THE CHERN CHARACTER HOMOMORPHISM OF THE COMPACT SIMPLY CONNECTED EXCEPTIONAL GROUP E 6

Dedicated to Professor Shôrô Araki on his sixtieth birthday

Takashi WATANABE

(Received September 28, 1990)

0. Introduction

Let F_{4} and E_{6} be the compact, 1-connected representatives of the respective local classes. As in [22] there is an involutive automorphism θ of E_{6} such that the subgroup consisting of fixed points of θ is F_{4}. Thus the quotient E_{6} / F_{4} forms a compact symmetric space, which is denoted by EIV in E. Cartan's notation. For brevity we shall write $E I V$ instead of E_{6} / F_{4}.

The ordinary cohomology and complex K-theory of three spaces F_{4}, E_{6} and $E I V$ are well understood (see $\S 1$). Moreover, the Chern character homomorphism of F_{4} was described explicitly in [20]. The purpose of this paper is to study those of E_{6} and $E I V$. Our results are stated as follows (for notations used below, see §1):

Theorem 1. The Chern character homomorphism

$$
\begin{aligned}
c h & : K^{*}\left(E_{6}\right)=\Lambda_{z}\left(\beta\left(\rho_{1}\right), \beta\left(\rho_{2}\right), \beta\left(\Lambda^{2} \rho_{1}\right), \beta\left(\Lambda^{3} \rho_{1}\right), \beta\left(\Lambda^{2} \rho_{6}\right), \beta\left(\rho_{6}\right)\right) \\
& \rightarrow H^{*}\left(E_{6} ; \boldsymbol{Q}\right)=\Lambda_{Q}\left(x_{3}, x_{9}, x_{11}, x_{15}, x_{17}, x_{23}\right)
\end{aligned}
$$

is given by

$$
\begin{aligned}
& \operatorname{ch}\left(\beta\left(\rho_{1}\right)\right)=6 x_{3}+\frac{1}{2} x_{9}+\frac{1}{20} x_{11}+\frac{1}{168} x_{15}+\frac{1}{480} x_{17}+\frac{1}{443520} x_{23} \\
& \operatorname{ch}\left(\beta\left(\rho_{2}\right)\right)=24 x_{3}-\frac{3}{10} x_{11}+\frac{3}{28} x_{15}-\frac{31}{221760} x_{23} \\
& \operatorname{ch}\left(\beta\left(\Lambda^{2} \rho_{1}\right)\right)=150 x_{3}+\frac{11}{2} x_{9}-\frac{1}{4} x_{11}-\frac{101}{168} x_{15}-\frac{229}{480} x_{17}-\frac{2021}{443520} x_{23} \\
& \operatorname{ch}\left(\beta\left(\Lambda^{3} \rho_{1}\right)\right)=1800 x_{3}-\frac{27}{2} x_{11}-\frac{153}{28} x_{15}+\frac{6789}{24640} x_{23} \\
& \operatorname{ch}\left(\beta\left(\Lambda^{2} \rho_{6}\right)\right)=150 x_{3}-\frac{11}{2} x_{9}-\frac{1}{4} x_{11}-\frac{101}{168} x_{15}+\frac{229}{480} x_{17}-\frac{2021}{443520} x_{23} \\
& \operatorname{ch}\left(\beta\left(\rho_{6}\right)\right)=6 x_{3}-\frac{1}{2} x_{9}+\frac{1}{20} x_{11}+\frac{1}{168} x_{15}-\frac{1}{480} x_{17}+\frac{1}{443520} x_{23} .
\end{aligned}
$$

Theorem 2. The Chern character homomorphism

$$
\begin{aligned}
c h & : K^{*}(E I V)=\Lambda_{Z}\left(\beta\left(\rho_{1}-\rho_{6}\right), \beta\left(\Lambda^{2} \rho_{1}-\Lambda^{2} \rho_{6}\right)\right) \\
& \rightarrow H^{*}(E I V ; \boldsymbol{Q})=\Lambda_{\boldsymbol{Q}}\left(x_{9}, x_{17}\right)
\end{aligned}
$$

is given by

$$
\begin{aligned}
& \operatorname{ch}\left(\beta\left(\rho_{1}-\rho_{6}\right)\right)=x_{9}+\frac{1}{240} x_{17} \\
& \operatorname{ch}\left(\beta\left(\Lambda^{2} \rho_{1}-\Lambda^{2} \rho_{6}\right)\right)=11 x_{9}-\frac{229}{240} x_{17} .
\end{aligned}
$$

The paper has the following organization. In $\S 1$ we collect some facts which we need. $\S 2$ contains various computations and consequently we obtain certain data. $\S 3$ is devoted to prove Theorems 1 and 2.

The author would like to thank Professor H. Minami for his kind advice.

1. Preliminaries

In this section we recollect some results on the cohomology and K-theory of our spaces F_{4}, E_{6} and $E I V$.

Let us begin with the cohomology of compact Lie groups. Throughout the paper G stands for a compact, 1-connected, simple Lie group of rank l. Then the rational cohomology ring of G is an exterior algebra generated by primitive elements of degrees $2 m_{i}-1,1 \leqq i \leqq l$, where the m_{i} are certain integers such that $2=m_{1} \leqq m_{2} \leqq \cdots \leqq m_{l}$ (see [5]). Since G is parallelizable, one can utilize the Poincare duality theorem for choosing elements

$$
x_{k} \in H^{k}(G ; \boldsymbol{Z}), k=2 m_{i}-1,1 \leqq i \leqq l,
$$

which satisfy the following conditions:
(1.1) (i) x_{k} is not divisible in $H^{k}(G ; \boldsymbol{Z})$;
(ii) The image of x_{k} under the coefficient group homomorphism $H^{k}(G ; \boldsymbol{Z}) \rightarrow$ $H^{k}(G ; \boldsymbol{Q})$ induced by the natural inclusion $\boldsymbol{Z} \rightarrow \boldsymbol{Q}$ belongs to $\mathrm{PH}^{k}(G ; \boldsymbol{Q})$, where P denotes the primitive module functor;
(iii) The cup product

$$
x_{2 m_{1}-1} x_{2 m_{2}-1} \cdots x_{2 m_{l}-1}
$$

generates the infinite cyclic group $H^{n}(G ; \boldsymbol{Z})$, where

$$
n=\sum_{i=1}^{l}\left(2 m_{i}-1\right)=\operatorname{dim} G .
$$

We will use the same symbol x_{k} to denote the image of x_{k} under the homomorphism $H^{k}(G ; \boldsymbol{Z}) \rightarrow H^{k}(G ; \boldsymbol{Q})$.

As in [5],

$$
\begin{align*}
& \text { If } G=F_{4} \text {, then } l=4 \text { and }\left(m_{1}, m_{2}, m_{3}, m_{4}\right)=(2,6,8,12) \text {; if } G=E_{6} \text {, } \tag{1.2}\\
& \text { then } l=6 \text { and }\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}, m_{6}\right)=(2,5,6,8,9,12) \text {. }
\end{align*}
$$

In this paper R stands for a commutative ring with a unit 1. If $\Lambda_{R}()$ denotes an exterior algebra over R, then by (1.2)

$$
\begin{align*}
& H^{*}\left(\boldsymbol{F}_{4} ; \boldsymbol{Q}\right)=\Lambda_{\boldsymbol{Q}}\left(x_{3}, x_{11}, x_{15}, x_{23}\right) \\
& H^{*}\left(E_{6} ; \boldsymbol{Q}\right)=\Lambda_{Q}\left(x_{3}, x_{9}, x_{11}, x_{15}, x_{17}, x_{23}\right) \tag{1.3}
\end{align*}
$$

Here we quote a result of Araki [1, Proposition 2.5]:
Proposition 3. $H^{*}(E I V ; Z)$ has no torsion, and

$$
H^{*}(E I V ; \boldsymbol{Z})=\Lambda_{Z}\left(x_{9}, x_{17}\right)
$$

where $x_{k} \in H^{k}(E I V ; Z)(k=9,17)$ is primitive.
As mentioned in $\S 0$, there is a fibration

$$
F_{4} \xrightarrow{j} E_{6} \xrightarrow{q} E I V .
$$

Consider the Leray-Serre spectral sequence for the cohomology with coefficients in R of this fibration. When $R=\boldsymbol{Q}$, it follows from (1.3) and Proposition 3 that the spectral sequence collapses. When $R=\boldsymbol{Z} /(p)$, by [1, Proposition 2.8] the spectral sequence collapses for every prime p. Therefore, when $R=\boldsymbol{Z}$, the spectral sequence collapses. This implies that
(1.4) (i) The induced homomorphism $j^{*}: H^{k}\left(E_{6} ; \boldsymbol{Z}\right) \rightarrow H^{k}\left(\boldsymbol{F}_{4} ; \boldsymbol{Z}\right)$ satisfies

$$
j^{*}\left(x_{k}\right)= \begin{cases}x_{k} & \text { for } k=3,11,15,23 \\ 0 & \text { for } k=9,17\end{cases}
$$

