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0. Introduction

In this article, we will study Kihler submanifolds of complex space forms
by the method of moving frames, which was used originally by E. Cartan in
his researches for submanifolds of homogeneous spaces. In the last twenty
years, the method itself has been reviewed and discussed in fairly rigorous ways
by several authors. In [5], Griffiths pointed out among several problems that
it is possible to prove the rigidity theorem of Calabi by the moving frame method
for holomorphic curves of complex projective spaces. We would like to show
that the method of moving frames works well also for Kihler submanifolds of
complex space forms. We note that H.-S. Tai [12] constructed “Frenet
frames” for complex submanifolds of complex projective spaces and applied
them to solving problems for surfaces in P5C), but our interest lies in a dif-
ferent place. We will study the rigidity and the homogeneity of Kihler sub-
manifolds of complex space forms.

Let S,(N) be the N-dimensional complex space form of holomorphic sec-
tional curvature 4c. Let G,(N) be the group of holomorphic isometries of
S,(N) and g,(N) its Lie algebra. Basically we follow the formulation presented
by Sulanke and Svec [10, 11], which interprets E. Cartan’s method of moving
frames in terms of fibre bundles and Lie algebra valued 1-forms. In 2, we
will introduce the S,-structure (P, ) over a connected complex manifold M
(see Definition 2.1), where P is a principal fiber bundle over M and o is a
g.(N)-valued 1-form on P. This is a kind of G, H-structures in the sense of
[10] with some additional characteristic properties and it gives an interpretation
of the higher order structure equations of a Kihler immersion of a connected
Kihler manifold (2, g) into S, (V).

In 3, we will prove the uniqueness of S,-structures for the K#hler metric

1 This work was supported by Grant-in-Aid for Scientific Research, The Ministry of Educa-
tion, Science and Culture.
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on M (see Theorem 3.1) and give a proof of the rigidity theorem of Calabi from
our stand point of view (see Corollary 3.1). We will show that a Kihler im-
mersion of M into S,(/N) induces an S,-structure over M and conversely if M
1s simply connected, every S,-structure over M is obtained in this way (see
Theorem 3.2).

In 4, we will carry out the reduction of structure group of an S,-structure
in an appropriate way to our case, and define a subbundle RF, associated with
the S,-structure, of the unitary frame bundle over a certain open set of M.
Then our final result is, roughly speaking, as follows: a connected complete
Kihler submanifold (M, g) of S,(IN) is homogeneous if and only if all the coef-
ficients of every component of w restricted to RF with respect to a canonically
chosen co-frame field on RF are constant. In addition, when this is the case,
RF can be regarded as the group of holomorphic isometries of (I, g) imbedded
in the bundle of unitary frames of M in a natural manner (see Theorems 4.1

and 4.2).

1. Preliminaries
In this paper we will use the following ranges of indices:
1<A,B,C<N, 1<i,j,k<n, n,,<r(p),s(p),t(p)<n,,

where {n,, n,, -, n,} is a sequence of integers with 0=n,<n=n,<<---<<n,. Note
that the indices ¢, j, k, (1), s(1), and #(1) will have the same range. For any
repeated indices we will always take the summation over the corresponding
ranges. Differential forms on manifolds are assumed to take their values
in C, the field of complex numbers, unless otherwise stated. For a matrix
(XB)a=1,.q.8=1,.-.m We often denote it by (X}),u or (X2) if the ranges of indices
are obviously understood there. For a Lie group G, its Lie algebra is denoted
by Lie(G) or by the corresponding German lower-case letter. Let zp: P—M
be a principal G-bundle over an m-dimensional manifold M. For any Ecg we
denote by E* the vector field on P induced by the infinitesimal right action of E.
Suppose that P is a G-structure over M, i.e., G is a Lie subgroup of GL(m; R)
and P is a principal G-subbundle of the linear frame bundle L(M) of M, L(M)
={e: R"—>T,M linear isomorphism, x&M}. Then P admits the canonical
form ¢p=(dR)r=1,-..m» Which is an R"-valued 1-form on P defined by ¢ z(X*)=
e Y(mpX*) for X*eT,P, the tangent space to P at eeP. If M is an n-
dimensional complex manifold with complex structure J, we regard ¢ as a C"-
valued form, identifying R* with C" by (¥, ', ---, &", y") > (¥'+/—1 ", -, &"+
v/ =1%"). Then we call it the C"-valued canonical form and denote it by ¢=
()izs, oot D' =0" '/ —1 ¥ (=1, ---,n). Suppose that the complex mani-
fold M carries a hermitian metric g. We denote by U(M, g) the bundle of
unitary frames over M. A frame at x&M is called a unitary frame, if it is a
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complex linear isometry of C" with the standard inner product {2, w)=7% w'
(2, weC") onto T,M with inner product g, and complex structure J,. For a
Lie group G with Lie algebra g, the Maurer-Cartan form @ of G is the g-valued
1-form on G defined by ®(X)=L, (X)(X<T,G) under the usual identifi-
cation of g with the tangent space to G at the identity element e G, where L,
denotes the left multiplication on G by a=G.

Now let S, (V) be the N-dimensional simply connected complex space form
with complex structure J, and Kahler metric g, of constant holomorphic sectional
curvature 4c. As a complex manifold, S,(N) is the N-dimensional complex
projective space, the vector space C¥ of N-tuples of complex numbers
(21, +++, 2Y), or the unit ball D¥= {z=C?: ||2||<<1} according as ¢ is positive,
zero, or negative respectively. Let G,(/N) be the group of isometric and holo-
morphic transformations of S,(N). In the following, we always consider S,(IV)
as the quotient space of the Lie group G,(IN) by an isotropy subgroup H at a
point and denote the projection of G,(N) onto S(N)=G(N)/H by = Let
a.(NV) and b be the Lie algebras of G(IN) and H respectively and

(1’1) gc(N) =h+n
the canonical decomposition of the symmetric pair (g(N), §). If we identify
g.(IV) with the tangent space T,G(N) to G(N) at the identity element e, zg«|,
maps 1 isomorphically onto the tangent space T,S,(/V) at o=H. We fix a linear
isomorphism &: CV—n so that e,=ng+|,06: CV—T,S,(N) becomes a complex
liner isometry of C¥ with the standard inner product onto 7,S,(N). The things
above may be given as follows.
In the case ¢>0,

G,(N)= SUN+1)/C,

U(l)
H = S(U)X UN))/C = (

. U(NJ N SU(N—}—l))/C,

where U(m) is the group of mXm unitary matrices, SU(N--1) the group of
(N+41)X(N+1) unitary matrices of determinant 1, and C its subgroup of
(N41) X (N+1) scalar matrices aly,, with a¥*'=1;

g.(N)=8u(N—+1), the Lie algebra of (N+1)x(N-1) skew hermitian matri-

ces of null trace;

O —
b:‘ {[g A}:aE\/jR’ AEMN(C), tA_!_A:O’ trA+a:0 ;

oo

0 vz
z;(z):[\/7 \/OC z} (zeC™).
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In the case ¢=0,

1
¢y U(N)

g.(V) = {[O Z]: 2ECY, A My(C), 'A+A = 0} ;
2

G,(N):C”-U(N):[ },H= UN);

oo {[p  sirrasa]

o[ heee].

00
&(z) = L 0} (zECV).

