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0. Introduction

It is well known that an indefinite metric Hilbert space is necessary in order
to describe the quantum electromagnetic field (See Strocchi, F. and A.S. Wight-
man [11]). Ito, K.R. [5] investigated two dimensional quantum electrodynamics
in the indefinite metric formulation, where the theory of linear canonical trans-
formation on Boson Fock space with an indefinite metric was used which was
developed in Ito, K.R. [4]. On the other hand, indefinite metric Hilbert space
are not necessary for Dirac field in usual formulation. But in the Euclidean for-
mulation sometimes appears an indefinite metric Hilbert space. Nagamachi, S.
and N. Mugibayashi [7] studied the Euclidean formulation of Dirac field and its
Euclidean covariance. There appeared a Fermion Fock space with an indefinite
metric and canonical transformations which represent Euclidean transformations
of field operators. Fortunately, since these canonical transformations do not
mix creation and annihilation operators and moreover the operators &, ¥ which
determine the canonical transformation commute with the operator 5 giving
the indefinite metric in the form [x, y]=(x, »y), they are implementable by
bounded operators which are isometric with respect to the indefinite metric,
which we call A-unitary operators (Remark 7.10). In generalizing the theory
of Clifford group of Sato, M., T. Miwa and M. Jimbo [17] to an infinite di-
mensional case, Palmer, J. [8] found the condition under which an automorphism
of Clifford algebra is implementable by some operator in the Fock space. Simi-
lar results were obtained by Araki, H. [1]. Their results have an intimate con-
nection with ours but do not concern the implementability by an isometry
operator with respect to the indefinite metric inner product which we call a
A-unitary operator.

In this paper, we extensively use nonstandard analysis and Berezin calculus
to investigate the linear canonical transformations in an infinite dimansional
Fermion Fock space with an indefinite metric, especially their implementability
by a A-unitary operator. In the same time we want to show how the Berezin
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calculus on a finite dimensional superspace can be applied to analysis on an
infinite dimensional Fermion Fock space by using nonstandard analysis. In the
indefinite metric case, even if the standard part of a nonstandard A-unitary
operator exists, it is not necessarily a bounded operator (Example 7.11), and so
we introduce the notion of weakly A-unitary operators (Definition 1.1). Then
we give a sufficient condition for the linear canonical transformation to be weakly
A-unitarily implementable.

This paper is organized as follows. In §1, we define the Fermion Fock
space F(H) over a Hilbert space 4 and introduce an indefinite metric on 4 and
notion of linear canonical transformations with respect to this metric. In §2,
we summarize the differential and integral calculus of functions with finite num-
ber of Grassmann variables which was developed in Berezin, F.A. [2], Rogers,
A. [9] and Kobayashi, Y. and S. Nagamachi [6], and called the Berezin calculus.
In §3, we explain some important notions of nonstandard analysis and investi-
gate the relation between #-finite dimensional Grassmann algebra G(F) and the
Fock space F (H) over 4 (Theorem 3.6) by introducing a new concept ‘almost
standard’, where F is a x-finite dimensional subspace of the nonstandard ex-
tension * 4 of 4 containing H (K CFcC*4(). In §4, we use nonstandard an-
alysis and the Berezin calculus to define for a canonical transformation an oper-
ator U on G(F) which is A-isometric on a certain subspace of G(F) (Proposition
4.2). In §5, we prove that, under some condition on the canonical transfor-
mation, the operator U has the standard part (Proposition 5.6), where the concept
‘almost standard’ introduced in §3 plays a crucial role. In §6, we prove that
the operator U implements the canonical transformation (Proposition 6.2). The
arguments in §§4-6 depend on an orthonormal basis {¢;}, since we must fix an
orthonormal basis to apply Berezin calculus. As a result, the operator U de-
pends on {¢}. In §7, we define a weakly A-unitary operator U, on the Fock
space & (H) which does not depend on {¢;} using the operator U on ZG(F).
Thus we obtain the main theorem (Theorem 7.7), which states that under certain

conditions the linear canonical transformation is weakly A-unitarily implement-
able.

1. Linear Canonical Transformations

In this section we introduce the notion of linear canonical transformations
of annihilation and creation operators on a Fermion Fock space with an indefi-
nite metric, and give a definition of its A-unitary implementability, the investiga-
tion of which is a main thema of this paper.

Let 4 be a Hilbert space over the complex number field C with an inner
product (x, ¥) which is linear in x and conjugate linear in y. We assume that 4{
has an involution *, i.e., a mapping *: H— 4 satisfying x**=ux, (x+y)*=x*
y*, (ax)*=ax*(x, ye 9, a=C), and that the involution satisfies
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(1.1) (#*, 5%) = (%, 7)

A Hilbert space which has an involution satisfying (1.1) is called a Hilbert space
with an involution. We introduce a symmetric bilinear form <x, y> by

<x’y> = (xr y*) .

For a bounded operator 4 on 4 we denote its adjoint operator by A" and define
its complex conjugate operator A and transposed operator A’ by

Ax = (Ax*)*
A'x = A'x.
Then we have
CAx, y> = {Ax*, y*>
{Ax, y> = <x, A" yp

Let G(H)=@Bma0 G(H)n be the Grassmann algebra over 4, where G(H),
=C and the element of F(4(),, is a finite linear combination of g, +-rg, With
g:€Y9. We introduce an inner product on G(4) y by setting

det[(g;, #;)] for g=gn n&mh=hr \InEG(H)n
(12) (6h)=1 &k for g, he Q(H),
0 for g€8G(H)y, heG(H), with m=*n
The completion of G(4) with respect to this inner product is called the Fermion
Fock space over 9 and is denoted by F(H).

We can extend the involution * on 4 so that it becomes a continuous in-
volution on F(4) satisfying

(&in"n&n)* = g r- a8 .

By this involution thus extended (which we also denote by the same symbol *),
F(H) becomes a Hilbert space with an involution, and as in the case of 4
every bounded linear operator on F(4{) has its complex conjugate operator and
transposed operator.

We introduce an indefinite inner product on 4. Let 5 be a real, Hermitian
and unitary operator on 4 i.e., 5 satisfies

n=q'=y9"=n.
We define an indefinite inner product [x, y] on 4 by
[x, ¥] = (7, ¥)

for x,yE9{. The operator » also naturally induces a real, hermitian and
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unitary operator A on F(4() defined by

(1.3) Ag= 8)r A1) AS=2

for g=gin -+ pg» and g€C=G(H),. To be exact, by (1.3) and linearity, A is
defined as an isometric operator on G(4), and A can be extended continuously
to all the elements of F(4). A is also real, Hermitian and unitary, i.e.,

A=AT=A"T=A.