(ii) The induced homomorphism $q^{*}: H^{k}(E I V ; \boldsymbol{Z}) \rightarrow H^{k}\left(E_{6} ; \boldsymbol{Z}\right)$ satisfies

$$
q^{*}\left(x_{k}\right)=x_{k} \quad \text { for } \quad k=9,17 .
$$

In view of these circumstances, it seems natural to assert that
(1.5) The induced homomorphism $\theta^{*}: H^{k}\left(E_{6} ; \boldsymbol{Z}\right) \rightarrow H^{k}\left(E_{6} ; \boldsymbol{Z}\right)$ satisfies

$$
\theta^{*}\left(x_{k}\right)= \begin{cases}x_{k} & \text { for } k=3,11,15,23 \\ -x_{k} & \text { for } k=9,17\end{cases}
$$

This will be verified at the end of the next section.
Let T be a maximal torus of G. Consider a complex representation ρ of G, i.e., $\rho: G \rightarrow U(n)$, a continuous homomorphism of G into the unitary group, where n is the dimension of ρ. Since $\rho(T)$ is a torus subgroup of $U(n)$, there
exists a maximal torus T^{\prime} of $U(n)$ with $\rho(T) \subset T^{\prime}$. Let T^{n} be the standard maximal torus of $U(n)$, i.e., the group of diagonal matrices in $U(n)$. Since any two maximal tori are conjugate, we have a commutative diagram

$$
\begin{array}{rllll}
T \rightarrow & T^{\prime} & \rightarrow & T^{n} \\
i \downarrow & & \downarrow i^{\prime} & & \downarrow i_{n} \\
G & & \rightarrow U(n) & \rightarrow & U(n)
\end{array}
$$

of continuous homomorphisms, where i, i^{\prime}, i_{n} are the inclusions and the lower right horizontal map is an inner automorphism of $U(n)$. For simplicity we denote by ρ the composite of the lower horizontal maps and also that of the upper horizontal maps. Since any inner automorphism of a connected compact Lie group induces a self-map of its classifying space which is homotopic to the identity, we have a homotopy commutative diagram

$$
\begin{gathered}
B T \xrightarrow{B \rho} B T^{n} \\
B i \downarrow \\
B G \xrightarrow{B \rho} \downarrow B i_{n} \\
B U(n) .
\end{gathered}
$$

Let t_{1}, \cdots, t_{n} be the standard base for $H^{2}\left(B T^{n} ; \boldsymbol{Z}\right)$. Then the elements

$$
\mu_{j}=B \rho^{*}\left(t_{j}\right) \in H^{2}(B T ; Z), 1 \leqq j \leqq n
$$

are called the weights of ρ.
Let $L(T)$ be the Lie algebra of T and $L(T)^{*}=\operatorname{Hom}(L(T), \boldsymbol{R})$ the dual of $L(T)$. Denote by (,) an invariant metric on the Lie algebra of G, and on $L(T), L(T)^{*}$. With respect to a certain linear order in $L(T)^{*}$ we have simple roots $\alpha_{1}, \cdots, \alpha_{l}$ and the corresponding fundamental weights $\omega_{1}, \cdots, \omega_{l}$ are given by the formula

$$
2\left(\omega_{i}, \alpha_{j}\right) /\left(\alpha_{j}, \alpha_{j}\right)=\delta_{i j}
$$

where $\delta_{i j}$ is the usual Kronecker symbol. As explained in [6] (or [18]), every weight can be regarded as an element of $H^{2}(B T ; \boldsymbol{Z})$, and $H^{*}(B T ; \boldsymbol{Z})$ is the polynomial algebra $\boldsymbol{Z}\left[\omega_{1}, \cdots, \omega_{l}\right]$. The Weyl group $W(G)=N(T) / T$ acts on T, and on $B T, H^{*}(B T ; \boldsymbol{Z})$. The action of $W(G)$ on $H^{*}(B T ; \boldsymbol{Z})$ is described as follows. For $1 \leqq i \leqq l$ let R_{i} denote the reflection to the hyperplane $\{X \in L(T) \mid$ $\left.\alpha_{i}(X)=0\right\}$. Then R_{1}, \cdots, R_{l} generate $W(G)$, and they act on $H^{2}(B T ; \boldsymbol{Z})=$ $\boldsymbol{Z}\left\{\omega_{1}, \cdots, \omega_{l}\right\}$ by

$$
R_{i}\left(\omega_{j}\right)= \begin{cases}-\omega_{i}-\sum_{k \neq i} 2 \frac{\left(\alpha_{i}, \alpha_{k}\right)}{\left(\alpha_{k}, \alpha_{k}\right)} \omega_{k} & \text { if } i=j \\ \omega_{j} & \text { if } i \neq j\end{cases}
$$

It is known that the representation ring $R(G)$ of G and the K-ring $K(X)$ of
a space X have a λ-ring structure (see [11, Chapter 12]). A λ-ring is a commutative ring R together with functions $\Lambda^{k}: R \rightarrow R$ for $k \geqq 0$ satisfying the following properties:

$$
\begin{equation*}
\text { (i) } \Lambda^{0}(x)=1 \quad \text { and } \quad \Lambda^{1}(x)=x \quad \text { for all } \quad x \in R \text {; } \tag{1.6}
\end{equation*}
$$

(ii) $\Lambda^{k}(x+y)=\sum_{i+j=k} \Lambda^{i}(x) \cdot \Lambda^{j}(y) \quad$ for all $\quad x, y \in R$.

Furthermore, in the case of $R(G)$, if $\rho: G \rightarrow U(n)$ is a representation, then

$$
\operatorname{dim} \Lambda^{k} \rho=\binom{n}{k}
$$

and $\Lambda^{k} \rho=0$ for $k>n$.
We now bring a famous result of Hodgkin on the K-theory of G in a form suitable for our use. According to the representation theory of compact Lie groups, there are l irreducible representations $\rho_{1}, \cdots, \rho_{l}$ of G which admit highest weights $\omega_{1}, \cdots, \omega_{l}$ respectively. Then $R(G)$ is the polynomial algebra $Z\left[\rho_{1}, \cdots\right.$, $\left.\rho_{l}\right]$. Let $U=\lim _{\rightarrow} U(n)$ be the infinite unitary group and $\kappa_{n}: U(n) \rightarrow U$ the canonical inclusion. Let $\rho: G \rightarrow U(n)$ be a representation. Then the composite $\kappa_{n} \circ \rho$ gives rise to an element of $[G, U]=K^{-1}(G)$ which is denoted by $\beta(\rho)$. This correspondence $\rho \rightarrow \beta(\rho)$ extends to a map $\beta: R(G) \rightarrow K^{-1}(G)$, which is natural with respect to group homomorphisms, satisfying the following properties:
(i) $\beta(\rho+\sigma)=\beta(\rho)+\beta(\sigma)$ for all $\rho, \sigma \in R(G)$;
(ii) If ρ, σ are representations of G, then

$$
\begin{equation*}
\beta(\rho \sigma)=m \cdot \beta(\rho)+n \cdot \beta(\sigma) \tag{1.7}
\end{equation*}
$$

where $m=\operatorname{dim} \sigma$ and $n=\operatorname{dim} \rho$;
(iii) For any $k \in \boldsymbol{Z} \subset R(G), \beta(k)=0$.

With the above notation, a reformulation of [10, Theorem A] is
Proposition 4. Let G be a compact, 1-connected, simple Lie group of rank l. Then the $\boldsymbol{Z} /(2)$-graded K-theory $K^{*}(G)$ of G has no torsion and therefore it has a Hopf algebra structure. If some representations $\lambda_{1}, \cdots, \lambda_{l}$ form a base for the module of indecomposable elements in $R(G), \mathrm{i}, \mathrm{e} ., R(G)=\boldsymbol{Z}\left[\lambda_{1}, \cdots, \lambda_{l}\right]$, then

$$
K^{*}(G)=\Lambda_{z}\left(\beta\left(\lambda_{1}\right), \cdots, \beta\left(\lambda_{l}\right)\right)
$$

as a Hopf algebra, where each $\beta\left(\lambda_{i}\right)$ is primitive.
From now on, T will denote a maximal torus of E_{6}. Following [7], we have simple roots $\alpha_{i}, 1 \leqq i \leqq 6$, and the Dynkin diagram of E_{6} is

where $\left(\alpha_{i}, \alpha_{i}\right)=2$ and for $i \neq j$,

$$
\left(\alpha_{i}, \alpha_{j}\right)= \begin{cases}-1 & \text { if }(i, j)=(1,3),(2,4),(3,4),(4,5),(5,6) \\ 0 & \text { otherwise }\end{cases}
$$

Consider the inclusion $j: F_{4} \rightarrow E_{6}$. Choose a maximal torus T^{\prime} of F_{4} in such a way that $j\left(T^{\prime}\right) \subset T$. Similarly we have simple roots $\alpha_{i}^{\prime}, 1 \leqq i \leqq 4$, and the Dynkin diagram of F_{4} is

$$
{ }_{\alpha}^{\circ}-0 \underset{\alpha_{3}^{\prime}}{\circ} \alpha_{3}^{\circ}-\alpha_{2}^{\prime} \alpha_{1}^{\prime}
$$

where $\left(\alpha_{i}^{\prime}, \alpha_{i}^{\prime}\right)=2$ if $i=1,2 ;\left(\alpha_{i}^{\prime}, \alpha_{i}^{\prime}\right)=1$ if $i=3,4 ;$ and for $i \neq j$,

$$
\left(\alpha_{i}^{\prime}, \alpha_{j}^{\prime}\right)= \begin{cases}-1 & \text { if } \quad(i, j)=(1,2),(2,3) \\ -1 / 2 & \text { if } \quad(i, j)=(3,4) \\ 0 & \text { otherwise }\end{cases}
$$