In the case ¢<<0,

G, (N)=SU(1, N)/C, where SU(1, N) is the group of (N41)x (N+1) ma-
trices which leave the quadratic form — |2°|24-|2'|?+---4 |2V |% on CV*! in-
variant and C its center;

H=S(U1)x UN))/C;

5
): { [a ;:I aE\/i———_lR, ZECN, tg—{-A: 0, trA—l—(l:O} .
2

g
=
32

Let @ be the Maurer-Cartan form of G,(IV). We denote by @Y and ®"the
H- and n-part of @ with respect to the decomposition (1, 1). They satisfy that
Py(E*)=E, R¥®v=Ad a ! Y, ®"(E*)=0, and R¥ ®"=Ad a ' PY(EE), acH),
where R, denotes the right multiplication on G,(/V) by a. In particular, the §-
valued 1-form ®b defines a connection in the principal H-bundle z;: G,(N)—
S/N). The natural representation p of / on 1 induced by the adjoint represen-
tation of G(IN) on g,/(/N) corresponds to the linear isotropy representation of H
on T,S,(N) under the isomorphism zg|,. If we identify n with C¥ by g, p
maps H isomorphically onto U(N). In the following, using these & and p, we
identify ¥ with 11(N), the Lie algebra of N XN skew hermitian matrices, and n
with C¥:

(1,2) 6.(N) = u(N)+CV .
Here we note that the U(/V)-action Ad on the right hand side of (1, 2) corres-
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ponding to the adjoint action of H on g (N) is given by

Ad a-((X3)4,5=1,.80 (Y*)4=1,n) = (@(X3) a™', a(Y4))
(X$)euN), (Y4Hecr, ac UN)).

Let (@%)4,5=1,..x=px(PY) be the 1u(N)-part and (p*),4-,,.. y=E(D") the CV-
part of @ with respect to the decomposition (1,2). They are actually given by

4 (@235 D (c*0)
(13 ot ={os o
1 pa
(1,4) ¢A _ {\/-]—(:—I D; (C =+ 0)
Df (c=0).

In the following, to avoid using excessive symbols, for any X eg,(NV) we will
always denote by (X%)ap-1,...v and (X4),-,,..y the u(N)- and C¥-part of X
with respect to the decomposition (1,2). So the above @f and @ will be de-
noted by ®3 and @ respectively in the rest of this paper.

Since the tangent bundle 7'S(/V) is associated with the principal bundle
7: G(IN)—S,(N) by the representation p, the 1(N)-valued 1-form (®5)=p4 (D)
defines a hermitian connection in the tangent bundle T'S(N).

Let z.: U(S,(N))—S.(N) be the bundle of unitary frames over S,(N).
Fixing the frame e,=m¢x|y.&, we define ¢: G(N)—>U(S(N)) by c(a)=Lpe,
(ae G(N)), where L, denotes the action of a on U(S,(/N)). Then we have

t(ab) = Ly ¢«(b), ¢(ah) = c(a)-p(h) (a,b=G(N), heH)
and ¢ is a diffeomorphism. We frequently identify G (V) with U(S/(N)) by <.

Lemma 1.1. (i) The CV-valued 1-form (®*) on G.(N) is equal to the
C%-valued canonical form on U(S,(N)) under the identification G (N)=U(S,(N)),
that is,

(1,5)  ®AX) e, = ma(ex(X)) (XET,GN), e = (e, -+, en) = ¢(a)) .

(i) Similarly, the w(N)-valued 1-form (®5) on G(N) is the Levi-Civita con-
nection form on U(SN)).

(ii) The Maurer-Cartan equation d®--[®, ®|=0 for D is equivalent to the
structure equations of S(N),

(1,6) AdPALDEANDE =0,
(1,7) AP+ DENDS = c(PANDE+ 84 PCATS).
Proof. We have
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D4X) e, = e((PHX))a) = Lo €67 @'(X)) = L e (67" V(X))
— Ly 2@ (X)) = Lo wor(Lpn ™ X) = mor(u(X))

showing (i). The equations (1, 6) and (1, 7) can be obtained directly from the
Maurer-Cartan equation by using (1, 3) and (1,4). Then the equation (1, 6)
shows that the hermitain connection (®%) has no torsion and hence it is the
Levi-Civita connection. q.e.d.

The following proposition is well known and plays a basic role in our study.
For the proof, see [5].

Proposition 1.1. Let G be a Lie group with Lie algebra g and @ the Maurer-
Cartan form of G.
(i) Let F and F’ be smooth mappings of a connected smooth manifold P into G.
Then F=a-F' for a fixed a=G if and only if F*®=F'*® on P. Moreover if
it is the case, such an a= G is unique.
(ii) Let P be a simply connected manifold and ¢ a g-valued 1-form on P. In
order that for any e P and a= G there exists a unique smooth mapping F: P—G
such that F(e)=a and F*® =g, it is necessary and sufficient to hold dp-+[p, p]=0.

For later use, we prepare a few lemmas. Let 7 be an n-dimensional com-
plex vector space. A mapping »: VXV —C is called sesqui-linear if 5(u,v) is
complex linear in v and anti-linear in . A C-valued skew symmetric R-bilinear
form A on V is called of type (1, 1), if A(iu, 1w)=A(u,v) (u,vEV). Thereisa
natural bijection . between the set of skew symmetric R-bilinear forms on V of
type (1, 1), A*! 7, and the set of sesqui-linear forms on V, S(V). It is explicitly
given by

AN VSA="T1a,,Z A —h(A) = a, , #QFES(V),

where {2', :--, 2"} is a basis of complex linear forms on V. Then, A is real
valued if and only if 2(A) is hermitian symmetric. A real form A in A™MV
is called positive of rank 7, if the corresponding %#(A) is positive semi-definite of
rank 7. It is equivalent to that (a;;)='BB for an 7 Xn-matrix B of rank 7.
Moreover, such a B is determined up to the left multiplication by a unitary
matrix of order . Now let A, (s, =1, ---, m) be skew symmetric R-bilinear

forms on V such that \/—1A,,=+/—14,;,. The matrix (/—1A,,),, of

R-bilinear forms on V' is said to be positive semi-definite of rank r, if \/—1 A,,
=v/—1 4, (s, t=1, ---, m) and the hermitian form on V' ®;C" defined by

RV =T A 0, 9) E 7t (4, 0E T, & 7EC™)

is positive semi-definite of rank . For a matrix (o), , (r=1, -+, ¢, s=1, ---, m)
of C-valued R-linear forms on V/, its rank is by definition dim¢ Span {(w}(v)2’)
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€C*: veV, zeC"} and denoted by rank (w}). If all the »} are complex linear,
then rank (w?) is equal to the rank of the linear mapping V' ®C"—C"* naturally
defined by (w?).

Lemma 1.2. (i) Suppose that (\/—1 Ag,t)s t=y,...m 15 positive semi-definite
of rank q. Then there exists a matrix (%), (r=1, -+, q, s=1, ---, m) of complex
linear forms on V of rank g such that A, ;==\ o} (s, t=1, ---,m). Moreover, such
a mawrix (w?),, is uniquely determined up to the left multiplication by a unitary
matrix of order q.

(i) Let oi(r=1, -, q,5=1, -, m) be complex linear forms on V. If we
set A, =wi N\t (s,t=1, -+, m), then the matrix (\/—1 A,);, is positive semi-
definite and rank (\/—1 A, ), ;=rank (o}).

Lemma 1.3. (cf. [6].) (i) (Cartan’s lemma) Let o',y (r=1,---,q) be
C-valued R-linear forms on V. Suppose that o, -+, " are linerly independent
over C and " ANw'=0. Then there exist uniquely a, &C such that V' =a, o
and a, ,=a, ..

(i) Let (0f)(r=1, -+, q,s=1, -+, m) be a matrix of C-valued R-linear
forms on V of rank q. Suppose that C-valued R-linear forms p,(r=1, ---,q)on V
satisfy ¥, Nw'.=0 (s=1, ---,m). Then each +r, is linearly dependent to the linear
forms of.