Now we define an indefinite inner product [+, <] on the Fermion Fock space

F(H) by

[&, K] = (Mg, b)

for g, h&F ().
The creation operator a'( f) and the annihilation operator a(f) for f €4 are
defined first on G(H) by

a'(f) g = fr&in"" A&
a(f)g = Z"-JI (—1yKf, &8N AEIN AEn

for g=gin- n&n (8iE ), where the circumflex “’ means that the symbol
beneath it is to be omitted. Then, as these operators are bounded (see Berezin
[2], p- 13), they are extended to the whole space F(4() and satisfy the relation

(a(f) g k) = (8 a'(f*) k)
for g, heF(4). We define the operator a™( f) by

a®(f) = Ad(f) A (= a'(zf))
for fe 4. Then we have

[a(f) & K] = [g, a™(f*) h]
for g, heF(H). In other words, a™(f*) is adjoint to a( f) with respect to the
inner product [-, -].
From the definitions of a(-) and af(+) follow the canonical anti-commuta-
tion relations of these operators:

{a(f), a'(g)y =<f, &>
{a(f), a(g)} = {a'(f), al(g)} =0
for f, g€ 4, where we used the notation {4, B} =AB+BA. For a(-) and a®

(+), the corresponding anti-commutation relations are

(1.4)
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{a(f), a™(} =<fing>
{a(f), a(g)r = {a™(f), a™(g)t =0
for f,g= 9. 'These follow immediately from (1.4).

Let @ and ¥ be bounded operators on 4. Using ® and ¥, we trans-
form a(-) and a‘®(-) into another pair b(+) and 5*)(+) by

b(f) = (@' )+aM(¥'f)
BV(f) = a(Tf)+aD(@Y)

for fe (. 'The transformation (1.6) is called a linear canonical transformation if
it satisfies 1) the relations:

B, 8™} =<f, &>
(), b(g) = B™(f), b¥(g)t =0

for f, g€ 4, and 2) the invertibility condition: By other operators ®; and ¥,,
the pair (), b®(+) is transformed into the original pair a(-), a‘®)(+) through
the formula (1.6). It is easy to see from (1.5) that (1.7) is equivalent to the
relation

(1.5)

(1.6)

1.7)

(L8) Sr® Y =
' Oy +¥pd' =0.

In terms of the matrices

[odatg o' wt
J B [_ J ’ J, - }
v o v ot
the invertibility condition is equivalent to the invertibility of 4, and (1.8) is

written as follows:

(1.9) AEA' =E,

0
E= [ ”J :
7 0
So, the formula (1.6) is a linear canonical transformation if and only if . f
has an inverse and (1.9) holds. From now on we assume that (1.6) is an ar-

bitrary but fixed linear canonical transformation and discuss its properties.
Since the matrix A satisfies (1.9) we have

(1.10) JAE' E = 1 (identity) .
Then, as J has an inverse (1.10) implies A'E A=E, from which we have the

where
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relations:
DD+ ¥ = g

1.11 _
(L11) DY+ d=0.

We introduce the following notions.

DeriniTioN 1.1. A linear transformation U from G(H) to F(H) is called
a weakly A-unitary operator if [Ug, Uhl=[g, k] for any g, heG(4). If, in
addition, U is a bounded operator, we call it a A-unitary operator.

DerFiNiTION 1.2. The canonical transformation (1.6) is said to be (resp.
weakly) A-unitarily implementable if there exists a (resp. weakly) A-unitary
operator U such that

b(f) Uh = Ua(f) h
bW(f) Uh = Uat™(f) h
for fedl, he G(I1).

2. Calculus on functions of Grassmann variables

In this section we summarize the differential and integral calculus of func-
tions with finite number of Grassmann variables which is developed by Berezin,
F.A. [2] and Rogers, A. [9] (see also Kobayashi & Nagamachi [6] for complex
superspaces). Let B, be the Grassmann algebra over the complex number field
C with sufficiently large number L of generators. Then B, is the direct sum
of the even part B, and the odd part B;,. Assume that B; has an involution
- satisfying a€ B, , for any ac B, (a=0,1). Let X,=(B,,)" be an n-dimen-
sional complex odd superspace. The involution ~ is extended to the superspace
X, by 2=(%,, -+, Z,) for 2=(2,, -+, 2,)€X,. Let H*(X,) be the set of smooth
functions f of 2& X, having the form

f(z) 2) =3§02f,-1,...,,-3 S faeadt 5,-!‘“2;3 R0 %j,
with f; ..i.5 g5 EC. For fEH=(X,) above the involution ~ is defined by
f(22) = 35 33 foroosiy s dymais Bt By By Ry

where f;,..;. ;: j,..-j, is the complex conjugate of f; ...; ;. ..in

In order to define integrals we introduce the symbols dz;, dZ; which anti-
commute with each other and anti-commute with variables 2;, Z;. We define
integrals by

Sz,-dz,-=$§,d2,-=1

s ={az =0
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(see Berezin [2] p. 59). Then the following formula is well known:

Sexp {_l (.2) I:Au AIZ:I [z:l+(w ) [zil} {1 d, 3,
2 74y Apllz] T Lz = T

Ay Au} 1 Ay Ap | w
= (det vz — (w, W
(e[Az, 4,) P @D g, [w}}

for we X, where 4;; i, j=1, 2 are nXn matrices satisfying

@2.1)

A,-i == "—A;| i,j == 1, 2

and A’ denotes the transposed matrix of A4.

Since expressions like those in the exponent of (2.1) often appear in this
paper, we explain their meanings here. For example, the exponent in the Lh.s.
of (2.1) should be understood as

—% (2dy 2424y, 2154y 25 Ay E--we - W7) .

Here. wz stands for >3 w; 2;, and for an # X # matrix 4,,=(4;;), we used the nota-
. i=1
tion

n
RA, Z =‘§__‘,lz,- a; %; .

If we consider z and Z as column vectors or # X 1 matrices defined by

[ [

then 24, Z should be written, using the transposed matrix 27 of 2, as 74, z.
Also 2w should be £Tw. But for simplicity we employ the above notation like
24, Z or zw following the convention in Berezin’s book [2]. Notations like
ZA, 2, +++, WZ, ... should be understood similarly.