Let $\omega_{1}, \cdots, \omega_{6}$ and $\omega_{1}^{\prime}, \cdots, \omega_{4}^{\prime}$ be the fundamental weights corresponding to $\alpha_{1}, \cdots, \alpha_{6}$ and $\alpha_{1}^{\prime}, \cdots, \alpha_{4}^{\prime}$ respectively. Then we have

$$
\begin{align*}
& \omega_{1}=\frac{1}{3}\left(4 \alpha_{1}+3 \alpha_{2}+5 \alpha_{3}+6 \alpha_{4}+4 \alpha_{5}+2 \alpha_{6}\right) \\
& \omega_{2}=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6} \\
& \omega_{3}=\frac{1}{3}\left(5 \alpha_{1}+6 \alpha_{2}+10 \alpha_{3}+12 \alpha_{4}+8 \alpha_{5}+4 \alpha_{6}\right) \tag{1.8}\\
& \omega_{4}=2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+6 \alpha_{4}+4 \alpha_{5}+2 \alpha_{6} \\
& \omega_{5}=\frac{1}{3}\left(4 \alpha_{1}+6 \alpha_{2}+8 \alpha_{3}+12 \alpha_{4}+10 \alpha_{5}+5 \alpha_{6}\right) \\
& \omega_{6}=\frac{1}{3}\left(2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+6 \alpha_{4}+5 \alpha_{5}+4 \alpha_{6}\right)
\end{align*}
$$

and

$$
\begin{align*}
& \omega_{1}^{\prime}=2 \alpha_{1}^{\prime}+3 \alpha_{2}^{\prime}+4 \alpha_{3}^{\prime}+2 \alpha_{4}^{\prime} \\
& \omega_{2}^{\prime}=3 \alpha_{1}^{\prime}+6 \alpha_{2}^{\prime}+8 \alpha_{3}^{\prime}+4 \alpha_{4}^{\prime} \\
& \omega_{3}^{\prime}=2 \alpha_{1}^{\prime}+4 \alpha_{2}^{\prime}+6 \alpha_{3}^{\prime}+3 \alpha_{4}^{\prime} \tag{1.9}\\
& \omega_{4}^{\prime}=\alpha_{1}^{\prime}+2 \alpha_{2}^{\prime}+3 \alpha_{3}^{\prime}+2 \alpha_{4}^{\prime} .
\end{align*}
$$

Obviously there is a homomorphism $T^{\prime} \rightarrow T$ which makes the diagram

$$
\begin{array}{cc}
T^{\prime} & \rightarrow T \\
i^{\prime} \downarrow & \\
F_{4} & \downarrow i \\
& E_{6}
\end{array}
$$

commute. We also denote it by j. Let us consider the behavior of the induced homomorphism $B j^{*}: H^{k}(B T ; \boldsymbol{Z}) \rightarrow H^{k}\left(B T^{\prime} ; \boldsymbol{Z}\right)$. Since $H^{*}(B T ; \boldsymbol{Z})=\boldsymbol{Z}\left[\omega_{1}, \cdots\right.$, ω_{6}] and ω_{i} is expressed as a linear combination of the α_{i}, it suffices to determine $B j^{*}\left(\alpha_{i}\right), 1 \leqq i \leqq 6$. But as in [14, p. 130] they are given by

$$
\begin{aligned}
& B j^{*}\left(\alpha_{1}\right)=\alpha_{4}^{\prime}, B j^{*}\left(\alpha_{2}\right)=\alpha_{1}^{\prime}, B j^{*}\left(\alpha_{3}\right)=\alpha_{3}^{\prime}, \\
& B j^{*}\left(\alpha_{4}\right)=\alpha_{2}^{\prime}, B j^{*}\left(\alpha_{5}\right)=\alpha_{3}^{\prime}, B j^{*}\left(\alpha_{6}\right)=\alpha_{4}^{\prime} .
\end{aligned}
$$

From this, (1.8) and (1.9), it follows that

$$
\begin{align*}
& B j^{*}\left(\omega_{1}\right)=\omega_{4}^{\prime}, B j^{*}\left(\omega_{2}\right)=\omega_{1}^{\prime}, B j^{*}\left(\omega_{3}\right)=\omega_{3}^{\prime}, \tag{1.10}\\
& B j^{*}\left(\omega_{4}\right)=\omega_{2}^{\prime}, B j^{*}\left(\omega_{5}\right)=\omega_{3}^{\prime}, B j^{*}\left(\omega_{6}\right)=\omega_{4}^{\prime}
\end{align*}
$$

Consider the automorphism $\theta: E_{6} \rightarrow E_{6}$. There is an automorphism $T \rightarrow T$ which makes the diagram

$$
\begin{aligned}
T & \rightarrow T \\
i \downarrow & \\
E_{6} & \xrightarrow{\rightarrow} \stackrel{\downarrow}{ } E_{6}
\end{aligned}
$$

commute. We also denote it by θ. Let us describe the behavior of the induced automorphism $B \theta^{*}: H^{k}(B T ; \boldsymbol{Z}) \rightarrow H^{k}(B T ; \boldsymbol{Z})$. To do so it suffices to determine $B \theta^{*}\left(\alpha_{i}\right), 1 \leqq i \leqq 6$. But as in [14, p. 130] they are given by

$$
\begin{aligned}
& B \theta^{*}\left(\alpha_{1}\right)=\alpha_{6}, B \theta^{*}\left(\alpha_{2}\right)=\alpha_{2}, B \theta^{*}\left(\alpha_{3}\right)=\alpha_{5}, \\
& B \theta^{*}\left(\alpha_{4}\right)=\alpha_{4}, B \theta^{*}\left(\alpha_{5}\right)=\alpha_{3}, B \theta^{*}\left(\alpha_{6}\right)=\alpha_{1} .
\end{aligned}
$$

From this and (1.8), it follows that

$$
\begin{align*}
& B \theta^{*}\left(\omega_{1}\right)=\omega_{6}, B \theta^{*}\left(\omega_{2}\right)=\omega_{2}, B \theta^{*}\left(\omega_{3}\right)=\omega_{5}, \\
& B \theta^{*}\left(\omega_{4}\right)=\omega_{4}, B \theta^{*}\left(\omega_{5}\right)=\omega_{3}, B \theta^{*}\left(\omega_{6}\right)=\omega_{1} \tag{1.11}
\end{align*}
$$

Let $\rho_{1}, \cdots, \rho_{6}$ be the irreducible representations of E_{6} whose highest weights are $\omega_{1}, \cdots, \omega_{6}$ respectively. Then by [9],

$$
\begin{equation*}
R\left(E_{6}\right)=\boldsymbol{Z}\left[\rho_{1}, \rho_{2}, \Lambda^{2} \rho_{1}, \Lambda^{3} \rho_{1}, \Lambda^{2} \rho_{6}, \rho_{6}\right] \tag{1.12}
\end{equation*}
$$

where $\operatorname{dim} \rho_{1}=\operatorname{dim} \rho_{6}=27, \operatorname{dim} \rho_{2}=78$ (in fact, ρ_{2} is the
adjoint representation of E_{6}) and the relation $\Lambda^{3} \rho_{6}=\Lambda^{3} \rho_{1}$ holds.

On the other hand, let $\rho_{1}^{\prime}, \cdots, \rho_{4}^{\prime}$ be the irreducible representations of F_{4} whose
highest weights are $\omega_{1}^{\prime}, \cdots, \omega_{4}^{\prime}$ respectively. Then

$$
\begin{equation*}
R\left(F_{4}\right)=Z\left[\rho_{4}^{\prime}, \Lambda^{2} \rho_{4}^{\prime}, \Lambda^{3} \rho_{4}^{\prime}, \rho_{1}^{\prime}\right] \tag{1.13}
\end{equation*}
$$

where $\operatorname{dim} \rho_{4}^{\prime}=26$ and $\operatorname{dim} \rho_{1}^{\prime}=52$ (in fact, ρ_{1}^{\prime} is the adjoint representation of F_{4}).

Combining Proposition 4 with (1.12) (resp. (1.13)), we have a description of $K^{*}\left(E_{6}\right)\left(\right.$ resp. $K^{*}\left(F_{4}\right)$), which is exhabited in Theorem 1.

Consider now the λ-ring homomorphism $j^{*}: R\left(E_{6}\right) \rightarrow R\left(F_{4}\right)$. Its behavior is given by
(i) $j^{*}\left(\rho_{1}\right)=j^{*}\left(\rho_{6}\right)=\rho_{4}^{\prime}+1$;
(ii) $j^{*}\left(\rho_{2}\right)=\rho_{4}^{\prime}+\rho_{1}^{\prime}$;
(iii) $j^{*}\left(\Lambda^{2} \rho_{1}\right)=j^{*}\left(\Lambda^{2} \rho_{6}\right)=\Lambda^{2} \rho_{4}^{\prime}+\rho_{4}^{\prime}$;
(iv) $j^{*}\left(\Lambda^{3} \rho_{1}\right)=\Lambda^{3} \rho_{4}^{\prime}+\Lambda^{2} \rho_{4}^{\prime}$.

