{2}+9 v_{m}^{2} \equiv 5(\bmod 8)$, so that

$$
\begin{equation*}
\left(\frac{u_{2 m} \pm 2 v_{2 m}+3}{u_{m}^{2}+9 v_{m}^{2}}\right)=\left(\frac{2 y^{2}}{u_{m}^{2}+9 v_{m}^{2}}\right)=-1 . \tag{6}
\end{equation*}
$$

On the other hand, note that $u_{2 m}=u_{m}^{2}+3 v_{m}^{2}, v_{2 m}=2 u_{m} v_{m}, u_{m}^{2}-3 v_{m}^{2}=1$, we have

$$
\begin{aligned}
&\left(\frac{u_{2 m}+2 v_{2 m}+3}{u_{m}^{2}+9 v_{m}^{2}}\right)=\left(\frac{4 u_{m}^{2}+4 u_{m} v_{m}-6 v_{m}^{2}}{u_{m}^{2}+9 v_{m}^{2}}\right)=\left(\frac{4 u_{m} v_{m}-42 v_{m}^{2}}{u_{m}^{2}+9 v_{m}^{2}}\right)=-\left(\frac{2 u_{m}-21 v_{m}}{u_{m}^{2}+9 v_{m}^{2}}\right) \\
&\left.=-\left(\frac{9 v_{m}^{2}+u_{m}^{2}}{21 v_{m}-2 u_{m}}\right) \quad \text { (note that } 21 v_{m}-2 u_{m}>0\right) \\
&=-\left(\frac{7}{21 v_{m}-2 u_{m}}\right)\left(\frac{126 v_{m}^{2}+14 u_{m}^{2}}{21 v_{m}-2 u_{m}}\right) \quad \text { (since } 7 X u_{m} \text { and } \\
&\left.21 v_{m}-2 u_{m} \equiv \pm 1(\bmod 8)\right) \\
&=-\left(\frac{7}{21 v_{m}-2 u_{m}}\right)\left(\frac{159 u_{m} v_{m}}{21 v_{m}-2 u_{m}}\right) \\
&=-\left(\frac{21 v_{m}-2 u_{m}}{7 \cdot 159}\right)\left(\frac{\frac{1}{2} u_{m}}{21 v_{m}-2 u_{m}}\right)\left(\frac{v_{m}}{21 v_{m}-2 u_{m}}\right) \\
&=-\left(\frac{21 v_{m}-2 u_{m}}{53}\right)\left(\frac{2 u_{m}}{21}\right)\left(\frac{\frac{1}{2} u_{m}}{21 v_{m}}\right)\left(\frac{v_{m}}{21 v_{m}-2 u_{m}}\right) \\
&=-\left(\frac{2 u_{m}-21 v_{m}}{53}\right)\left(\frac{u_{m}}{v_{m}}\right)\left(\frac{v_{m}}{21 v_{m}-2 u_{m}}\right) .
\end{aligned}
$$

If $v_{m} \equiv 1(\bmod 8)$, then $\left(\frac{v_{m}}{21 v_{m}-2 u_{m}}\right)=\left(\frac{u_{m}}{v_{m}}\right)$; if $v_{m} \equiv-1(\bmod 8)$, then $\left(\frac{v_{m}}{21 v_{m}-2 u_{m}}\right)=-\left(\frac{21 v_{m}-2 u_{m}}{v_{m}}\right)=\left(\frac{u_{m}}{v_{m}}\right)$, the same as before. Hence, we obtain

$$
\begin{equation*}
\left(\frac{u_{2 m}+2 v_{2 m}+3}{u_{m}^{2}+9 v_{m}^{2}}\right)=-\left(\frac{2 u_{m}-21 v_{m}}{53}\right) . \tag{7}
\end{equation*}
$$

Similarly we can show

$$
\begin{equation*}
\left(\frac{u_{2 m}-2 v_{2 m}+3}{u_{m}^{2}+9 v_{m}^{2}}\right)=-\left(\frac{2 u_{m}+21 v_{m}}{53}\right) . \tag{8}
\end{equation*}
$$

Using the recurrent relations (3), (4) we take modulo 53 to $\left\{2 u_{n} \pm 21 v_{n}\right\}$, and obtain their residue sequences with the same period 9 . Now $m \equiv 0(\bmod 9)$ implies both $2 u_{m} \pm 21 v_{m} \equiv 2(\bmod 53)$, so that (7) and (8) lead to

$$
\left(\frac{u_{2 m} \pm 2 v_{2 m}+3}{u_{m}^{2}+9 v_{m}^{2}}\right)=-\left(\frac{2}{53}\right)=1,
$$

which are contrary to (6).

Finally there remains $n=-1$, this case gives $(x, y)=(1,1)$, another positive integer solution of (1), adding the previous one $(x, y)=(3,3)$ given by the case $n=3$ we obtain all positive intger solutions of (1). This completes our proof.

Remark: Because in two equations $3 x^{2}-1=u_{n}$ and $2 y^{2}-3=v_{n}$ we only use the latter, so actually we have proved that the more general equation x^{2} $3\left(2 y^{2}-3\right)^{2}=1$ has only two positive integer solutions $(x, y)=(2,1)$ and $(26,3)$.

The auther wishes to thank Professor Sun Qi for his help and encouragement.

References

[1] A. Bremner: A Diophantine equation arising from tight 4-designs, Osaka J. Math. 16 (1979), 353-356.
[2] H. Enomoto, N. Ito, R. Noda: Tight 4-designs, Osaka J. Math. 16 (1979), 39-43.
[3] Choa. Ko, Qi. Sun: Some indefinite equation problems in group theory, combinatorial theory and algebraic number theory, J. Math. Res. Exposition, 3 (1983), 2, 131134.

Department of Mathemathcs Chongqing Techers' College China