Let h(2)=%;,-%;,, 8()=%;Z;, for 4,<---<jj, i<---<j;. Then it fol-
lows from the definition of integrals that

(22) [ 12 2@ = 1 ds; d; = 84 11 34,5,

Let F be an n-dimensional Hilbert space over C and G(F) be the Grass-
mann algebra over F. Let {f;, -, f,} be an orthonormal basis of F. Then
G(F) is a 2*-dimensional vector space over C with a basis

1, fh/\"'/\fi;. ’ j1<j2<"‘<jk, k<n.
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We denote by H7(X,) the set of polynomials g(Z)= hE” 23 &iyyiy Biy %, of 2.
=0

k

For each g(2)e H;(X,) of the above form we define the element g G(F) by
&= E) 2 gt'l,'",i),f;'l/\“'/\ﬁk .

Then we have a natural correspondence between G(F') and the subset H7(X,)
of H=(X,) by the mapping g(Z)—g and we have for A(z), g(Z)e H7(X,)

[ 12) ¢®@) e 11 dz, a2 = (1),

since for A=f; \-* fi,» 8=Fisn-" A S5, EG(F), the inner product (4, g) is equal to
the r.h.s. of (2.2) by (1.2).

Moreover, there exists a natural correspondence between operators in G(F)
and operators in H;(X,). 'To see this, we define the left and right differentiation
by

0 s -
@ Xy Xy = ’E (_l)k 1 8!',,,) x‘l...ﬁik...x..x
and
X5 00 X; __.._6 — S (—-1)5—" 8‘. px‘. "'Je,' X
1 s 6361, ks 1 k s

k=1

where each x; stands for one of Grassmann variables Z;, 2;, @;, w; in X,. Then
a;=a(f;) corresponds to the left differentiation 8/9Z; and al=a'(f;) to the multi-
plication by Z; on the left i.e., (q; k) (2)=(0/0%;) h(Z) and (a} k) (2)=Z; h(Z) for
heg(F).

Let A be an operator in G(F) which corresponds to an operator in Hy(X,)
defined Ly the kernel A(Z, w), i.e.,

(4f) @) = | 4@, ) f(w) e 1T dw, dm,

for feG(F). In this case we say A corresponds to A(Z, w) and write A<
A(Z, w). Every linear operator 4 in G(F) has its kernel A(Z, w).

It is well known that there exists the following correspondence between
operators and their kernels:

Ao Az, w)
a; 4o i_ A(Z, w)
0z;

J

(2.3) Aa; & —AZ, w) w;
Adl > — Az, w) -2
ow

i
at A z; AEZ,w),
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(see Berezin [2]) and from these we have
AN & A(Z, nw)
AA & A(9Z, w)
(2.4) a® 4 ? njx 2 A(Z, w)

5 ()
(A) by
Aa® & % Az, w) nj, 0w,

where nw=/[y] w, 2=[7] Z and [y] is the nXn matrix whose (j, k) entry 5=

<fj’ 7]flz>-

3. Nonstandard Analysis

One of the main tools in this paper is nonstandard analysis. We use the
notations and conventions in the book of Davis [3]. In this section we introduce
a *-finite dimensional Grassmann algebra G(F) (C*%(4)) and give a condition
for an element g of G(F) to be near standard by using a new concept ‘almost
standard’.

In the nonstandard universe, there exists a *-finite dimensional subspace E
of the nonstandard extension *4{ of . satisfying

JcEcC*9(

(see Davis [3], p. 150). The nonstandard extension *s of 5 is a mapping from
*9( to *9{. In such a case it is usual in nonstandard analysis to denote the
mapping *5 simply by ». Similarly the nounstandard extension of the involu-
tion # is laso denoted simply by *. Such a convention will be used throughout
this paper without permission. Let

F = E+E*4q(E+E¥).

Then F is a %-finite dimensional subspace of *4 invaiiant under » and the
involution *. Hereafter n denotes the dimension of F. Let ¢;,7&N be a com-
plete real orthonormal system of 4{. Here by the word real we mean

(3.1) e¥=e.

Then e; is automatically defined for  €*N in the nonstandard universe and the
system ¢;&*4, i*N is also a complete real orthonormal system in the non-
standard sense (i.e., *-real orthonormal system). Since the set {{E*N|¢;eF} is
internal by the Internality Theorem (see Davis [3] p. 39) and contains N, theie
exists an /&*N\N such that ¢, F for i<l. We add an (internal) sequence of
n—1I vectors fi41, **+, fu to €, +++, ¢, so that e, ---, ¢;, fi41, **, f, 1s an internal real
orthonormal basis of F. Then we have

Theorem 3.1. Let ¢;,iN be a real complete orthonormal system of 9l
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satisfying (3.1), then there exists an internal real orthonormal basis f;,i=1, -, n
of F satisfying (3.1) such that for some Ie*N\N, f;=e,(i<]).

Let G(F) be the Grassmann algebra over F. This is an internal subalgebra
of *G(4() and is a 2"-dimensional vector space over *C with a basis

ls fi;/\“'/\fi,, > j1<j2<"°<jk’ k<n.
Note that the relation Q(H)C G(F)C*F(H) holds. Let e HCF(1<i<k<n)
and write
(3.2) h; = :2:1 hiifis Ry =<fph>.
We may write
(3.3) bt = (R 3% Ky gy fin afius
Jpi=

where the coefficients K .. ;, are given by

Kip"'.fk = (k!)_llz_ 2 sgn (ilr ) zk) hhil“.hikik

Il,...,]k=1

and are anti-symmetric under the permutation of j, j, --+, jz. We have from
(1.2)

”
”hl/\"'/\hlt“2 = 2 lKil-"'.iklz .
jl’m'lk:l

Generally, the element g of G(F) can be written as

(34) g=3 (k) S KB funnfi

’1""’110:

with anti-symmetric K{.. ;, €*C, and
6.5) lelr =5 31 1K
=

The following notion almost standard is new and useful to give a condition
that g is near standard.

DerFINITION 3.2. The element g G(F) is said to be almost standard if
there exists a standard sequence B®)(xy, -+, x,), (=0, 1, :-+) of bounded anti-
symmetric k-linear forms on 4 such that

(3.6) K®. i =B®(fi, - fi)
gives the coefficients in the expression (3.4) of g.