2. The S, structure

Let (M, g) be an n-dimensional connected Kihler manifold with Kihler
metric g. Let f: M—S(N) be a Kihler immersion, which means a holomorphic
isometric immersion of a Kiahler manifold. First we define higher order oscu-
lating bundles of f. We denote by V the natural connection in the induced
bundle f*T'S(N) over M induced by f from the Levi-Civita connection in
TS,(N). Forp=1,2,---, we set

0°(f) = U OXf).
Og(f) = Span {(VXl sz"'vX/_lf*(Xp’))x: XD Tty XPIE_CX)(M), PISP} ’

where 22(M) denotes the set of smooth vector fields on M. For convenience,
we set O%(f)=M x {0}.

If the dimension of O%(f) is constant in x& M, then O?(f) is a complex vector
subbundle? of f*T'S(N) and called the p-th osculaiing bundle of f.

ReMARK 2.1. In general, dim¢ OX(f), considered as a function on M, is
upper semi-continuous, and hence it is constant on a connected open set M’

2 This means that O?(f) is a J-invariant subbundle of f*7'S.(N), where J is the almost complex
structure on f*T.S,(N) induced by f from that on T'S (N).
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of M. Further, because of the analyticity of f, dimgs O%(f) is constant on an
open dense subset of M. However, in the following, we always assume that
dim¢ O%(f) is a constant n, on M for each p.

By definition, the osculating bundles are increasing
O'(f) = fx TMCO(f)C - COHf)c O (f)c -,

so there exists an integer d such that n,_,<m,=n,,,. We call it the degree of
f and denote it by d(f). For p=1, -+, d, we define the p-th normal bundle
v?(f) of f to be the orthogonal complement to O?7}(f) in O?(f) and denote its
C-rank by g, (9,=n,—n,_;). We further define Out (f) to be the orthogonal
complement to O%(f) in f*T'S(N), whose C-rank ¢, is N—n;. Then we have

(2.1) FETS(N) = v} (/)@v(f) D Dv*(/)DOut (f) .

Next, for p=1, -, d, let z,: P,(f)—M be the principal U(g,) X --- X U(g,)-
bundle associated with the vector bundle »'(f)P---Pv?(f):

(2,2)  P,(f) = {(x (€1 *+*s €4,)): {eyipy: Myr1<<r (p")<m,} forms a unitary basis
of uﬁ’(f) forp’ =1, -+, p, x&€M} .

Furthermore, let zyp: OP(f)—M be the principal U(g,)X -+ X U(gy+,)—bundle
over M associated with the decomposition (2,1):

(2.3) OP(f) = {(x, (e}, -, en)): {e,: my_,<r<m,} forms a unitary basis of
v?(f) for p' =1,--,d, and {e,: @ = ny,,, ---, N} forms a unitay basis
of Out,(f), x&€M} .

Before going on, let us further prepare a few terminologies. Let zp: P—>M
be a principal fibre bundle over a complex manifold M with almost complex
structure J. In the following, a C-valued 1-form ¢ on P will be called of ype
(1, 0)%, if it vanishes in the directions of fibres of zp and if, for any e P, ¢, can
be written as @,=+Jr,omp+, Where ¥, is a C-valued linear form on T, M (x=mnp(e))
such that {r,0J=+/—14,. If P is equipped with a conneation, we can define
a linear endomorphism J* of 7,P for any e P such that zp J*(X*)= ] (7 pr X*)
(X*<TP), (J**=—1 on 4,, and J*=0 on CV,, where 4, is the horizontal
subspace of T,P with respect to the connection and €Y/, the vertical one. Then

(2,4) aC-valied 1-form @ on P is of type (1, 0)*, if and only if @o J*=+/"1 ¢.

Now let F denote the natural immersion F((x, (e, -+, ey)))=(e,, *-+, ey) of
OP(f) into U(S(N)). We set @=F*®, where ® denotes the Maurer-Cartan
form of U(S(N))=G.N). Then we have the following

Proposition 2.1. (i) &(E*)=E (E<Lie (U(g))X *-* X U(qu+1));
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(i) Rf6=Ada"s (acU(q)x X U(gar);
(i) do+[®, ] = 0;
(iv) & =0 (n<r<N),
TPy =0 (1<p,p'<d, |p—p'| 22);
(v) the &' are of type (1,0)" and linearly independent over C at every point of
OP(f);
(vi) rank (& P-p)vp,sp-0 = 9p at any point of OP(f) for p =2, -+, d;
(vil) @=0 (r=1,--,m, a=mn,+1,-,N).

Proof. We will show (v). For any X*e&T,0P(f) (e=(x, (e, ***, €x)),
(1 =, en) E Usry (Si(N))), we have, by Lemma 1.1,

(2,5) 34(X¥*) ey = P F3X¥) €4 = s Fy X* = fy mope X* .

Recall that by definition, (e, -+, e,) is a unitary frame of f4 7, M and the other
e, are orthogonal to f, T, M, and it follows from (2, 5) that "=0 (r=n+1, ---, N)
and the &' are linearly independent. At the same time, because f is holomor-
phic, the &' are of type (1, 0)*. The rest would be easily obtained from the de-
finition of OP(f) and the fact that (&3) is just the restriction to OP(f) of the
connection form of the connection in f*T'S,(IV) induced from Levi-Civita’s one
in T'S,(N). q.e.d.

Now we consider the g,(n,;)-part of &, which we denote by @ for a moment.
Here and in the following, the g,(n’)-part of X =g, (V) (n'<IN) means the ele-
ment (X2 gy, nrs (XMa=1,.n7) Of g.(n') defined by the identification g,(n')=
u(n')+C". So @ is by definition (2) pey,ngs (81 wng). It is U(gys,)-invar-
iant, because the U(g,,,)-action on g.(n,) is trivial. And it vanishes in the di-
rections of fibres of the natural projection B: OP(f)— P,(f) by Proposition 2.1
(i), (ii), and by its definition. Hence there exists a unique g,(7,)-valued 1-form e
on P,(f) such that B*o=¢. The pair (P,(f), ) thus obtained is a model of
S,-structures over M of type (n,, -++, ;) we so call, the meaning of which is given
by the following

DeriNITION 2.1. Let M be a connected complex manifold of complex
dimension #. A pair (P, o) is called an S,-structure over M of type (n,, -+, ny)
if it fulfills the following conditions:

(A) (my, -+, m,) is a sequence of increasing integers with n,=n, and if we set
n,=0 and g¢,=n,—n,_,(p=1, ---,d), then P is a principal U(g,)X - X U(q,)-
bundle over M;

(B) o is a g,(n,)-valued 1-form on P such that

(SC,1) w(E*)=E (E€Lie(U(g)X X U(42)) 5

(SC,2) Rfo=Ada'o (aeU(g)) X+ X U(q4)) 5

(SC,3) do+[w, 0] =0;
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(SC,4) o =0 (n<r<my),
C"’(ws(p’) =0 (ISP)PIS‘Z’ [P_P’I 22) >
(SC, 5) the o' are of type (1, 0)* and linearly independent over C at every point
of P;
(SC, 6) rank (0" (1)), p11 .50 = @pi1 fOr p =1, --+, d—1 at every point of P.

The preceding (P,(f), w) will be called the S.-structure induced by Kihler
immersion f and often denoted by (P(f), ).