This follows from $[15,(6.7)$ and (6.8)] and (1.6). Consider next the λ-ring automorphism $\theta^{*}: R\left(E_{6}\right) \rightarrow R\left(E_{6}\right)$. Its behavior is given by
(i) $\theta^{*}\left(\Lambda^{k} \rho_{1}\right)=\Lambda^{k} \rho_{6}(k=1,2,3)$;
(ii) $\theta^{*}\left(\rho_{2}\right)=\rho_{2}$;
(iii) $\theta^{*}\left(\Lambda^{k} \rho_{6}\right)=\Lambda^{k} \rho_{1}(k=1,2)$.

This follows from [15, (6.6)] and $\theta^{2}=1$.
In order to describe the K-theory of $E I V$, we need one more notation. Generally, let G be as before and H a closed subgroup of G. When two representations $\rho, \rho^{\prime}: G \rightarrow U(n)$ agree on H, we have a map $f: G / H \rightarrow U(n)$ defined by $f(g H)=\rho(g) \cdot \rho^{\prime}(g)^{-1}$ for $g H \in G / H$. Then the composite $\kappa_{n} \circ f$ gives rise to an element of $[G / H, U]=K^{-1}(G / H)$ which is denoted by $\beta\left(\rho-\rho^{\prime}\right)$. Let $q: G \rightarrow$ G / H be the natural projection. It follows from [10, p. 8] that

$$
\begin{equation*}
q^{*}\left(\beta\left(\rho-\rho^{\prime}\right)\right)=\beta(\rho)-\beta\left(\rho^{\prime}\right) \tag{1.16}
\end{equation*}
$$

By (1.12) and (1.14), two elements $\beta\left(\rho_{1}-\rho_{6}\right), \beta\left(\Lambda^{2} \rho_{1}-\Lambda^{2} \rho_{6}\right)$ of $K^{-1}(E I V)$ can be considered. Then Minami [15, Proposition 2.8] showed

Proposition 5. $K^{*}(E I V)$ has no torsion, and

$$
K^{*}(E I V)=\Lambda_{Z}\left(\beta\left(\rho_{1}-\rho_{6}\right), \beta\left(\Lambda^{2} \rho_{1}-\Lambda^{2} \rho_{6}\right)\right)
$$

2. Computations

The target of this section is to compute a part of $\operatorname{ch}\left(\beta\left(\rho_{1}\right)\right)$, where ρ_{1} : $E_{6} \rightarrow U(27)$ is the irreducible representation whose highest weight is ω_{1}.

We first review the argument of [20, pp. 464-466]. Let ρ be an (indecom-
posable) element of $R(G)$. According to [10, Theorem 2.1], $\beta(\rho)$ is primitive in the Hopf algebra $K^{*}(G)$. Since $c h: K^{*}(G) \rightarrow H^{*}(G ; \boldsymbol{Q})$ is a homomorphism of Hopf algebras, so is $\operatorname{ch}(\beta(\rho))$. Therefore, by the aid of (1.1) (ii), it can be written as a linear combination of the $x_{2 m_{i}-1}$:

$$
\begin{equation*}
\operatorname{ch}(\beta(\rho))=\sum_{i=1}^{l} a(\rho, i) x_{2 m_{i}-1} \quad \text { in } \quad P H^{*}(G ; \boldsymbol{Q}) \tag{2.1}
\end{equation*}
$$

for some $a(\rho, i) \in \boldsymbol{Q}$. By virtue of (1.1) (i), this equality determines $a(\rho, i)$ up to sign.

Let us recall some facts about the rational cohomology of a classifying space $B G$ for G (see [4]). $H^{*}(B G ; \boldsymbol{Q})$ is a polynomial algebra generated by elements of degrees $2 m_{i}, 1 \leqq i \leqq l$. The induced homomorphism $B i^{*}: H^{*}$ $(B G ; \boldsymbol{Q}) \rightarrow H^{*}(B T ; \boldsymbol{Q})$ maps $H^{*}(B G ; \boldsymbol{Q})$ isomorphically onto $H^{*}(B T ; \boldsymbol{Q})^{W(G)}$, the subalgebra of invariants under the action of $W(G)$. Hence

$$
\begin{aligned}
& H^{*}(B G ; \boldsymbol{Q})=\boldsymbol{Q}\left[y_{2 m_{1}}, \cdots, y_{2 m_{1}}\right] \\
& H^{*}(B T ; \boldsymbol{Q})^{W(G)}=\boldsymbol{Q}\left[f_{2 m_{1}}, \cdots, f_{2 m_{1}}\right]
\end{aligned}
$$

where generators $y_{2 m_{i}}$ and $f_{2 m_{i}}$ are chosen to be integral and not divisible by other integral generators. Therefore we may set

$$
\begin{equation*}
B i^{*}\left(y_{2 m_{i}}\right)=c\left(m_{i}\right) f_{2 m_{i}} \quad \text { in } \quad Q H^{2 m_{i}}(B T ; \boldsymbol{Q}) \tag{2.2}
\end{equation*}
$$

for some $c\left(m_{i}\right) \in \boldsymbol{Z}$, where \boldsymbol{Q} denotes the indecomposable module functor.
Let $\sigma: H^{k}(B G ; \boldsymbol{Q}) \rightarrow H^{k-1}(G ; \boldsymbol{Q})$ be the cohomology suspension (see [21, Chapter VIII]). Since it induces a map $Q H^{k}(B G ; \boldsymbol{Q}) \rightarrow P H^{k-1}(G ; \boldsymbol{Q})$, we may set

$$
\begin{equation*}
\sigma\left(y_{2 m_{i}}\right)=b\left(m_{i}\right) x_{2 m_{i}-1} \quad \text { in } \quad P H^{2 m_{i}-1}(G ; \boldsymbol{Q}) \tag{2.3}
\end{equation*}
$$

for some $b\left(m_{i}\right) \in \boldsymbol{Z}$.
Consider the composition

$$
R(G) \xrightarrow{i^{*}} R(T) \xrightarrow{\alpha} K^{*}(B T) \xrightarrow{c h} H^{*}(B T ; \boldsymbol{Q})
$$

where α is the λ-ring homomorphism of [3, §4]. Let $\rho: G \rightarrow U(n)$ be a representation with weights $\mu_{1}, \cdots, \mu_{n} \in H^{2}(B T ; \boldsymbol{Z})$. Then we have

$$
\operatorname{ch} \alpha i^{*}(\rho)=\sum_{j=1}^{n} \exp \left(\mu_{j}\right)=\sum_{j=1}^{n}\left(\sum_{k \geq 0} \mu_{j}^{k} / k!\right)=\sum_{k \geq 0}\left(\sum_{j=1}^{n} \mu_{j}^{k}\right) / k!.
$$

Since the set $\left\{\mu_{1}, \cdots, \mu_{n}\right\}$ is invariant under the action of $W(G), c h \alpha i^{*}(\rho)$ belongs to $H^{*}(B T ; \boldsymbol{Q})^{W(G)}$. So we may write

$$
\begin{equation*}
\operatorname{ch} \alpha i^{*}(\rho)=\sum_{i=1}^{l} f(\rho, i) f_{2 m_{i}} \quad \text { in } \quad Q H^{*}(B T ; \boldsymbol{Q})^{W(G)} \tag{2.4}
\end{equation*}
$$

for some $f(\rho, i) \in \boldsymbol{Q}$.
Now the conclusion of [20, Method I] is
Proposition 6. For $1 \leqq i \leqq l$,

$$
a(\rho, i)=b\left(m_{i}\right) f(\rho, i) / c\left(m_{i}\right)
$$

up to sign.
In what follows we shall compute a part of $\operatorname{ch} \alpha i^{*}\left(\rho_{1}\right)$ explicitly. Although $\left\{\omega_{1}, \cdots, \omega_{6}\right\}$ is a base for $H^{2}(B T ; \boldsymbol{Z})$, we use the base of $[19, \mathrm{p} .266]$ as a matter of convenience:

$$
\begin{align*}
t_{6} & =\omega_{6} \\
t_{5} & =\omega_{5}-\omega_{6} \\
t_{4} & =\omega_{4}-\omega_{5} \\
t_{3} & =\omega_{2}+\omega_{3}-\omega_{4} \tag{2.5}\\
t_{2} & =\omega_{1}+\omega_{2}-\omega_{3} \\
t_{1} & =-\omega_{1}+\omega_{2} \\
x & =\omega_{2} .
\end{align*}
$$

Then we have

$$
\begin{gather*}
H^{*}(B T ; \boldsymbol{Z})=Z\left[t_{1}, \cdots, t_{6}, x\right] /\left(c_{1}-3 x\right) \tag{2.6}\\
\text { where } \quad c_{1}=t_{1}+\cdots+t_{6} .
\end{gather*}
$$