Proposition 3.3.  The elements of G(H) are almost standard.
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Proof. We have only to show that each monomial in G(4) is almost
standard. For the monomial belonging to G(4) of the form (3.3) with (3.2)
where each ;€ 4(, we define anti-symmetric k-linear form on 4 by

B(k)(xl) "ty xk) = (k!)_llz 2 Sgn(f” q, - 7') <x1) h[:> <x27 hq>"'<xk) hr> )

where the summation extends over all the permutations p, ¢, -+-,7 of 1,2, ---, k.
Then K; .., =B®(f,, -, f;,) holds. Setting B¥=0 for j==k, we form a se-
quence BY, j=0, 1, ---. 'Then it is obvious that (3.3) is almost standard.

Proposition 3.4. Let g, he G(F) be almost standard. Then g\h is also
almost standard.

Proof. Let B®(xy, -+, x,), CP(x,, -+, x,) be two sequences of anti-symmet-
ric multilinear form which correspond to g and /4 respectively. Let D™)(xy, -+, x,,)
be the anti-symmetrization of the multilinear form

ST (k11172 BBy, -oe, 2) COl@tga, -+, ) -

k+i=m

Then D™)(x,, ---, x,,) is the sequence of anti-symmetric multilinear form cor-
responding to g,.A.

Proposition 3.5. Let A be a bounded operator. Then

&= oxp (3 <Foo AP finf)
is almost standard.

Proof. Let B®)(xy, -, x,,) be the anti-symmetrization of multilinear form

gy Ay yp_yy Ay
Then the sequence of multilinear form
(R1)7H2R1)V2 B@) (5, +++, %y) o
k=0,1, 2, --- corresponds to g.

Theorem 3.6. Let g= G(F) be almost standard. If the norm (3.5) of g
is finite then g is a near standard point in *F(9), that is, there exists an element h

of F(I) with || g—h||=0.

Proof. Write g as in (3.4) and assume that the coeflicients are given by
(3.6). We form a standard sequence g, m=1, 2, --- by

m

i B(k)(eil’ ey eik) eill\.../\ei"
» k—

2w =3 (k)
k=0 i
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Let [ be the infinitely large number which appeared in Theorem 3.1. Since
fi=e; for i<, we have, for meN,

lgall? =33 é 1B®(ey, -, 0) 2
=3 §:| iy, < IlgIP

Since ||g]| is finite by the assumption, it follows from the above inequality that
|lgmll, m=1,2, --- is bounded. Combining this with the equality ||g,, —gm,l*=
1 gy P— 1| ol P(my > m5) we deduce that {g,} is Cauchy sequence in G(4). So
we put h=lim g, &F(H). As ||h—g]||=0, we have only to show ||g,—g||=0.
Adding suitable vectors f,,, -*+ to f;, -+, f, we have a complete orthonormal
system f;, «++, f,, = of *J( in the nonstandard sense. Using the relations

e;— 2 a,-,-f,- and 2 a;; a,-k=8,-k, we obtain
i=1 i=1

o

bz] E IB( (8,1, B eil,)lz

=0 i,
1’

—Z} E By s fi))1?

k=0 i
> 315 IB""(f.-,, = fi) 12 = llgllP=1lgll?,

where the infinite sums are, of course, in the nonstandard sense. The first
infinite sum above is the limit in the nonstandard sense of the nonstandard ex-
tension {||gul|} merny Of {||gmll} men» and it coincides with the usual limit lim

m-yoo
llgxlZ=|1Rl2="||g,]|? where °» denotes the standard part of r&*R. Thus we
have °||g/|l?=11gll?=>1lgll* and so ||g|>=]||g||* holds, and combining this with
llg—&ll*=Ilgll*—Ilgl?, we conclude that || g—g,||=0.

4. Nonstandard A-isometric Operator

The purpose of this and the following sections is to construct an operator
which implements the canonical transformation (1.6). In this section especial-
ly, we define an operator U in G(F) and show that its restriction to a standard
set G{e;} is A-isometric (Proposition 4.2). We extensively use the nonstan-
dard extension of the Berezin calculus. More precisely, by the Transfer Prin-
ciple (see Davis [3] p. 28) we apply the Berezin calculus on the finite dimensional
superspace which is stated in §2 to (internal) functions on *-finite dimensional
superspaces.

Here we introduce the notion of approximating matrices which will be
frequently used in this paper. Let L be an internal linear mapping with its
domain containing F and range in *.4. We define an z Xn matrix [L] by setting
its (z,j) entry [L];;=<{f;, Lf;> and call this the approximating matrix of L.



NONSTANDARD ANALYSIS 591

For a bounded operator 4 on 4, we denote [*4] by [A4], since in our conven-
tion *4 is denoted by 4. From now on P will denote the projection of *.4
onto F. For an internal linear mapping, the approximating matrix [L] is the
matrix representation of the operator PLP restricted to F with respect to the

basis f;, -, f, of F.
Now, for the operators ¥ and ® we define a kernel U(Z, w) by

o) [0 (7,

*1) UG w) = C-exp{——;—(é, w) [_[q),_l] et |

Here we assume that & has a bounded inverse ®~!. Let U be the operator
of G(F) defined by the integral kernel U(z, w), i.e.,

(4.2) U @) = | UG w) f@) e 11 dw, dw,

for f € G(F).

DeriniTION 4.1.  We define G{e;} to be the standard Grassmann algebra
generated by {¢; | N}.

The element of & {¢;} is the linear combination of finite products of ¢;’s.

Proposition 4.3. If ||®™! ¥||<1, then for a suitable CE*C in (4.1), we
have

4.3) (h,g) = (AUR, UAg)
for h,geG{e}.

Proof. It suffices to show that
(4-4) (h,8) = (AU'AUh, g),

for h=e; \--* pn€;,, 8=0j 0 £, With & <eoe gy, 1<+ <jy,, k, m, 1, j,EN. Note
that the kernel corresponding to U' is U(w, 2), and put V=AU'AU. Then
using the integral formula (2.1) and the relations:

@ IUHY @'y =0

4.5 _
(*+3) DD 1wy =0,

which follow from (1.8) and (1.11), the kernel of ¥ is calculated as follows:
V (3, ) = g U@, 78) Uy, w) =5 11 du d,

(46) =1 { exp{— (wm)[T] mwn %, m} II du da,
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z
w

X exp {—% (Z, w) [R] [ :\}

= |ClA(det [T] exp{—- (¢0,$) (71" m}

X exp {——% (, w)[R] [éi‘} ,
w
where ¢, =—[D! 1] Z, p,=[nD "] w,

_ —31w, 1 _ —[®1¥y] 1
69 1= T g =T ]

(we will see the existence of [T']™! later) and

g 1w 0
R:r@ } [R]:[[n ] }
0 @ty 0 [@'wiy)

In general, for an internal linear operator

M, M,
M=[ 1 12}
My My,

with domain containing F @F and range in *H@*.H, we define its approximat-
ing matrix [M] by

Mll MIZ
[M] — [[ 11 ]J .
(M) [M]

We introduce the projection operator P:I:(l;g] of *HP* I onto FPF, and

denote the restriction of PMP to F@®F by PMP zor. Then [M] is the matrix
representation of PM P, g, with respect to the internal real orthonormal basis
£,80, -+, £,D0,08 f,, -+, 0B f, of FPF.