ExampLE 2.1. Let us consider the natural totally geodesic Kihler imbed-
ding iy ny: SA(N') =S, (N) (N'<N). Let @ and &’ denote the Maurer-Cartan
forms of G(NN) and G,(N’) respectively. In this case, it is not difficult to see
that OP(i(y/ x)) coincides with the connected Lie subgroup G,(N'):-U(N— N')
of G(N) which is the maximal integral manifold through the identity element
of G,(N) of the involutive differential system on G,(N):

26 {@“ =0 (N'<a<N),

P7=0 (N'<a<N,1<r<N’).
Moreover, the S,-structure (P(iy/,x)), @) is just the pair (G, (N'), ®’).

Proposition 2.2. Let f: M—S,(N) be a Kdahler immersion of a connected
Kahler manifold (M, g) into S(IN) and (P,(f), w) the S,-structure of type (n,, -+, n;)
induced by f.

(1) There exist a Kahler immersion f': M—S,(n;) and &G, (N) such that
f=T70l, mef, where i, y) denotes the standard imbedding of S.(n,) into S,(N).
Furthermore there exist smooth mappings F': Py(f)—>G,(n,) and F": OP(f)—
OP(i(,, ) which make the following diagram commutative:

F
OP(f) —> G,(N)
" F//
Py(f) OP(i(, w) " ™ Toum
'
F!
G.(n,)

Y f Vy
M > S(N)

\ S.(n) %

where 1, yy is the inclusion mapping and the vertical arrows denote the obvious

’
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projections.
(it) The above immersion [’ is ful, that is, its image does not lie in any proper
totally geodesic complex submanifold of S,(n;).

Proof. We choose =G, (N) so that o« F(OP(f)) contains the identity ele-
ment e, of G,(N). It follows (¢+F)*®=F*®=3&. By Proposition 2.1, we have
®"=0 and &7=0 for any a=mn;+1, -, N and r=1, .-, m,. 'This means that
o F satisfies the differential system (2, 6), where we must replace N’ with #,.
By the assumption that M is connected, OP(f) is connected. Hence o+ F(OP(f))
is contained in the maximal integral manifold of (2, 6) through e,=G,(IN) which
is nothing but OP(i(,, y)).- In particular, oof has its image in S,(n,) and gives
rise to a holomorphic isometric immersion f” of M into S,(n,), where & is re-
garded as an isometry of S,(N). If we set 7=¢ ! and f'=7of”, then 7 and f’
have the desired properties. The rest of Proposition 2.2. (i) would be now ob-
vious.

Next, we will prove (ii). From the definition of #,, the dimension of a totally
geodesic complex submanifold of S,(n,) containing f(M) is not less than n,.
Hence we have (ii). q.e.d.

Corollary 2.1. The integer n, equals to the minimum dimension of totally
geodesic complex submanifolds of S,N) containing f(M). In particular, f is full
if and only if OP(f)=P(f), in other words, N=n,.

Proof. It is immediate from Proposition 2.2. q.e.d.

Remark 2.2. Corollary 2.1 is known in the case ¢>0 (cf. [13] and it is
still valid without the assumption in Remark 2.1 because of the analyticitiy of f.

For later use, we rewrite (SC, 3) in detail. First we set

D) t(p (2) (€2
(2,7) A sip = dolB+ 0l Aol + iy A wiily
{65583 Ao (p>1),
(PN P+8B o' A®)  (p=1).

Then the equation (SC, 3) is rewritten in component wise as follows:
(2,8) do'+wiNew’ =0;

(2,9) o DAt =0

(2’10) w 8) l)/\wégﬁfl) = Ar(p) NOK

2,11)  doifly ”+w?55¢i§/\wsﬁ” PVt ol VA el =0

(2’12) 7(17'*'2)“?_‘_1)/\(0 @+ ) =0.

REMARK 2.3. In the case where (P, w) is the S,-structure induced by a full
Kihler immersion f, the geometrical meanings of (2, 8)-(2, 12) would be more or
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less obvious, since (w$) is just the restriction to P=OP(f) of the connection
form of the connection in f*T'S(N). 'The equations (2,8) and (2,10) for p=1
correspond to the first and second structure equations of (M, g) respectively.
The (2,10) for p>1 and (2,11) may be regarded as the generalized Gauss-
Coddazi’s and the Ricci-Minardi’s equations. The equations (2,9) and (2,12)
have the following geometrical consequence: Let o be the p-th fundamental
form of f, defined by

a*(X,, -+, X,) = the v*(f)-part of Vy,+-Vx,  fsX, with respect
to the decomposition (2,1) (X, -+, X,€2X(M)) .
Then a? is symmetric in X, ---, X, and satisfies a?(X, -+, JX,, -+, X,)=]o?
(X, -+, X,) (r=1, -+, p). Indeed it follows from (2,9) that
ofP(X*) o (Y*) = o]P(V*) /(X*) (X*, Y*TP).

Since w5® can be expressed by a linear combination of ' by (2,9) and Cartan’s
lemma, Proposition 2.1 (v) implies that it is of type (1,0)". Using (2,12) Propo-
sition 2.1 (vi), and Lemma 1.3 inductively, we see that the other w’?**,, are
also of type (1,0)*. Moreover we have immediately from (2,12) that

w'(P)s(p-—l)(X*) ws(p—l)s(p—z)( Y*) = w'(p)s(p—l)(Y*) ms(p—l)s(p—z)(X*) (X*, Y*e TP) .
On the other hand, the relation between a? and w3 is given by
(X, 5 Xp) = 0Py n(XT) 0° PV 5-n(XF) - 0F P (XF1) 0 (XF) €409

for any X, ---, X,€T,M and X¥, -+, X5 TP such that zp(e)=x and (7p)«
(X¥=X, (r=1, ---,p). Hence we obtain the desired consequence.

REMARK 2.4. As we have seen above, each o ®*Y , is linearly dependent
to ', -+, »" and of type (1,0)*. By Lemma 1.2 (ii), the identity (2,10) together
with (SC, 6) shows that g,,,=rank (4A,¢,,s»)-

3. Basic properties of S -structures

Now let (P, ») be an S,-structure over a connected complex manifold M
of type (ny, ---,n;). We will observe it in more detail. Set P,=P|U(q,4;) X +++ X
U(q) for p=1,---,d. In the case where (P, ) is induced by a Kihler im-
mersion f: M—S,(n;), P, is canonically isomorphic to P,(f) which has been
defined in (2,2). We have the following natural projections between P, P,,
and M:

ﬁpi P—>Pp, ,81)/’1,: Pp’—>Pp (P<P’), Tyt Pp-—>M,

which are all principal fibrations with obvious structure groups.
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Having these fibrations in mind, we will consider the g,(n,)-part of w,
((@)x it snpp (@r=1,m,)- By (SC, 1) and (SC,2), it is invariant under the
right action of U(gy4;)X - X U(g,) and vanishes in the directions of fibres of
B,: P—P,. Hence it comes from a unique g,(n,)-valued 1-form &»® on P,: BF
w®=the g (n,)-part of . It is obvious that for p<<p’,

3,1 By ,*o® = the g (n,)-part of ©®” .

If we denote the (7, )- and the (f)-component of »® on P, by @ and @’
respectively, then we have

i Q¥ i
(3’2) {w_Blg‘)—’

wi = Bf o} .
By definition, the 1-forms @’ and @} on P, have the following properties:

(3,3) the @’ are linearly independent and of type (1,0)* ;
(3:4) @'(E*) =0 (E€u(n));

(3,5) (@H(E*))i jm1,-n = E  (E€u(n)) ;

(3,6) @itei=0;

3,7) R¥ (@)= n = a7 H(@")joy,... (@€ U(n));

(3,8)  R¥@));,jm1,n = Ad a7H(@)); jo1,en (@€ U(m)) ;
(3,9) do'teiAe’ =0.