The action of $W\left(E_{6}\right)$ on this base is given by the upper table of [19, p. 267]. Using it, we can determine the $W\left(E_{6}\right)$-orbit of ω_{1} as follows. First we apply R_{i} to $\omega_{1}=x-t_{1}$ and get $x-t_{i}(1 \leqq i \leqq 6)$. Applying R_{2} to $x-t_{6}$, we get $-x+t_{4}+t_{5}$. Applying R_{i} to it, we get $-x+t_{i}+t_{j}(1 \leqq i<j \leqq 6)$. Applying R_{2} to $-x+t_{1}+t_{2}$, we get $-t_{3}$. Finally we apply R_{i} to it and get $-t_{i}(1 \leqq i \leqq 6)$. Let

$$
\Omega=\left\{x-t_{i},-x+t_{i}+t_{j},-t_{i} \mid 1 \leqq i<j \leqq 6\right\} .
$$

Then it is easy to see that Ω is invariant under the action of the R_{i}. Since Ω consists of 27 elements and $\operatorname{dim} \rho_{1}=27, \Omega$ is just the set of weights of ρ_{1} (cf. [16, p. 176]). Therefore, if we put

$$
\boldsymbol{F}_{k}=\sum_{\omega \in \boldsymbol{Q}} \omega^{k} \in H^{2 k}(B T ; \boldsymbol{Z})
$$

for $k \geqq 0$, we have

$$
\begin{equation*}
\operatorname{ch} \alpha i^{*}\left(\rho_{1}\right)=\sum_{k \geq 0} F_{k} \mid k!. \tag{2.7}
\end{equation*}
$$

Let us compute F_{k}. For $i \geqq 1$ let $c_{i}=\sigma_{i}\left(t_{1}, \cdots, t_{6}\right)$ be the i-th elementary sym-
metric polynomial in t_{1}, \cdots, t_{6}, where $c_{i}=0$ if $i>6$. For $n \geqq 0$ let $s_{n}=t_{1}^{n}+\cdots+t_{6}^{n}$, where $s_{0}=6$. Then the Newton formulas express s_{n} in terms of the c_{i} :

$$
\begin{equation*}
s_{n}=\sum_{i=1}^{n-1}(-1)^{i-1} s_{n-i} c_{i}+(-1)^{n-1} n c_{n} \tag{2.8}
\end{equation*}
$$

(cf. [19, (5.8)] in which there is a misprint). In particular, $s_{1}=c_{1}=3 x$ by (2.6). For $k \geqq 0$ let F_{k}^{\prime} be the polynomial of degree $2 k$ in t_{1}, \cdots, t_{6} such that

$$
\sum_{i<j} \exp \left(t_{i}+t_{j}\right)=\sum_{k \geq 0} F_{k}^{\prime} \mid k!
$$

where we assign 2 for the degree of t_{i}. Since

$$
\sum_{i=1}^{6} \exp \left(t_{i}\right)=\sum_{k \geq 0} s_{k} \mid k!
$$

we have

$$
\begin{aligned}
\sum_{i<j} \exp \left(t_{i}+t_{j}\right) & =\frac{1}{2}\left\{\left(\sum_{i=1}^{6} \exp \left(t_{i}\right)\right)^{2}-\sum_{i=1}^{6} \exp \left(2 t_{i}\right)\right\} \\
& =\frac{1}{2}\left(\sum_{m \geq 0} s_{m} / m!\right)\left(\sum_{n \geq 0} s_{n} / n!\right)-\frac{1}{2} \sum_{k \geq 0} 2^{k} s_{k} / k! \\
& =\frac{1}{2} \sum_{k \geq 0} \sum_{m+n=k} s_{m} s_{n} / m!n!-\sum_{k \geq 0} 2^{k-1} s_{k} / k!
\end{aligned}
$$

Hence

$$
\begin{equation*}
F_{k}^{\prime}=\frac{1}{2} \sum_{m+n=k}\binom{k}{m} s_{m} s_{n}-2^{k-1} s_{k} \tag{2.9}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
\operatorname{ch} \alpha i^{*}\left(\rho_{1}\right)= & \sum_{i=1}^{6} \exp \left(x-t_{i}\right)+\sum_{i<j} \exp \left(-x+t_{i}+t_{j}\right)+\sum_{i=1}^{6} \exp \left(-t_{i}\right) \\
= & \exp (x) \sum_{i=1}^{6} \exp \left(-t_{i}\right)+\exp (-x) \sum_{i>j} \exp \left(t_{i}+t_{j}\right)+\sum_{i=1}^{6} \exp \left(-t_{i}\right) \\
= & \left(\sum_{n \geq 0} x^{n} / n!\right)\left(\sum_{m \geq 0}(-1)^{m} s_{m} / m!\right)+\left(\sum_{n \geq 0}(-1)^{n} x^{n} / n!\right)\left(\sum_{m \geq 0} F_{m}^{\prime} / m!\right) \\
& +\sum_{k \geq 0}(-1)^{k} s_{k} / k! \\
= & \sum_{k \geq 0} \sum_{m+n=k}(-1)^{m} s_{m} x^{n} / m!n!+\sum_{k \geq 0} \sum_{m+n=k}(-1)^{n} F_{m}^{\prime} x^{n} / m!n! \\
& +\sum_{k \geq 0}(-1)^{k} s_{k} / k!.
\end{aligned}
$$

Therefore

$$
F_{k}=\sum_{m=0}^{k}\binom{k}{m}\left((-1)^{m} s_{m}+(-1)^{k-m} F_{m}^{\prime}\right) x^{k-m}+(-1)^{k} s_{k}
$$

Combining this, (2.8) and (2.9), one can compute F_{k}, and our final results are

$$
\begin{align*}
& F_{0}=27, F_{1}=0, F_{2}=-2^{2} \cdot 3\left(c_{2}-4 x^{2}\right), F_{3}=0, F_{4}=2^{2} \cdot 3\left(c_{2}-4 x^{2}\right)^{2} \tag{2.10}\\
& F_{5}=-2^{2} \cdot 3 \cdot 5\left(c_{5}-c_{4} x+c_{3} x^{2}-c_{2} x^{3}+2 x^{5}\right) \text { and so on. }
\end{align*}
$$

Remark. Watching [19, pp. 271-275], we find that the set S of [19, p. 272] is equal to $\{2 \omega \mid \omega \in \Omega\}$ and that for $n \geqq 0$ the element

$$
I_{n}=\sum_{y \in S} y^{n}
$$

is expressed as a polynomial in the c_{i} and x modulo $\left(I_{m} \mid m<n\right)$. In the above paragraph we have mimicked the computation of $I_{n}\left(=2^{n} F_{n}\right)$ developed there.

It follows from (2.6), (2.10) and [19, Lemma 5.2] that the elements

$$
\begin{aligned}
& c_{2}-4 x^{2} \in H^{4}(B T ; Z), \\
& c_{5}-c_{4} x+c_{3} x^{2}-c_{2} x^{3}+2 x^{5} \in H^{10}(B T ; Z)
\end{aligned}
$$

are indivisible and give the first two generators of the polynomial ring H^{*} $(B T ; \boldsymbol{Q})^{W\left(E_{6}\right)}$. Thus we may take

$$
\begin{aligned}
& f_{4}=-\left(c_{2}-4 x^{2}\right) \\
& f_{10}=-\left(c_{5}-c_{4} x+c_{3} x^{2}-c_{2} x^{3}+2 x^{5}\right)
\end{aligned}
$$

(for details see [20, Remark in p. 466]). Simultaneously we deduce from this, (2.7) and (2.10) that

$$
\begin{align*}
& f\left(\rho_{1}, 1\right)=2^{2} \cdot 3 / 2!=6 \tag{2.11}\\
& f\left(\rho_{1}, 2\right)=2^{2} \cdot 3 \cdot 5 / 5!=1 / 2
\end{align*}
$$

By (1.2) we note that (2.3) and (2.2) give

$$
\begin{aligned}
& \sigma\left(y_{4}\right)=b(2) x_{3}, \sigma\left(y_{10}\right)=b(5) x_{9}, \cdots \\
& B i^{*}\left(y_{4}\right)=c(2) f_{4}, B i^{*}\left(y_{10}\right)=c(5) f_{10}, \cdots
\end{aligned}
$$

where $b(2), b(5), \cdots, c(2), c(5), \cdots \in \boldsymbol{Z}$.
Proposition 7. We have, up to sign,
(i) $b(2)=1$ and $b(5)=1$;
(ii) $\quad c(2)=1 \quad$ and $\quad c(5)=1$.

Proof. Our argument will be based on the fact that $H^{*}\left(E_{6} ; \boldsymbol{Z}\right)$ has p torsion if and only if $p=2,3$.