Let M, N be two operators with domain containing F@F and range in
*HD* 9. Then we have the following rules:

1) [M]=[N] if and only if PMP=PNP.

2) [M][N]—[MPN].

3) N(F@®F)CF®F implies [M] [N]=[MN].

4) if the domain of M is *HP*H, then PM=MP implies [M] [N]=

[MNT].

These will be used later.

The existence of [T™! in (4.6) is equivalent to that of an inverse of the
operator PTP, ¢, which follows from the following lemma if one takes A=

P@-l‘@:ﬂP““ and BZP'))@_I‘I,PU;-.
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Lemma 4.3. Let A, B be two operators on F with ||A||<<1, ||B||<1. Then,

—‘f Iﬂ on FQF has an inverse.

Proof. The existence of (1—AB)™! and (1—BA)™* follows from the as-
sumption. A left and a right inverses of X are
[(I—BA)"IB —(1—4B)! J
(1—4B)' —(1—B4)™'4

the operator X =|:

and
B(1—AB)' —(1—BA)™!
[ (1—AB)™! —A(l-—BA)'l} '

They coincide and give the inverse of X.

We continue the proof of Proposition 4.2. We have just seen the existence
of an inverse of PTP e, So, we set

Sl == (PTP‘F@F)-I .

Note that [T']™'=[S;]. In order to rewrite the r.h.s. of (4.6) we introduce the
following operators
®1; 0
o[ 0]
0 —n®

A= Q'PS, PO+R.

Then by the rule 2), we have [4]=[Q'] [S,] [Q]+[R]=[Q'] [T]* [Q]+[R] and
hence, from (4.6),

and

48 Vew - (CrEe ) epi-L@u )] )
w

In order to calculate the r.h.s. of (4.4) we define a function G(§, &) by
4.9) G(E, E) = S V(Z, ) et & = ¢ [] dz, dz; dw,; dw; ,
where we introduced new variables £=(§&,, -+, £,)€X,. Since

o 3 i

hE) =5, 3, = O O g,
(z) zt; z!l, 65‘ 6E’ok 4 1E=0

the r.h.s. of (4.4) is

(Vh,g) = S V (2, w) h(w) g(z) e e~ 1 dz; dz; dw, dw,
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p——y 8 see 6 6 e a
0%, 0%, OF; 0F
We calculate the integral (4.9) by using (2.1). Then we obtain

G(Ev E)lE=f=0 .

G(gy E) = IC Iz(det[T])l'ZS exp {___21_ (2’ w, 2, —w) [[A] —0']

c O

S n 8

4
+(0,0,, &) ”z" } 1T dz; dz; dw, dw,
w

= |C[*(det[T])* exp {—% & &) ol4] o [ : }} ,

3
*[1 0
[

_ 9.0 08 . 0 .
(h10)  (Vhg) = po o e g G(E Beateo

.9 98 9 1 3
— |Clde [T ... oL @D AAIo| | uere
Ok, 0, OF;, OF 2 £ '
Since i;, ***, %, 1, ***, J are all in N, only the terms of &; &;, £; €; or §; E; with
i, j €N in the quadratic form in the exponent of the r.h.s. in (4.10) have an effect
on the result of calculation. For the calculation of (4.10) we prepare the follow-
ing lemma.

where

Thus, we have

Lemma 4.4. Let A, B be operators on F such that for all fe 9CF, Af=
Bf. Then

[4];=[Bl; for 1<i<njEN.

Proof. LetjeN. Then f;€4 and hence Af;=Bf;. Thus for ¢ with
1<i<n, [A);;=<f;, Af;>=[Bl;; This completes the proof of the lemma.

We can show that for any f € AP A,

01
(4.11) —cdof = [_1 Ojlf

holds. To see this we put
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. [*‘I" D ——@*17@17]
L 9@ 9@ q¥indy |
By direct computation using the relations (1.8) and (1.11) we can see that
(4.12) ST=1 and TS=1.

Now let f € DI be arbitrary. Then from (4.12) we see that PT PSf=f holds
and we have

(4.13) S, f= (PTPer)f= Sf.

Replacing f in (4.13) with PQf which is also in H @4 and multiplying Q’P on
the left, we have

Q'PS, POf = Q'PSPQf = Q'SOf .
We combine this with the relation Q'SQ:[ (1’ (1)]—R which is obtained by

direct computation. Then we have

_ 01
ar—pspo+ns=| | (7.

Replacing f by of which is also in AP 4 and multiplying —c on the left we
obtain (4.11).

Since o commutes with P, by the rule 4) we see that —[oAo]=—[c] [4] [¢]
=—¢g[A4] o holds. So, by (4.11) and Lemma 4.4, we see that

_% E &) o[4] a[ﬂ = 2 E Eitr(E )

where 7(&, £) is a bilinear form which does not contain terms of ; §;, &; &;, &; §;
with 7, j&N. Then we see, by (4.10), that the r.h.s. of (4.4) is

|CI(det[T]** 5, T1 8,

sids
Let ~=g=1 which represents the vacuum. Then we have
(4.14) (AUL, Ul) = (AU1, UAL) = | C|*(det[T])¥?

As the Lh.s. of (4.14) is real, (det[T])¥* is real and det[7T'] must be positive.
Therefore we cna choose C' €*C such that

|Cl¥(det [T = 1

Since (h, g)=0, f[ 8,,.j» we have (4.4). This completes the proof of Proposi-
tion 4.2. -
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5. Near Standard Operator

The purpose of this section is to prove Proposition 5.6 which says in effect
that when the operator ¥ is Hilbert Schmidt the internal operator U in G(F)
defined in §4 has a ‘standard part’ as an operator in G(H) whose domain is
G{e}. This is the most important part for the application of nonstandard
analysis and Theorem 3.6 plays a crucial role for that purpose. This standard
part gives rise to the operator U, in §7 which is weakly A-unitary and imple-
ments the canonical transformation (1.6). We begin with the following lemmas.