In fact, these are direct consequences of (SC, 1), (SC, 2), (SC, 5), (3,2) and (2,8).
Using the properties (3,3), (3,4) and (3,7), we can define a hermitian metric
g on M by

(3,10) g = ' Qe+ Qof .

Proposition 3.1. Let P, o', o}, and g be as above. Then g is a Kdhler
metric on M and P, is naturally isomorphic to U(M, g), the bundle of unitary frames
of (M, g). Moreover, under the isomorphism, (@),_, ..., and (®}); ;-; .. , correspond
to the C-valued canonidal form and the Levi-Civita connection form on U (M, g)
respectively.

We will call g the Kdahler metric induced by S,-structure (P, w).
For the proof, we need the following lemma. Let M be an n-dimensional

smooth manifold and ¢, the R"-valued canonical form on the linear frame
bundle L(M).

Lemma 3.1. (i) Let G be a Lie subgroup of GL(n; R) with Lie algebra g
and w: Q—M be a principal G-bundle over an n-dimensional smooth manifold M.
Suppose that Q admits an R"-valued 1-form o on Q such that (a) o(E*)=0 (E €g),
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(b) Rfo=a'w(acG), and (c) the linear mapping o,: T,Q—R" is surjective at
every point e€Q. Then Q can be naturally considered as a G-structure over M,
that is, there exists uniquely a G-subbundle inclusion : Q—L(M) such that :*¢ p=o.

(i) Let n': Q"—=M' be another principal G-bundle over an n-dimensional
manifold M' and o' an R"-valued 1-form on it with the above properties (a), (b),
and (c). Let F: Q— Q' be a principal bundle isomorphism such that F*o'=o.
Then the following diagram commutes

F
Q9 —
le V2
Lon L Lo,
where f denotes the diffeomorphism of M onto M’ induced by F and .’ the canonical
G-bundle inclusion Q'—L(M') as in (7).

Proof. It is clear that the conditions (a) and (c) are equivalent to Ker o=
Ker zy. So, at any point e in Q, we can choose E\(e), -, E,(e) in T,Q such that
o'(E;(e))=38;. Each E,(e) is determined uniquely modulo Ker zy. If we set
e;=mn(E;(€)) (=1, ---, n), then each e; depends only on » and the point e in Q.
As is easily seen, the e; are linearly independent, in other words, (e, -+, ,) is a
frame of T', M at x=m(e). We can choose E;(e) to depend smoothly on e at least
locally, so the mapping ¢: Q—L(M), defined by ¢(e)=(e,, **, €,), is smooth.

We will show that this ¢ is the desired one. First, we prove that ¢(eq)=
t(e)a (e€0Q,acsG). From (b), wi.(a* Ry E(e))=38;. If we set (ef, -, e5)=
¢(ea), it follows

¢ = my(ak Ry Ey(e)) = at wu(Ryr Ex(e)) = at mx(Ei(e)) = e, at .

Thus we have ¢(ea)=c¢(e)a.
Next, to show ¢*¢ p=w, we will prove

(3,12) o'(X) e, = zx(X) (XET,0, (e, -, €,) = ¢(€)) .

First, we write X=X\, E;(e)+-E (A\;€ER, EEKer zy). Then it follows from (a)
that

o'(X)e; = A; a)‘(Ej(e)) e; =N\ ¢, = \; wx(Ei(e)) = (X)) .
Hence we have
(3,13) o(X) = ()7 mx(X) = (¢F¢r) (X) ,

showing *¢ p=0.
The uniqueness of such an ¢ is now clear by (3,13). The statement (ii)
can be verified easily. q.e.d.
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Proof of Proposition 3.1. By (3,4), (3,7), (3,3), and Lemma 3.1 (i), P, can
be considered as a U(n)-structure over M, regarding (@f),, .. , as the C"-valued
canonical form on P,. And (w!) can be considered as a connection form on
the U(n)-bundle P, by (3,5), (3,6), and (3,8). Then the relation (3,9) shows that
the connection has no torsion. Hence the hermitian metric g on M associated
with the U(n)-structure turns out to be Kahlerian. q.e.d.

The following lemma constitutes a crucial step in the proof of Theorem
3.1 which deeply relates to the rigidity of Kihler submanifolds of complex
space forms. :

Lemma 3.2. Let (P, w) and (P', ') be two S -structures of type (n,, ---, n;)
and of type (ni, -+, njs) over connected complex manifolds M and M’ respectively.
For an integer p with p>1, suppose we are given an isomorphism f,: P,—P} of the
principal bundles over M and M' such that ¥ o'®=w®. Then n,,,=n}., and
there exists uniquely an isomorphism f,., of the principal U(q,,,)-bundle P,., over
P, onto P}, over P, which covers f, and such that f,,,*o'®*V = ®*".

Proot. We denote the (7, s)-component and the (z)-component of «»® by
(0®); and (w®) respectively (7, s=1, ---, n,,i=1, ---, 7). In view of (2,7), there
exist uniquely 2-forms A, » on P, such that A, «»=~BFA,p.s» on P.
Similarly, we define the 2-forms A’y s on P} for (P', »’). In fact both the

A, .5 and Al s» can be given in terms of components of »® and o’® in the

same way as in (2,7). Hence from the assumption ffw'®=w®, we have

(3,14) FEAL Gy 0 = Doy e -

From this and Remark 2.4, we must have g,,,=¢;,: and hence n,,,=n}, .

By the way, (o®*V)®*V ., vanishes in the directions of fibres of 8,., ,:
P,;,—P, by (SC,1). So for any e P,,,, there exists uniquely an element of
T¥P,®@C(e=,.,,,(€)), which we denote by & ®*)_ (¢), such that

(3,15) Brirs o™ V(€)= (@@) Dy, ,

By (SC, 6) and Remark 2.4, it is of type (1, 0)". Similarly, for (P’, »’) we can
define 0", (") ETE P,QC (e'= )1, ,(€), ¢’ EP}.1) so that

(3,16) Biuns a5 (e)) = (@ PYE,
Then, using (2,10), (3,15), (3,14), and (3,16), we have
(3,17) B (@A (€) = Ay uipe
(3,18) ST (&) Al (¢) = Alep s

Since Byt Ppry—>P, is a U(gys,)-bundle, we see that the set {w’@*V,, (e):
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eE By41,, '(e)} exhausts the set of (1,0)*-forms " ®*V,(, such that wif; P Awiily?
=Ayp, 1, by Lemma 1.2 (i) and it is in one-to-one correspondence with the
fibre B,.,,7%(e). It is alsov valid for {w"”®*V,,(e"): &' EBp+1,,  (¢')}. Hence
from (3,14), (3,17), and (3,18), there exists uniquely a mapping f,;: Ppr;—> Py
such that

(3,19) P D() = [ (@' Dsp (fp4i(€) (€€ Ppu)

We will show that this f,,,; is the desired one. It is clear by definition of
fo+1 that By, yof i1 =f,08,11, Asis easily seen, f,,; commutes with the right
U(g,+,)-actions on P,,; and P,,,. It remains to us to prove f,, *o'?*V=¢?*)
and the uniqueness of such an f,,,.