We first show (i). Consider the Leray-Serre spectral sequence $\left\{E_{r}(Z)\right\}$ for the integral cohomology of a universal E_{6}-bundle $E_{6} \rightarrow E E_{6} \rightarrow B E_{6}$. To investigate it, we use the Leray-Serre spectral sequence $\left\{E_{r}(\boldsymbol{Z} /(p))\right\}$ for the $\bmod p$
cohomology of the same bundle, where p runs over all primes. As seen in [12] and [13], for degrees $\leqq 9$

$$
H^{*}\left(E_{6} ; \boldsymbol{Z} /(p)\right)= \begin{cases}\boldsymbol{Z} /(2)\left\{1, \bar{x}_{3}, \bar{x}_{5}, \bar{x}_{3}^{2}, \bar{x}_{3} \bar{x}_{5}, \bar{x}_{3}^{3}, x_{9}\right\} & \text { if } p=2 \\ \boldsymbol{Z} /(3)\left\{1, \bar{x}_{3}, \bar{x}_{7}, \bar{x}_{8}, \bar{x}_{9}\right\} & \text { if } p=3 \\ \boldsymbol{Z} /(p)\left\{1, \bar{x}_{3}, \bar{x}_{9}\right\} & \text { if } p \geqq 5,\end{cases}
$$

and for degrees $\leqq 10$

$$
H^{*}\left(B E_{6} ; \boldsymbol{Z} /(p)\right)= \begin{cases}\boldsymbol{Z} /(2)\left\{1, \bar{y}_{4}, \bar{y}_{6}, \bar{y}_{7}, \bar{y}_{4}^{2}, \bar{y}_{4} \bar{y}_{6}, \bar{y}_{10}\right\} & \text { if } p=2 \\ \boldsymbol{Z} /(3)\left\{1, \bar{y}_{4}, \bar{y}_{4}^{2}, \bar{y}_{8}, \bar{y}_{9}, \bar{y}_{10\}}\right. & \text { if } p=3 \\ \boldsymbol{Z} /(p)\left\{1, \bar{y}_{4}, \bar{y}_{4}^{2}, \bar{y}_{10}\right\} & \text { if } p \geqq 5\end{cases}
$$

where for each prescribed $k \quad \bar{x}_{k} \in H^{k}\left(E_{6} ; \boldsymbol{Z} /(p)\right)$ transgresses to $\bar{y}_{k+1} \in H^{k+1}$ $\left(B E_{6} ; \boldsymbol{Z} /(p)\right)$ in $E_{k+1}(\boldsymbol{Z} /(p))$, and if $\boldsymbol{\beta}_{p}: H^{k}(\quad ; \boldsymbol{Z} /(p)) \rightarrow H^{k+1}(\quad ; \boldsymbol{Z} /(p))$ is the mod p Bockstein operator, then

$$
\begin{array}{llll}
\beta_{2}\left(x_{5}\right)=\bar{x}_{3}^{2} & \text { and } & \beta_{2}\left(\bar{y}_{6}\right)=\bar{y}_{7} \text { for } & p=2 ; \tag{2.12}\\
\beta_{3}\left(\bar{x}_{7}\right)=\bar{x}_{8} & \text { and } & \beta_{3}\left(\bar{y}_{8}\right)=\bar{y}_{9} & \text { for }
\end{array} p=3 .
$$

Therefore, for $k=3,9$ the $\bmod p$ reduction homomorphism $H^{k}(; \boldsymbol{Z}) \rightarrow H^{k}$ ($; \boldsymbol{Z} /(p))$ sends $x_{k}\left(\right.$ resp. $\left.y_{k+1}\right)$ to $\bar{x}_{k}\left(\right.$ resp. $\left.\bar{y}_{k+1}\right)$ for every prime p. Thus we see that for $k=3,9 x_{k}$ transgresses to y_{k+1} in $E_{k+1}(\boldsymbol{Z})$. Since the cohomology suspension and cohomology transgression are inverse, it follows that $\sigma\left(y_{k+1}\right)=x_{k}$ for $k=3,9$. This proves (i).

We next show (ii). Consider the Leray-Serre spectral sequence $\left\{E_{r}\right\}$ for the integral cohomology of the fibration

$$
E_{6} / T \rightarrow B T \xrightarrow{B i} B E_{6} .
$$

Then $E_{2}^{s . t} \cong H^{s}\left(B E_{6} ; H^{t}\left(E_{6} / T ; \boldsymbol{Z}\right)\right)$. For all $t \geqq 0 H^{t}\left(E_{6} / T ; \boldsymbol{Z}\right)$ is a free abelian group whose rank is known (see [19]), while it follows from (2.12) that for $0 \leqq s \leqq 10$

s	$0,1,2,3,4,5,6,7, \quad 8, \quad 9, \quad 10$
$H^{s}\left(B E_{6} ; \boldsymbol{Z}\right)$	$\boldsymbol{Z}, 0,0,0, \boldsymbol{Z}, 0,0, \boldsymbol{Z} /(2), \boldsymbol{Z}, \boldsymbol{Z} /(3), \boldsymbol{Z}$.

Therefore, it is easy to check that if $k=4,10 E_{2^{s, k-s}}$ has no torsion for all s and hence so does $E_{\infty}^{s, k-s}$. By the interpretation of $B i^{*}: H^{k}\left(B E_{6} ; \boldsymbol{Z}\right) \rightarrow H^{k}(B T ; \boldsymbol{Z})$ as an edge homomorphism in $\left\{E_{r}\right\}$, this implies (ii).

Now apply Proposition 6 with $\rho=\rho_{1}$. Then by (2.11) and Proposition 7 we have

Lemma 8. $a\left(\rho_{1}, 1\right)=6$ and $a\left(\rho_{1}, 2\right)=1 / 2$.
We conclude this section by verifying (1.5).
Proof of (1.5).
Consider the commutative diagram

$$
\begin{array}{ccc}
H^{k}(B T ; \boldsymbol{Z}) & \xrightarrow{B \theta^{*}} & H^{k}(B T ; \boldsymbol{Z}) \\
B i^{*} \uparrow & & \uparrow B i^{*} \\
H^{k}\left(B E_{6} ; \boldsymbol{Z}\right) & \xrightarrow{B \theta^{*}} & H^{k}\left(B E_{6} ; \boldsymbol{Z}\right) \\
\sigma \downarrow & & \\
H^{k-1}\left(E_{6} ; \boldsymbol{Z}\right) & \xrightarrow{\theta^{*}} & \downarrow \sigma \\
H^{k-1}\left(E_{6} ; \boldsymbol{Z}\right) .
\end{array}
$$

It follows from (1.11) and (2.5) that

$$
B \theta^{*}\left(t_{i}\right)=x-t_{7-i} \quad(1 \leqq i \leqq 6) \text { and } B \theta^{*}(x)=x .
$$

From this we deduce that

$$
\left\{B \theta^{*}(\omega) \mid \omega \in \Omega\right\}=\{-\omega \mid \omega \in \Omega\}
$$

Therefore

$$
\begin{aligned}
& B \theta^{*}\left(F_{k}\right)=B \theta^{*}\left(\sum_{\omega \in \mathbf{\Omega}} \omega^{k}\right)=\sum_{\omega \in \mathbf{Q}} B \theta^{*}(\omega)^{k} \\
& \quad=\sum_{\omega \in \mathbf{Q}}(-\omega)^{k}=(-1)^{k} \sum_{\omega \in \mathbf{Q}} \omega^{k}=(-1)^{k} F_{k} .
\end{aligned}
$$

Suppose for a moment that $k\left(=m_{i}\right)=2,5,6,8,9,12$. Then we observe from [19, Lemma 5.2] and [20, Remark in p. 466] that F_{k} gives rise to $f_{2 k}$. Hence

$$
B \theta^{*}\left(f_{2 k}\right)= \begin{cases}f_{2 k} & \text { for } \quad k=2,6,8,12 \\ -f_{2 k} & \text { for } \quad k=5,9 .\end{cases}
$$

Because of (2.2), (2.3) and the commutativity of the above diagram, this implies (1.5).

3. Proof of the main results

In this section we complete the proof of Theorems 1 and 2. By (1.2), (2.1) and (1.7), if ρ is a representation of E_{6}, then

$$
\begin{align*}
\operatorname{ch}(\beta(\rho))= & a(\rho, 1) x_{3}+a(\rho, 2) x_{9}+a(\rho, 3) x_{11} \\
& +a(\rho, 4) x_{15}+a(\rho, 5) x_{17}+a(\rho, 6) x_{23} \tag{3.1}
\end{align*}
$$

and if ρ^{\prime} is a representation of F_{4}, then

$$
\operatorname{ch}\left(\beta\left(\rho^{\prime}\right)\right)=a\left(\rho^{\prime}, 1\right) x_{3}+a\left(\rho^{\prime}, 2\right) x_{11}+a\left(\rho^{\prime}, 3\right) x_{15}+a\left(\rho^{\prime}, 4\right) x_{23} .
$$

By Propositions 3 and 5, we may write

$$
\begin{align*}
& \operatorname{ch}\left(\beta\left(\rho_{1}-\rho_{6}\right)\right)=a \cdot x_{9}+b \cdot x_{17} \\
& \operatorname{ch}\left(\beta\left(\Lambda^{2} \rho_{1}-\Lambda^{2} \rho_{6}\right)\right)=c \cdot x_{9}+d \cdot x_{17} \tag{3.2}
\end{align*}
$$

for some $a, b, c, d \in \boldsymbol{Q}$.
Proposition 9. $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)= \pm 1$.
Proof. As is well known [11], if g_{26} (resp. u_{26}) is a generator of $\tilde{K}\left(S^{26}\right)$ (resp. $\tilde{H}^{26}\left(S^{26} ; \boldsymbol{Z}\right)$), then $\operatorname{ch}\left(g_{26}\right)= \pm u_{26}$ in $\tilde{H}^{26}\left(S^{26} ; \boldsymbol{Q}\right)$. According to [8], EIV has a cell decomposition $S^{9} \cup e^{17} \cup e^{26}$. Consider the cofibration

$$
S^{9} \cup e^{17} \rightarrow E I V \xrightarrow{f} S^{26}
$$

By Propositions 5 and 3 it is easy to see that $f^{*}\left(g_{26}\right)=\beta\left(\rho_{1}-\rho_{6}\right) \cdot \beta\left(\Lambda^{2} \rho_{1}-\Lambda^{2} \rho_{6}\right)$ in $\tilde{K}(E I V)=\boldsymbol{Z}$ and $f^{*}\left(u_{26}\right)=x_{9} x_{17}$ in $\tilde{H}^{26}(E I V ; \boldsymbol{Z})=\boldsymbol{Z}$. Then it follows from the naturality of $c h$ that

$$
\operatorname{ch}\left(\beta\left(\rho_{1}-\rho_{6}\right) \cdot \beta\left(\Lambda^{2} \rho_{1}-\Lambda^{2} \rho_{6}\right)\right)= \pm x_{9} x_{17}
$$

in $\boldsymbol{H}^{26}(E I V ; Q)$. Since $c h$ is a ring homomorphism, the result follows from this equality, (3.2) and Propositions 3 and 5.