Lemma 5.1. Let A, B be operators on H such that

I14l1<1, ||BlI<1
and P be a projection of 9. Then for x,y Y,
| (x, log (1—PAPBP)y)|

(5.1) 1 ed—y4 AP
< I 1B og (14|l ||BII) |A"Px|| [|BPyl|

Proof. |(x,log (L—PAPBP)y)| = |(x, 3} (—1/k) (PAPBP)"3)|
< g} (L/R) [1AI*= 1| BI*=* || A*Px|| [|BPy]|
= (—1/IIAIl | B]) log (1114l lIBIl) || A"Px|| ||BPy]| .

In the above lemma the projection P is a standard operator of 4, but for
later use of the lemma, here we note that by the transfer principle the lemma
is valid for an internal projection P. In the following lemmas the nonstandard
extension *4 of the operator 4 is also denoted by 4 as usual.

Lemma 5.2. Let A be a Hilbert Schmidt operator on Y and let f,, -+, f,
be the orthonormal basis of F in Theorem 3.1. Then for any positive real number
EE R, there exists RE N such that

(5.2) z Il4flp<e .

Proof. Let {¢;} be the complete orthonormal system of 4 which appeared
in Theorem 3.1. Since 4 is a Hilbert Schmidt operator, there exists k&N
such that

31 l14eifP<e

Since the Hilbert Schmidt norm i [|4e;||* is independent of the choice of the
orthonormal basis, we have (5.2). '~
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Lemma 5.3. Let A, B be Hilbert Schmidt operators on Y. Let f,, ---,f,
be the orthonormal basis of F which appeared in Theorem 3.1. Then for any posi-
tive EE R there exists RE N such that

(5.3) S IBFI<e -

Proof. From the Lemma 5.2, there exists k=N such that

SHAlflP<e and SIBflP<e.

Therefore we have é 1AT£ I IBf|<€.

Proposition 5.4. Let A, B satisfy the conditions of Lemmas 5.1 and 5.3.
Let P be the projection of * 9 onto F. Then we have

(5.4) Tr log (1—AB) == Tr log (1—PAPBP)

Proof. From (5.1) and (5.3), for any positive EER there exists REN
such that

33 |(en log (1—4B) o)) | <e

and
3 1(fis log (1—PAPBP) f;)| <€ .
Since
S (e log (1—4B) ) = 5 (i, log (1—PAPB) ),
we have
Tr log (1—AB)—Tr log (1—PAPBP)| <2¢ .
This shows (5.4).

Corollary 5.5. Let W be a Hilbert Schmidt operator and ||®~! ¥||<1, then
det(T) for (T) of (4.7) is finite and its standard part is det (B~ p®'~* 5) which does
not vanish.

Proof.
e -1 [~ ‘I’]J
det [T] = (—1)" det l:—[@‘l T 1
— det (1—[®! W] [®! ¥]) = exp Tr log (1—[®~* @] [®~ ¥])
= exp Tr log (1—P% PO ¥P).
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By Proposition 5.4, its standard part is

(5.5) exp Tr log (1—3 WP~ ¥)
' = exp Tr log (Pp®'~! 5) = det (B~ D'~ 9),

where we used the relation (1.8). Since ¥ is a Hilbert Schmidt operator, Tr
log (1—&~! ™! W) is finite, so (5.5) does not vanish.

Now, we determine the value of the constant C in (4.1) by
C ="°(det[T])~¥4.
Then we have the following porposition.

Proposition 5.6. Let W be a Hilbert Schmidt operator and ||[®~* ¥||<1.
Let U be the operator defined by (4.1) and (4.2). Then for any he Gle;}, Uh is
a near standard point of *F(H).

Proof. Let A(Z)=2%;---%;,, with REN, and %, -, EN. In view of
Theorem 3.6 we have only to show that Uk is almost standard and has a finite
norm.

We calculate the following integral:

S Uz, w) é® e T] dw, dw,
— Cexp{—(1/2)2[® 4] 3}

. v 1
© e ten[ ]

+H(—[®""] %) [;}} II dw; dw;

= Wy(2) e~oa

where
Wy(2) = C exp{(—1/2) 2[®™ W] 2}
and
$(£,2) = E[@" 7 2H(—1/2) E[y¥DT £ .
Then, since o .2 € \s_o=10; " W;,=h(W), we have
0&;, 0L,
(57) (UR) (8) = -2 @) emsieme

T oE  og,

Since we have chosen C to be the standard part of (det[T])~¥4, it follows
from the Propositions 3.3, 3.4 and 3.5 that Uk which corresponds to the r.h.s.
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of (5.7) is almost standard. In order to estimate the norm of Uk, we calculate
the following integral (5.8). Note that, in view of (5.7), ||Uf||* is obtained by
differentiating the Lh.s. of (5.8) with respect to &;;, £;,(1<j<k) and putting
g=E€=0.

S W,(2) e~bED(T(3) e FED) ¢ TT dz, d7;

= |C|*exp{(—1/2) (E[n ¥ D" E+E[D™ W'y] E)}

(5.8) xfewt=y é)[wjml [‘1"}‘1’77]] [ﬂ

([ E, —[07] E)|: : }} 11 ds, 42,

= |C1? exp{(—1/2) (E[r ¥ D] E+E[DI ¥’ 7] E)}
[det (1+[@™* W] [@' ®-1])]¥2

L e e g [P2R] 1 T
<oty @180710] " g [ el

In (5.8) det(1++[®~! ¥] [W'®'-"]) is finite since W is Hilbert Schmidt and the
existence of

[yPi®t-1] 1 :|‘1
[ —1  [@7¥y]

is assured by the assumption ||®~! ¥||<1 and Lemma 4.3.
We set

A(l) A(Z) [@T-I\If’,}] 0
[Am Aw} =[ 0 [n@b-l]]

+[[¢;_l] [<1>(')-1]} [wiqf—l] @-TMT [@0_ ! [@0-1]} '

1 AD AT E
(5.8) = | C|*{det(1+PD~! WPWIPI1P)} V2 exp =5 &%) [ 4® A(n} ]:g }}

Then,

Now, it can be seen that

o, o, 08, o0&, P 20 [A@ aw]| g e

is a polynomial of 4, 1<j<4, 1<r,s<k. So, if these entries of 4 are
standard complex numbers then it is obvious that the norm [|Uh|[? is finite
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and the proof will be completed.
Consider the two operators defined by