First, we will show that

(3,20) Frar¥ (0" @) = (0®™); (1<7,s<n,).
In fact, it follows from (3,1) and the assumption ffw'®=0® that

Frr®(@ D) = frr® Bhar, s (0" P)s = Bpar,s* f3(0'P):
= Bpi1.s (@?); = (0®*P)5.
So in order to verify f,;* o' ®=0®*D, we have only to show f,.*

(“”(Nl))’(pﬂ)s(p) = (“’(ﬁl))'(pﬂ)s(p) and fp+1* (“’luﬂ))'(pﬂ)s(pﬂ) = (@(p“))r(pﬂ)s(pﬂ)-

From(3,15), (3,16), and (3,19) it follows that for any X T, P,,,,

(3,21) (forr*(@ @YD (1) X) = (0" @YD ) (fp416X)
= @' "D ) (fr1(€)) (Bpar,p* for1*X)
= """ ) (fra(e)) (f*Bpir,*X)
= " ,)(€) (Bps1,*X)
= (@)™ (X)),

as desired. The rest is easily obtained by using (2,11), (3,20), (3,21), and
Lemma 1.3 (ii).
The uniqueness of f,,, is now obvious, because such an f,,; must satisfy

(3,19). g.e.d.

We are now in a position to give a few basic results concerning our S,-
structures. Let (P, w) and (P’, »") be S,-structures over connected complex
manifolds M and M’ respectively. We say that a diffeomorphism F: P—P’ is
an isomorphism of (P, w) onto (P’, "), if F is a principal bundle isomorphism
of P onto P’ such that o=F* o'

Theorem 3.1. Let (P, w) be an S,-structure over an n-dimensional con-
nected complex manifold M and (P’, »') an S,-structure over a connected complex
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manifold M'. Let g and g’ denote the Kdhler metrics on M and M’ induced by
those S,-structures respectively.

(i) Let F: P—P' be an isomorphism of (P, ) onto (P’, '). Then the base
mapping f induced by F of M onto M' is a holomorphic isometry.

(ii) Conversely, any holomorphic isometry f of (M, g) onto (M’, g") gives rise
to a unique isomorphism fy of (P, w) onto (P’', »') such that mpofy=forp, where np
and mp: denote the projections P—M and P'—M' respectively. In particular, if
M=M' and g=g’, then (P, w) is isomorphic to (P’, o).

Proof. By Proposition 3.1, P, (resp. P}) can be identified with U(M, g)
(resp. U(M',g")). On the other hand, F in (i) induces an isomorphism F,; of
P, onto P{ which covers the base mapping f of F. By Lemma 3.1 (ii), F, is
now regarded as fyx. In other words, f preserves the U(n)-structures of (M, g)
and (M’, g’). Hence (i) follows.

If f is a holomorphic isometry of (M, g) onto (M’, g), then it induces an
isomorphism f;: P,—P;] corresponding to fy: U(M, g)—U(M’, g’) under the
identification mentioned above. Then, by Lemma 3.2, it follows by induction
that f,) gives rise to a unique isomorphism f;: P—P’ such that f¥ o'=w and

7 profy=fomp. q.e.d.

Corollary 3.1. (The Rigidity Theorem of E. Calabi) Let f and f' be two
holomorphic isometric immersions of a connected Kdhler manifold (M, g) into S,(N).
Suppose that f is full. Then f' is also full and there exists a unique automorphism
7 of S,(N) which transforms f into f'.

Proof. Let (P(f), ») and (P(f"), »') be the S,-structures over M induced
by f and f’ respectively. They are isomorphic to each other by Theorem 3.1
(i) and in particular they are of the same type. By the assumption that f is
full and by Corollary 2.1, we have OP(f)=P(f), and hence OP(f')=P(f’), i.e.,
f' is also full. Moreover, if we denote by F and F’ the immersions of P(f)=
OP(f) and P(f)=OP(f’) into G(N) respectively, we see by Theorem 3.1 (ii)
that there exists uniquely an isomorphism I of P(f) onto P(f’) such that it
covers the identity mapping of M and satisfies o=/*w’. Hence F*®=(F'cI)*
@, where @ denotes the Maurer-Cartan form of G,(N). Then it follows from
Proposition 1.1 that there exists uniquely 7&G,(N) such that 7- F=F'ol, which
implies Tof =f". q.e.d.

RemMaRK 3.1.  Corollary 3.1 is still valid without the assumption in Remark

2.1 owing to the analyticity of f and f.

Theorem 3.2. Let M be a simply connected complex manifold and (P, w)
an S,-structure over M of type (n,, -+, n;). Let g be the Kahler metric on M in-
duced by (P, ).
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(i) For any e, P and u,=G,(n,), there exist uniquely immersions F: P—
G.(ny) and f: M—Sn,) with the properties (a) F(e))=u,, (b) o=F*®, and (c)
noF=for, where =, and = denote the projections G,(n;)—S,(n;) and P—M res-
pectively and © denotes the Maurer-Cartan form of G,(n;).

(i) f: M—S,(n,) is a holomorphic isometric immersion.

(i) (P, w) s isomorphic to the S, -structure induced by f.

Proof. Our S,-structure (P, w) is a G,(n,), U(g,) X -+ X U(gs)-structure in
the sense of [10]. Although (i) seems to be substantially contained in the re-
sults of [10 ] and [11], we will give a detailed proof of it, because the situation
is slightly different from there.

We set U=U(g,) X+ X U(g,). By Satz 3.2 in [11] or Theorem 1.1 in [10],
there exist uniquely immersions F: P—G,(n,;) and f': M—G(n,)/U such that (a)
F(eg)=1y, (b) 0=F*®, and (c) n'oF=f"or, where n’ is the projection G,(n;)—
G,(n;)|U. Define f: M—S,(n,) by f==""of', where z’” denotes the natural pro-
jection G(n;)/U—>S,(n,;). Clearly, z,o F=for.

We will show that f is an immersion. For any X&T,M, we choose
X*eT,P such that =, X*=X. By the identification G, (n;)=U(S,(n;)), we
consider F as a mapping of P into U(S,(n,)), so that we set F(e)=(e, **+, €,,)
(eeP). We will first show :

(3,22) o (X*) e, =fx X .
By (SC, 4) we have o'=F* ® =0 (r=n-+1, -+, n;). This together with (c) and
Lemma 1.1 implies that

' (X*) e; = D(FyX*)e; = PYFX*)ey = w4 Fs Xy = f1X .

We see firstly that f, X is zero if and only if all the »'(X*) vanish. Secondly,
the o are linearly independent by (SC, 5). Hence we see that fuX=0 if and
only if X=0. Thus f is an immersion.

We will next prove (ii). By (SC, 1) and (SC, 2), the Lie(U(g,) X -+ X U(qa))-
part of w can be considered as a connection form on P. Let J* be the hori-
zontal almost complex structure on P with respect to the connection. Then

from (2,4), (SC, 5), and (3,22), it follows that
fxJX = o/(J'X*) e; = /=1 0 (X¥) &; = J /s X,

which shows that f is holomorphic.
By (3,10), and (3,22), we have

8(X, X) = 2 o (X¥)-/(X*) = g fuX, fX) ,

where g, denotes the Kahler metric of S,(n,). Thus f is isometric.
The statement (iii) follows from Theorem 3.1 (ii). q.e.d.
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4. Reduction of the structure group of S -structure

Before describing the reduction procedure by which we define the bundle
of reduced frames RF mentioned in the introduction, we will first recall some
basic facts known in the theory of transformation groups. For detail, we refer
to [7] and [2]. Let H be a compact Lie group acting on a smooth manifold
W. For our purpose, we may assume that W is a vector space and the H-
action is linear. For any we& W, we denote by H, the isotropy subgroup of H
at w and by (H,,) the conjugate class of H,, (H,)={a"'H,a: acH}. Further
we denote by [H, W] the set of conjugate classes of all the isotropy subgroups
of H, [H, W]={(H,): wW}. There is a naturally defined partial ordering
in [H, W], that is, by definition (H,)<(H,) if and only if a™* H, a is a sub-
group of H,, for some a=H.