This proposition can be viewed as a variant of [2, Proposition 1] (cf. [17, p. 156] and [20, p. 463]).

Proof of Theorem 2.
Since $c h$ is a multiplicative natural transformation, we have

$$
\begin{aligned}
q^{*} \operatorname{ch}\left(\beta\left(\rho_{1}-\rho_{6}\right)\right) & =\operatorname{ch}\left(q^{*}\left(\beta\left(\rho_{1}-\rho_{6}\right)\right)\right) \\
& =\operatorname{ch}\left(\beta\left(\rho_{1}\right)-\beta\left(\rho_{6}\right)\right) \quad \text { by }(1.16) \\
& =\operatorname{ch}\left(\beta\left(\rho_{1}\right)\right)-\operatorname{ch}\left(\beta\left(\rho_{6}\right)\right)
\end{aligned}
$$

and similarly

$$
q^{*} \operatorname{ch}\left(\beta\left(\Lambda^{2} \rho_{1}-\Lambda^{2} \rho_{6}\right)\right)=\operatorname{ch}\left(\beta\left(\Lambda^{2} \rho_{1}\right)\right)-\operatorname{ch}\left(\beta\left(\Lambda^{2} \rho_{6}\right)\right)
$$

Therefore, it follows from (3.1), (3.2) and (1.4) (ii) that for $i=1,3,4,6 a\left(\rho_{1}, i\right)=$ $a\left(\rho_{6}, i\right)$ and $a\left(\Lambda^{2} \rho_{1}, i\right)=a\left(\Lambda^{2} \rho_{6}, i\right)$, and that

$$
\begin{array}{ll}
a=a\left(\rho_{1}, 2\right)-a\left(\rho_{6}, 2\right), & b=a\left(\rho_{1}, 5\right)-a\left(\rho_{6}, 5\right) \tag{3.3}\\
c=a\left(\Lambda^{2} \rho_{1}, 2\right)-a\left(\Lambda^{2} \rho_{6}, 2\right), & d=a\left(\Lambda^{2} \rho_{1}, 5\right)-a\left(\Lambda^{2} \rho_{6}, 5\right)
\end{array}
$$

Applying [20, Lemma 1] to $\rho_{j}(j=1,6)$, we have

$$
\begin{aligned}
a\left(\Lambda^{2} \rho_{j}, 2\right) & =\varphi(27,2,5) \cdot a\left(\rho_{j}, 2\right), \\
a\left(\Lambda^{2} \rho_{j}, 5\right) & =\varphi(27,2,9) \cdot a\left(\rho_{j}, 5\right)
\end{aligned}
$$

where $\left(27=\operatorname{dim} \rho_{j}, 5=m_{2}, 9=m_{5}\right.$ and $\varphi(n, k, m)$ is the integer defined for three positive integers n, k, m by

$$
\varphi(n, k, m)=\sum_{i=1}^{k}(-1)^{i-1}\binom{n}{k-i} i^{m-1} .
$$

A direct calculation gives $\varphi(27,2,5)=11$ and $\varphi(27,2,9)=-229$. It follows from these and (3.3) that

$$
\begin{equation*}
c=11 a \quad \text { and } \quad d=-229 b \tag{3.4}
\end{equation*}
$$

Substituting these relations in the equality

$$
-1=a d-b c
$$

of Proposition 9, we have

$$
-1=a(-229 b)-b(11 a)=-240 a b
$$

and hence

$$
\begin{equation*}
a b=1 / 240 \tag{3.5}
\end{equation*}
$$

Let us apply j^{*} to (3.1) with $\rho=\rho_{j}(j=1,6)$. Then the left hand side becomes

$$
\begin{aligned}
j^{*} \operatorname{ch}\left(\beta\left(\rho_{j}\right)\right) & =\operatorname{ch}\left(\beta\left(j^{*}\left(\rho_{j}\right)\right)\right)=\operatorname{ch}\left(\beta\left(\rho_{4}^{\prime}+1\right)\right) & & \text { by (1.14) (i) } \\
& =\operatorname{ch}\left(\beta\left(\rho_{4}^{\prime}\right)+\beta(1)\right) & & \text { by (1.7) (i) } \\
& =\operatorname{ch}\left(\beta\left(\rho_{4}^{\prime}\right)\right) & & \text { by (1.7) (iii) }
\end{aligned}
$$

and the right hand side becomes

$$
\begin{aligned}
& j^{*}\left(a\left(\rho_{j}, 1\right) x_{3}+a\left(\rho_{j}, 2\right) x_{9}+a\left(\rho_{j}, 3\right) x_{11}\right. \\
& \left.\quad+a\left(\rho_{j}, 4\right) x_{15}+a\left(\rho_{j}, 5\right) x_{17}+a\left(\rho_{j}, 6\right) x_{23}\right) \\
& \quad=a\left(\rho_{j}, 1\right) x_{3}+a\left(\rho_{j}, 3\right) x_{11}+a\left(\rho_{j}, 4\right) x_{15}+a\left(\rho_{j}, 6\right) x_{23}
\end{aligned}
$$

by (1.4) (i). Here we quote from [20, p. 486] that

$$
\begin{equation*}
\operatorname{ch}\left(\beta\left(\rho_{4}^{\prime}\right)\right)=6 x_{3}+(1 / 20) x_{11}+(1 / 168) x_{15}+(1 / 443520) x_{23} . \tag{3.6}
\end{equation*}
$$

Hence

$$
\begin{align*}
& a\left(\rho_{j}, 1\right)=6, a\left(\rho_{j}, 3\right)=1 / 20, a\left(\rho_{j}, 4\right)=1 / 168 \text { and } \\
& a\left(\rho_{j}, 6\right)=1 / 443520 \text { where } j=1,6 . \tag{3.7}
\end{align*}
$$

On the other hand, let us apply θ^{*} to (3.1) with $\rho=\rho_{1}$. Then the left hand side becomes

$$
\begin{aligned}
\theta^{*} \operatorname{ch}\left(\beta\left(\rho_{1}\right)\right)= & \operatorname{ch}\left(\beta\left(\theta^{*}\left(\rho_{1}\right)\right)\right)=\operatorname{ch}\left(\beta\left(\rho_{6}\right)\right) \text { by }(1.15)(\mathrm{i}) \\
= & a\left(\rho_{6}, 1\right) x_{3}+a\left(\rho_{6}, 2\right) x_{9}+a\left(\rho_{6}, 3\right) x_{11} \\
& +a\left(\rho_{6}, 4\right) x_{15}+a\left(\rho_{6}, 5\right) x_{17}+a\left(\rho_{6}, 6\right) x_{23}
\end{aligned}
$$

by (3.1) with $\rho=\rho_{6}$, and the right hand side becomes

$$
\begin{aligned}
& \theta^{*}\left(a\left(\rho_{1}, 1\right) x_{3}+a\left(\rho_{1}, 2\right) x_{9}+a\left(\rho_{1}, 3\right) x_{11}\right. \\
& \left.\quad+a\left(\rho_{1}, 4\right) x_{15}+a\left(\rho_{1}, 5\right) x_{17}+a\left(\rho_{1}, 6\right) x_{23}\right) \\
& =a\left(\rho_{1}, 1\right) x_{3}-a\left(\rho_{1}, 2\right) x_{9}+a\left(\rho_{1}, 3\right) x_{11} \\
& \quad+a\left(\rho_{1}, 4\right) x_{15}-a\left(\rho_{1}, 5\right) x_{17}+a\left(\rho_{1}, 6\right) x_{23}
\end{aligned}
$$

by (1.5). Hence

$$
\begin{equation*}
a\left(\rho_{6}, 2\right)=-a\left(\rho_{1}, 2\right) \quad \text { and } \quad a\left(\rho_{6}, 5\right)=-a\left(\rho_{1}, 5\right) \tag{3.8}
\end{equation*}
$$

Combining these and (3.3), we have

$$
\begin{equation*}
a=2 \cdot a\left(\rho_{1}, 2\right) \quad \text { and } \quad b=2 \cdot a\left(\rho_{1}, 5\right) \tag{3.9}
\end{equation*}
$$

Since $a\left(\rho_{1}, 2\right)=1 / 2$ by Lemma 8 , it follows that $a=1$. Substituting this in (3.5) gives $b=1 / 240$. Therefore, by (3.4), $c=11$ and $d=-229 / 240$. Thus Theorem 2 is proved.