B® B&7  [POM1W 4P 0
- {B‘” B(“)} - [ 0 Paff’cp“P}

POP 0 J[Py¥elP 1 JU[PEFP 0

[ 0 P@"‘P} 1 P@‘I\IfnPJ [ 0 PcI)“lPJ

and

cwH Cc®@7 Ppi-1 Wy 0
“lewew] T 0 4T

n -t 0 ][17‘1”@*‘1 1 '[! 0
0 o't —1 &'vy 0 o
The existence of two inverses in the right hand sides in the above equalities is
assured by ||®@7! ¥||<1 and Lemma 4.3. It is easy to see that these inverses
restricted to HPH are identical. What is more, in calculation of Bf for
fEHDI, P’s in the definition of B act as 1. Thus, for any fe AP I, Bf=Cf
holds, and so, by Lemma 4.4, [B®],;=[C®],; for i,jEN. But [C®];; for

i,j EN are standard complex numbers. On the other hand A¥=[B®],.. So
A® with ¢, j €N are standard complex numbers. This completes the proof.

Propositton 5.7. Let 'V be a Hilbert Schmidt operator and assume that o
and U commute with y. Then the operator U is an isometric operator on G{e;}
with respect to the inner product (-, +).

Proof. Let T be the operator defined by (4.7). Then we have

det [T] = det (1+Py¥'-! &' Py~ ¥P)
= det (14(P®~* ¥P) (PO~ WP))>0,

where we used the relation (4.5). This shows that the existence of an inverse
[T]7! of [T] is proved without assuming [|®™! ¥||<1. U(Z, w) of (4.1) satisfies
the condition

Uz, nw) = U(yz, w) .
Therefore we have, for f€G{e;},
(UAS) () = | UG, w) fm) e 11 dw, dm,

= | UG ) @) e L s am = (aUp) @),
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where we used the change of variables:
” n .
w= 3 [nli; ;s =33 [n); ;.
The relation (4.3) shows that the operator U is isometric on G {¢;}.

6. Intertwining property

In this section we show that the operator U defined in §4 impliments the
linear canonical transformation (1.6) for f=f;, i€N (Proposition 6.2). We
begin with the following lemma.

Lemma 6.1. Let A, B and C be operators on F such that
BI Alf= le
for all f€ 4, then
’g [A]x [B]k.i = [C]ij

forieN, 1<j<n.
Proof. Since f,e4 for ieN,
[Cli; =</ Cf > =LC" fi, f[ip =<B' A" fi, fp =<A4' fi, Bfy>
= YA [ f> < for B> = 2 for 4> <for Bfy> = 3 [l [Blys -
As in §3 we set ¢;=a(f;) and ai™»=a®)(f;) and further we set
b = b(f) = a(PD’ Pf)+a®(PY’ Bfy
B = b(f) = a(PY Pf,)-Lat™(PDt Pf,)
in accordance with (1.6). Since a; corresponds to the left differentiation 9/9z;
and a{®=aX(Py Pf;) is the left multiplication by 3 [];;Z;, we see that &; and
b correspond to =
[®@];; %H‘I’lu [7]4i %
and

[w];; 5—?—"‘ [Pk [2); %;
Zj

where we used the Einstein’s asummation convention. Let U(Z, w) be the ker-
nel of U defined by (4.1). Then, by (2.3) and (2.4) we calculate the kernels
corresponding to the operators b;U and &{» for iEN.
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b, U & {[®];; [2)j1 2—[@);; [®7 0 i —[®);; [@7! ¥nlju 2} U(7, w)
= —w, U, w) = —UE, w)w, & Ug;
VU o {—[¥];; [ ¥l 2—[);; [@7j wi+[D]s; [ 2 U7, w)
(62) = {—[¥]; [® ;1 witZ[® i [7)i} UE w)
= U(z, ) [n];; a% o Ua™ .

J

(6.1)

Here -2 denotes right differentiation and we used Lemma 6.1 and the relation
wj
— PP Uy+ By = 7d'~!
which follows from (1.11). Thus we have the following proposition.

Proposition 6.2. For i€ N, we have

biU . Ua“
BT = Ual® .

Proof. It is obvious from (6.1) and (6.2).

7. Standard Theorems

In this section we define a unitary operator U, on the standard Fock space
F(4H) by using the internal operator U on G(F) defined in §4, and prove the
main theorem (Theorem 7.7). At the end of this section we give two examples.

For he G{e;} ,Uh is, by Proposition 5.6, a near standard point of *<F ().
So we define an operator U,,,: G{e;} —ZF () by

U, h = °(Uh) (the standard part of Uh)

Taking for each {¢;}, an internal real orthonormal basis {f;} through Theorem
3.1 satisfying the condition

(C) For some IE*N\N (I<n), fi=e; for i=1,2, -, ],

we can form Uy, for each complete real orthonormal basis {e;}.

As a special case of Proposition 7.2 which will be stated later, we will see
that, for a fixed {e;}, W (2) e~¢*? is invariant under the change of {f;} satisfy-
ing the condition (C), the operator U, depends only on {¢;} and not on the
choice of {f}. So, the notation Uy, is justified.

As we see in §3, if we fix an internal real orthonormal basis {f;} of F then
there exists a natural correspondence between G(F) and H;(X,). We assume
that the variables {2;} ({£;}) are changed by z,=3; ;; Z}(£;=2; a;; £}) in ac-
cordance with the change of real orthonormal basis f;=3; 4;; f;. Then we have
the following lemma.
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Lemma 7.1. Let A be an operator on F. Then z[A)Z is invariant under
the change of real orthonormal basis of F, that is, let [A):;=<[f}, Af}> then
z[Alz=z'[A) 7.

The lemma is readily verified and we omit the proof.

Proposition 7.2. W(z) e~*¢? of (5.6) is invariant under the change of the
real orthonormal basis of F.

Proof. From Lemma 7.1, Wy(Z) is invariant. Similarly ¢~¢®? is also
invariant.

Lemma 7.3. Let {¢;}, {e!} be two complete real orthonormal bases of 9 and
heGler NGiely. Then

Uph=Uh.
Proof. Let h=f; \+-\ f;,== @5, @3, [ iin* A f7,- Then we have
(Uh) (2") = = a;,,a;,;,(0/0F},)-+(0/0},) Wo(2") e 4" gy
= (0/0&:,)-++(0/0&;,) Wo(Z) e7*€? ¢y = (Uh) (2) »

where we used Proposition 7.2 and the relation 0/0§;,=3; a;; 8/0&; which fol-
lows from the chain rule.