Proposition 4.1. (i) The set [H, W1 is finite.

(i) The mapping W sw—(H,)E[H, W] is lower semi-continuous, i.e., for
any w,& W, there exists a neighborhood U of w, such that (H,)<(H,) for any
weU.

For an isotropy subgroup L, we denote by W(;, the set of points w such
that H,&(L).

Proposition 4.2. (i) For any isotropy subgroup L, the set W is an H-
invariant submanifold of W.

(ii) For any w, €Wy such that H, =L, there exists a submanifold Ty of
Wy with the following properties:
(a) T, meets each H-orbit of Wi,y at most once and crosses transversally those
H-orbits it intersects;
(b) w,eT; and H,=L for any weT;
(c) the image of T, by the natural projection W,— W ,/H is open.

We will call the above T'; a normal form of W,. Now let : P—M be a
principal H-bundle over an n-dimensional complex manifold M. Let V be a
finite dimensional H-module over C. A function T: P—V is said to be tensorial
if it satisfies T'(ea)=a™' T'(e) (¢ P, acH). Suppose that R** is an H-module
and there is an H-equivariant reduction ¢: P—L(M). Let ¢ be a V-valued
tensorial 1-form on P, i.e., it vanishes in the directions of fibres of P and satisfies
R¥ p=a"' @ for any acH. Then the tensorial function T of ¢ is by definition
the Hom (R, V)-valued tensorial function on P determined by the relation

(4.1) T(e) (Pr(e+ X*)) = p(X*) (X*ET.P, e€P),

where ¢, denotes the R*-valued canonical form on L(M) and Hom(R?, V) is
now naturally considered as an H-module. Denoting by {&,, :--, &,} the stand-
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ard basis of R*™ and setting Tkz—;—(T(e) (Ex-)—V —1 T(e) (Ex)), T;=%(T(e)
(Ezr-1)++/—1 T(e) (€x)) for k=1, ---, n, we can express @ as

(4.2) @ = Ty *¢*+Tx o **,

where (¢*),, ... , is the C"-valued canonical form on L(M).

Let W be a finite dimensional H-module over C. We will now consider a
W-valued tensorial function T on a principal H-bundle P over M. By Proposi-
tion 4.1 (i), the set {(Hz)): e P} is finite and hence there exists an isotropy
subgroup L of H such that its conjugate class is minimum there. We will call
such an L a principal stabilizer of T. Choosing a normal form I'jof W, we set
P,=T"'(I';) and M= (P;). We will show that M, is an open set of M and
P, is a principal L-subbundle of P|,,. If we set P'=T"YH-T), then
M, =n(P') and P'=P|,,. By Proposition 4.1 (ii) and Proposition 4.2 (ii) (c),
Wy is an open set of Wand H-T'; is open in W;,. Hence M is an open set
of M. By Proposition 4.2 (ii) (a) and (b), we see easily that Py is a principal L-
subbundle of P|,,. We call this P, the reduction of P with respect to (T, T') or
(@, T'1), or the reduction of P with respect to T or @ for short, if T is the tensorial
function of a W-valued 1-form @ on P. By definition, T'|p, takes its values in
T'; and is constant along any fibre of P,—M,.

Now let (P, ») be an S,-structure of type (n,, -+, ;) over a connected complex
manifold M. We denote simply by U the structure group U(g,)X -+ X U(g,) of
P. Let B? be the vector space Hom(C’»-1®C", C#) with the obvious U-action
and b? the B?-valued tensorial function of the Hom(C%-1, C%)-valued tensorial
I-form (0™ ®,-p),p.5o-p Of type (1,0)* on P. Denoting the components of 4
with respect to the natural basis of B? by ?,_, ,, we have

4,3) o' b k

s(p—1) = s(p=1),k @O «

We are now going to reduce the structure group of P by these b?. Let H, be
a principal stabilizer of °. Choosing a normal form I'y, of Bfy,, we make
the reduction RP, of P with respect to (4% T'y,), which is a principal H,-bundle
over a certain open set of M. 'Then the * restricted to RP, takes its values in
T'y, and is constant along each fibre of RP,. Next, by means of 5® restricted
to RP,, we make the reduction RP, of RP, over a certain open set of M with
respect to (b, T'y,). We continue this reduction process for all 4%, ---, b%, and we
get the reduction RP, of RP,_, over a certain open set M,== (RP,) with respect
to (4%, T'y,), where H; and Ty, denote a principal stabilizer of 5 and a normal
form of B{y, respectively. We will now observe the structure group of RP,
more closely. Let X,: U—U(n,) be the natural projection and K, the image
of H; by X,. We have the following

Lemma 4.1. There exist uniquely homomorphisms p,: K—U(q,) (p=
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1, -, d) with the following properties:

@) pfa)=a (4€K);

(b) pya) b%(e) = py-i(a) T ai' b(e) (@, EK,, eERP,, p>1);

(c) let p(a) = (py(@y), -+, pa(ay)) (&, EK,), then p is the inverse mapping of X,:
H,—K, and in particular it is an isomorphism of K, onto H,.

Proof. Let e be a point of RP,. Then for any a=(a,, -+, a;) in H;, we have
b*(e) = b*(ea) = a~' b¥(e) = a;* a;2y ar' b¥(e)
and hence
(44) a,(b*(e) (u®v)) = b*(e) (a,-, u®a, v) (LQvEC'»1QC").

Since the linear mapping b?(e): C*»-1QC"—C? (p>1) is surjective by the con-
dition (SC,6), a, is uniquely determined by a,_,, @, and b*(¢). Then by induc-
tion, it turns out that @, depends only on 4, and b?(¢). Hence we can define
mappings p,: K,—U(q,) (p=2, -+, d) such that

(5) pi(@) (B(e) (u@v)) = b%(e) (pp-i(a) u@a, )

for any uQuelC’»-1:@C" and aq,€K,. Moreover, every element acH, is then
expressed by a=(a,, py(a,), **+, pa(a,)), where a,=X,(a). We will show that these
p, do not depend on e. For any ¢’ERP,, b*(e’) belongs to I'y,, because RP, is
a subset of RP,. Since H, is a subgroup of H,, every element of H, leaves
b?(e’) invariant. Hence the equation (4,4) holds for any a€H, even if we re-
place e by ¢, and the relation between a,, @,_,, and a, remains unchanged. It is
easy to verify that each p, is a homomorphism. From (4,5), we see (b). The
statement (c) is clear. q.e.d.

Using the projection B,: P—P,, we set RF\=g,(RP,). Then without dif-
ficulties, we have the following

Proposition 4.3. (i) ,|zp, is bijective. Its inverse mapping v: RF,—RP,
is a principal bundle isomorphism, i.e.,

(4,6) v(ea) = v(e) p(a) (eERF,aEK),

where p: K,—H, is the isomorphism defined in Lemma 4.1.
(i) The g.(ny)-valued 1-form $=vo*w on RF, have the following properties
corresponding to (SC, 1) and (SC, 2):
(a) S(E*) = p«(E) (E€l);
(b) R¥S=Adp(@)'d (aeK).
Moreover, the properties (SC, 3)-(SC, 6) are hereditarily brought to :
(c) do+[8, 8] =0;
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d) =0 (n<r<ny),
ﬂr(ﬁ)s(p’) =0 (ISP:PISd, IP_PII 22);

(e) the & are of type (1,0)* and linearly independent over C at every point of
RF,;

(f) rank(F D ), 0,000 15 constant gy, for p=1,---,d—1 at every point of
RF,.