Proof of Theorem 1.

By (1.12), Proposition 4 and (3.1), it suffices to compute the numbers $a\left(\rho_{1}, i\right)$, $a\left(\rho_{2}, i\right), a\left(\Lambda^{2} \rho_{1}, i\right), a\left(\Lambda^{3} \rho_{1}, i\right), a\left(\Lambda^{2} \rho_{6}, i\right)$ and $a\left(\rho_{6}, i\right)$ for $i=1,2, \cdots, 6$.

Every $a\left(\rho_{1}, i\right)$ has been found in Lemma 8 and (3.7) except $i=5$. But, since $b=1 / 240$, it follows from (3.9) that $a\left(\rho_{1}, 5\right)=1 / 480$. Thus we know all of the $a\left(\rho_{1}, i\right)$.

For $i=1,3,4,6 a\left(\rho_{6}, i\right)$ has been found in (3.7). For $i=2,5 a\left(\rho_{6}, i\right)$ is determined by $a\left(\rho_{1}, i\right)$ through (3.8). Thus we know all of the $a\left(\rho_{6}, i\right)$.

Applying [20, Lemma 1] to $\rho_{j}(j=1,6)$, we have

$$
a\left(\Lambda^{k} \rho_{j}, i\right)=\varphi\left(27, k, m_{i}\right) \cdot a\left(\rho_{j}, i\right)
$$

for all $k \geqq 1$ and $1 \leqq i \leqq 6$. It follows from the definition of $\varphi(n, k, m)$ that $\varphi(27,2,2)=25,(\varphi(27,2,5)=11,) \varphi(27,2,6)=-5, \varphi(27,2,8)=-101,(\varphi(27,2,9)$ $=-229,) \varphi(27,2,12)=-2021, \varphi(27,3,2)=300, \varphi(27,3,5)=0, \varphi(27,3,6)=$ $-270, \varphi(27,3,8)=-918, \varphi(27,3,9)=0$ and $\varphi(27,3,12)=122202$. Thus $a\left(\Lambda^{2} \rho_{1}, i\right), a\left(\Lambda^{2} \rho_{6}, i\right)$ and $a\left(\Lambda^{3} \rho_{1}, i\right)$ can be computed from $a\left(\rho_{1}, i\right)$ and $a\left(\rho_{6}, i\right)$.

It remains to compute $a\left(\rho_{2}, i\right)$. Let us apply j^{*} to (3.1) with $\rho=\rho_{2}$. Then
the left hand side becomes

$$
\begin{array}{rlrl}
j^{*} \operatorname{ch}\left(\beta\left(\rho_{2}\right)\right) & =\operatorname{ch}\left(\beta\left(j^{*}\left(\rho_{2}\right)\right)\right) & \\
& =\operatorname{ch}\left(\beta\left(\rho_{4}^{\prime}+\rho_{1}^{\prime}\right)\right) & & \text { by }(1.14)(\mathrm{ii}) \\
& =\operatorname{ch}\left(\beta\left(\rho_{4}^{\prime}\right)+\beta\left(\rho_{1}^{\prime}\right)\right) & & \text { by }(1.7)(\mathrm{i}) \\
& =\operatorname{ch}\left(\beta\left(\rho_{4}^{\prime}\right)\right)+\operatorname{ch}\left(\beta\left(\rho_{1}^{\prime}\right)\right) &
\end{array}
$$

and the right hand side becomes

$$
a\left(\rho_{2}, 1\right) x_{3}+a\left(\rho_{2}, 3\right) x_{11}+a\left(\rho_{2}, 4\right) x_{15}+a\left(\rho_{2}, 6\right) x_{23}
$$

by (1.4) (i). Here we quote from [20, p. 386] that

$$
\operatorname{ch}\left(\beta\left(\rho_{1}^{\prime}\right)\right)=18 x_{3}-(7 / 20) x_{11}+(17 / 168) x_{15}-(1 / 7040) x_{23} .
$$

Adding this to (3.6) gives

$$
\operatorname{ch}\left(\beta\left(\rho_{4}^{\prime}\right)\right)+\operatorname{ch}\left(\beta\left(\rho_{1}^{\prime}\right)\right)=24 x_{3}-(3 / 10) x_{11}+(3 / 28) x_{15}-(31 / 221760) x_{23} .
$$

Hence $a\left(\rho_{2}, 1\right)=24, a\left(\rho_{2}, 3\right)=-3 / 10, a\left(\rho_{2}, 4\right)=3 / 28$ and $a\left(\rho_{2}, 6\right)=-31 / 221760$. On the other hand, let us apply θ^{*} to (3.1) with $\rho=\rho_{2}$. Then the left hand side becomes

$$
\begin{aligned}
\theta^{*} \operatorname{ch}\left(\beta\left(\rho_{2}\right)\right)= & \operatorname{ch}\left(\beta\left(\theta^{*}\left(\rho_{2}\right)\right)\right)=\operatorname{ch}\left(\beta\left(\rho_{2}\right)\right) \text { by }(1.15)(\mathrm{ii}) \\
= & a\left(\rho_{2}, 1\right) x_{3}+a\left(\rho_{2}, 2\right) x_{9}+a\left(\rho_{2}, 3\right) x_{11} \\
& +a\left(\rho_{2}, 4\right) x_{15}+a\left(\rho_{2}, 5\right) x_{17}+a\left(\rho_{2}, 6\right) x_{23}
\end{aligned}
$$

by (3.1) with $\rho=\rho_{2}$, and the right hand side becomes

$$
\begin{aligned}
& a\left(\rho_{2}, 1\right) x_{3}-a\left(\rho_{2}, 2\right) x_{9}+a\left(\rho_{2}, 3\right) x_{11} \\
& \quad+a\left(\rho_{2}, 4\right) x_{15}-a\left(\rho_{2}, 5\right) x_{17}+a\left(\rho_{2}, 6\right) x_{23}
\end{aligned}
$$

by (1.5). Hence $a\left(\rho_{2}, 2\right)=0$ and $a\left(\rho_{2}, 5\right)=0$. Thus we know all of the $a\left(\rho_{2}, i\right)$, and Theorem 1 is proved.

References

[1] S. Araki: Cohomology modulo 2 of the compact exceptional groups E_{6} and E_{7}, J. Math. Osaka City Univ. 12 (1961), 43-65.
[2] M.F. Atiyah: On the K-theory of compact Lie groups, Topology 4 (1965), 95-99.
[3] M.F. Atiyah and F. Hirzebruch: Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. Vol. III, 7-18, Amer. Math. Soc., 1961.
[4] A. Borel: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955), 397-432.
[5] A. Borel: Topology of Lie.
[6] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958), 458-538.
[7] N. Bourbaki: Groupes et algèbres de Lie, Chapiters 4, 5 et 6, Hermann, 1968.
[8] L. Conlon: An application of the Bott suspension map to the topology of EIV, Pacific J. Math. 19 (1966), 411-428.
[9] E.B. Dynkin: The maximal subgroups of the classical groups, Amer, Math. Soc. Transl. 6 (1957), 245-378.
[10] L. Hodgkin: On the K-theory of Lie groups, Topology 6 (1967), 1-36.
[11] D. Husemoller: Fibre Bundles, 2nd ed., Graduate Texts in Math. 20, Springer, 1975.
[12] A. Kono and M. Mimura: Cohomology mod 2 of the classifying spaces of the compact connected Lie group of type E_{6}, J. Pure Appl. Algebra 6 (1975), 61-81.
[13] A. Kono and M. Mimura: Cohomology mod 3 of the classifying space of the Lie group E_{6}, Math. Scand. 46 (1980), 223-235.
[14] O. Loos: Symmetric Spaces II, Math. Lecture Note Ser., Benjamin, 1969.
[15] H. Minami: K-groups of symmetric spaces I, Osaka J. Math. 12 (1975), 623-634.
[16] H. Minami: K-groups of EIII and FII, Osaka J. Math. 14 (1977), 173-177.
[17] S. Oka; Homotopy of the exceptional Lie group G_{2}, Proc. Edinburgh Math. Soc. 29 (1986), 145-169.
[18] H. Toda and M. Mimura: Topology of Lie Groups, Vol. 2, Kinokuniya, 1979. (Japanese)
[19] H. Toda and T. Watanabe: The integral cohomology rings of F_{4} / T and $E_{6} / T, \mathrm{~J}$. Math Kyoto Univ. 14 (1974), 257-286.
[20] T. Watanabe: Chern characters on compact Lie groups of low rank, Osaka J. Math. 22 (1985), 463-488.
[21] G.W. Whitehead: Elements of Homotopy Theory, Graduate Texts in Math. 61, Springer, 1978.
[22] I. Yokota: Simply connected compact simple Lie group $E_{6(-78)}$ of type E_{6} and its involutive automorphisms, J. Math. Kyoto Univ. 20 (1980), 447-473.

Department of Applied Mathematics Osaka Women's University
Daisen-cho, Sakai
Osaka 590, Japan