DerFINITION 7.4. Let 2 be any element of G(4). Then there exists a
G{e;} containing A. We define

Uh=Uy, k.
The above lemma assures that the operator U, on G(4) is well defined.
Proposition 7.5. The operator U, of Definition 7.4 satisfies the condition:
(7.1) (Ah, g) = (AU, h, U, g)
for h, g G(H).

Proof. Let h=hy,--- \j, g=g a2 & We can choose the generators {e;}
such that &, ng,(1<p<j, 1<q<k) belong to G{¢;}. Since k, Ag€G{e;}, Pro-
position 4.2 shows that

(k, Ag) = (AUh, Ug) .
Hence (7.1) holds.

Proposition 7.6. The operator U, of Definition 7.4 satisfies the condition
of)Urh=Uya(f)h

(7.2) b(f) Uy h = Uy a™(f) b
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for fedl and he G(H).

Proof. If we choose the basis {¢;} such that f, f, ®'f, y¥'f, Uf, y®f are
finite linear combinations of {e;} and 4 belongs to G{e;}, then the relation

b(f) Uh = Ua(f) h
B f) Uk = Ua™(f) h

follows from Proposition 6.2.

Theorem 7.7. The lLinear canonical transformation (1.6) is weakly A-
unitarily impiementable (Definition 1.2) if ¥ is a Hilbert Schmidt operator and
[l&tw||<1.

Proof. The Theorem follows from the Propositions 7.5 and 7.6.

RemMARK 7.8. The assumption ||®@~* ¥||<1 in Theorem 7.7 is used only
to assure the existence of [7T']™! in Proposition 4.2.

Theorem 7.9. The linear canonical transformation (1.6) is implementable
by a unitary and A-unitary operator (Definition 1.1) if ¥ is a Hilbert Schmidt
operator and y commutes with ® and V.

Proof. By Proposition 5.7, we can define an isometric operator U;, with-
out assuming the condition ||®~! ¥||<<1. In this case, as we mentioned in the
proof of Proposition 5.7, the existence of [T']™! is assured without the assump-
tion ||®~! ¥||<1, and (7.1) and (7.2) follow (see Remark 7.8). The unitarity
of U, follows from the existence of isometric operator V; which implements the
inverse canonical transformation of (1.6) and satisfies U, V;=1.

ReEMARK 7.10. Let ® be a unitary operator and ¥=0. Then (1.6) is a
linear canonical transformation if and only if 5 and @ commute. This special
form of linear canonical transformation appeared in Nagamachi, S. and N.
Mugibayashi [7], and it is unitarily and A-unitarily implementable by Theorem
7.9.

Now, we give examples.

ExampLE 7.11. Let /2 be the Hilbert space of sequences x=(x;, ¥y, ***, %, ***)

of complex numbers with 3. |x,|?<< oo and consider the complete orthonormal
system ¢,=(1, 0, 0, --+), £,=(0, 1, 0, ), .- of 2. Let ¢ and + be the bounded
operators on /? defined by

d: e —> (1-+1/R)V2 ¢, :e,—k™e,.
Let {=P@PE. Define operators 5, ® and ¥ on 4 as follows: for f=(g, k)4,
nf=(8 —h), Pf=(Pg,dh), ¥f=(Yhg).
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It is readily seen that (®, W) defines a canonical transformation, i.e., ®»®'+
Uy W=y, &P’ ¥yd'=0.

Let fy_1=2""%(e;, —e3), fu=2"Y%(ey, &;), k=1,2, ---. Then {f;} is a com-
plete orthonormal system of 4 satisfying

@ fop1 = L+ 1RV frpy, D fr = (14+-1/R)V f,

Y forr = (—1R) fop-rs W for = (1E) fon -
¥ is a Hilbert-Schmidt operator and ||®~! ¥||<1 since eigenvalues of ®™1'¥
are +(1+%*)~Y2. Thus, all the assumptions of Theorem 7.7 are satisfied and

there exists a weakly A-unitary operator U which implements the canonical
transformation (1.6). Let

Toz[,ill( 1+k2

Then from Proposition 5.6, (5.5), (5.6) and (5.7), we have

Ufzil/\ . /\fzu 1 (1+ 2)1/2} fzh/\ . /\fzjk/\\I'o

)]/ exp{— 2 (14K foun for-ak -

This coincides with

b f)-+-b(n f;,) %o

showing the intertwining property. In fact we have

b®(n ) ‘1’ [a“'"(@*nfz,)Jra(‘I”nﬁ,)] ‘I’o

— 12__
(( + - ] ) ](1+ 2)1/2)f2”\ 0= (1+ 2)1/2

The following example shows that the unbounded operator is necessary to
implement a certain canonical transformation.

fZJ/\ [

ExampLr 7.12. Let L be a Hilbert space. Define a Hilbert space J{=
L®L and an operator 5 on 4 such that =1 on LP {0} and »=—1 on {0} PL.
Let ® be an operator on 4 such that

@: (g 1) = (1+0) g+h g+(1—0) ),

then ®'®=y. This shows that the operator ® defines a canonical transforma-
tion:

o(f) = a@'f), bD(f)=a™(@'f).

This canonical transformation is implementable by a weakly A-unitary operator
U, since all the assumptions of Theorem 7.7 are satisfied. In fact, let {f;} be
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an orthonormal basis of 4. Then we have

U.ft']/\."/\.fil, = 77¢T77f.‘1/\‘" A77¢T77.fl'b

by (5.6) and (5.7). 'This shows that U maps &y, \k; to 7Pk, \nDphy for
hjedl. Itis easily seen that

Ua(f)h =b(f) Uk, Ua®™(f)h=>b"(f)Uk,
(Uh, AUR') = (h, AR

for h=hy -+ \Byy B'=h1\+++ \B, L€, U is A-isometric and implements the canoni-
cal transformation. The eigenvalues of »®®'y are 342-2Y2 and 3—2.2Y2,
Let £; be the eigenvectors of 7®d®'y whose eigenvalues are 34-2:2Y2, Then we
have

(Uk, Uk) = det (b, 7@®'yh,))
= (3-42-242)% det ((hy, b)) = (3+2+242)k(h, ).

This shows that U is an unbounded operator. Thus, U is a weakly A-unitary
operator.
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