(g) the coefficient functions y*br @Dy rof 97D with respect to & take constant
values along each fibre of RF\—M,.

As we have seen, the S;-structure P is now reduced to the subbundle RF,
of U(M, g)|u, identified with P,|,,,, where g is the Kahler metric induced by
(P, ). From now on, we denote M, by M, anew. We will further perform
the reduction procedure for the structure group of RF,. In the following, for
any g,(n;)-valued 1-form @ and p=1, ---, d, we will denote by @[?1 the u(n,)-
part of it:

‘Pm = (q"(”s(p))r(p).s(p)=np_l+1,-u,n, .
Now we make a decomposition
4,7) u(n) =t,+p, suchthat AdK,-p,Cp,,

which is possible because K, is compact and denote by 6, the ¥ -part of 1,
By Lemma 4.1 (a), it follows

{ R¥6,=Ada'0, (a€K)),

(+8) 0,(E*)=E (E€L).

Lemma 4.2. We set yf1=05"1—pu(0,) for p=1, ---, d. Then ihe u(n,)-
valued 1-form 7 is a tensorial form on RF,, i.e.,
() RF%=Adp@)' 7" (a€K);
(i) %) vanishes in the directions of fibres of RF,—M,.

Proof. From Proposition 4.3 (ii) (b) it follows R¥ J"1=Ad p,(a)~* I
(@a€K,). At the same time, by (4,8), we have R¥ p,q(6,)=Ad p,(a)~* p,(6,)
(@EK,). Hence we obtain (i). By Lemma 4.1, py(E)=E+pp(E)+ -+ ps(E)
(E€t). From this together with (4,6) and (4,8), we have

IE™) = o1 (p(E)*) = pp(E) = pp(0.(E¥)) (EEL),
which implies (ii). q.e.d.

We perform successive reductions of the structure group of RF, by means of
the tensorial functions T1 of 4#1 for p=1, ---, d, choosing respective principal
stabilizers K, , and normal forms I'y, . So let RF, be the last reduction of
RF, over a certain open set M, of M, and K, its structure group. In the fol-
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lowing, when we restrict any form on a manifold to a submanifold of it, we will
denote it by the same symbol: so we denote #| .z, by & and 0, | g, by 6,. We
make a decomposition £,=%,+p, such that Ad K, p,=p,. We denote by 4, the
t,-part of 6, and set 7,=0,—6,. Then 6, satisfies that R¥ §,=Ad a™'§, and
0,(E*)=E(a€eK,, EEt), i.e., it defines a connection in RF,. And the u(n)-
valued 1-form 7, is a tensorial 1-form on RF,. Let T, be the tensorial function
of 7,.

Furthermore for v=2, 3, :--, we define inductively RFy,,, Ky.;, M,,,, 014,
Tys1, and T, as follows: Suppose that we have defined RF,, K,, M,, 6,, and ,.
If the tensorial function T, of 7, is constant along any fibre of RF,, we stop
making further RF,,, etc.. Otherwise, let RF,,, be a reduction of RF, with
respect to T,. Let K,,, and M,,, be the structure group and the base manifold
of it. 'Then by definition, 7', is constant along any fibre of RF,,,. Next, mak-
ing a decomposition f,=%¥,,,+p,,, such that Ad K,,, p,,,SP,,, let 0,,, and
Ty41 be the T, -part and p,,-part of @, respectively. Then we see easily that
0,., is a connection form on RF,,, and the u(n)-valued 1-form 7, is a tensorial
1-form on RF,,,. Let T,,, be the tensorial function of 7,.,,.

At each step in the above procedure of making RF, ., etc., since K, is com-
pact, either the dimension or the number of connected components of K, must
decrease. In any case the above procedure terminates after finite steps. Thus,
let RF,, K,, M,, 6,, and T, be the last ones. By definition, 7, is constant
along any fibre of RF,.

Choosing a basis {E,} of f,, we set §,=6,Q®E,. Then the set {63, *, 9%}
forms a basis of the space of C-valued 1-forms at any point of RF,. Using this
basis, we will now write down the non-zero components of the g,(,;)-valued 1-
form & on RF,. First we express 4”1 and 7, in the way as in (4,2) with ¢
inclusion:

7)[” = T;,“ lsk‘!"T[Ep]Zﬁ (P = 1’ RS d) )
T = Ty, 191;_!_'_]"“.5513 (B=2,+,v).

Here all the T¥), T, T, ,, and T3 are constant along any fibre of RF,. On
the other hand, from #1=p(0,)+ 4?1 and 0,=0, 41,4 -+,

(4.9) I = py(0s)+p (1) Fppr(Tu-1) oo+ pypr(72) + 7
on RF, for p=1, ---,d. Hence we have that on RF,,

(4,10) =,

(4,11) 91 = 0, le (Top 9+ To g )+ THI 9+ T ¥ |

4,12) I = Pp*(QV)+ é (Pp*(T#,k) 79"+Pp*(T#,k) ﬁ)““ T 19k+T[iP] o )
w=2
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(4’13) 19'(’-“):()) = b’(ﬁ-l)s(p) R 0* -

From (4,10)-(4,13), all the coefficients of the components of the g (n,)-valued 1-
form & on RF, with respect to the basis {63, 3%, % become constant along any
fibre of RF,, because p, is a linear representation of {,.

From now on, we will denote these RF,, K,, M, and @, simply by RF, K,
M., and 0 respectively. The pair (RF, &) will be called a reduced S,-structure
of (P, ®) over Mreq, while RF—M, 4 is a principal K-subbundle of U(M, g)| .,
Here we should remark that as is obvious by its definition, (RF, &%) does not
uniquely determined by the Ki#hler metric g on M.

We say that & is of constant coefficients if and only if all the coeficients of the

components of # with respect to the basis {6*, 9%, $*} are constant functions on
RF, where 6* is defined by 0=6*QE, for a basis {E,} of L.

Proposition 4.4. Let (P, w) be an S -structure over M and g the Kdhler
metric induced by (P, »). Let f be a holomorphic and isometric transformation of
(M, g). Then RF and ¥ are invariant under the mapping fx: UM, g)-U (M, g),
and in particular f(M,.,) S M, .q.

Proof. By Theorem 3.1 (ii), f gives rise to f;: P—P which satisfies
(f))¥o0=w. Then in particular f leaves each component of « invariant and hence
the tensorial functions 4” are fy-invariant in view of (4,3). Since RP,= (%)™ T'y,,
RP, is invariant under f; and so is w|pg, Similarly we see that f; preserves
RP,, ---, RP, and o restricted to any of them. By Proposition 4.3 (i), 8,: P—P,
maps RP, onto RF, isomorphically. Using the identification P,=U(M, g) by
Proposition 3.1, we see that Bofy=fx°B,. Hence RF, and & are both f,-
invariant.

We will now examine the reduction procedure after that. To define RF,
from RF,, we have made the decomposition (4,7) and defined 8, by means of it.
We see easily that 8, and 1 are fy-invariant. Therefore the tensorial functions
Tt of fP1l=P—p 4(§,) are fy-invariant. Hence RF, is fy-invariant. Recall
that the remaining RF;, -, RF, have been defined by means of 7,, --:, 7,_,. As

is easily seen, each of 7, :+, 7, is fg-invariant and hence RFj, -+, RF, are also
fx-invariant. On the other hand, & has already been seen being fy-invariant on
RF,. q.e.d.

We will give below a few results concerning the homogeneity of Kihler
submanifolds of complex space forms.

Proposition 4.5. Let (M, g) be an n-dimensional connected Kéhler submani-
fold of S(N) and (P, ») the S,-structure induced by the inclusion f. Let (RF, &)
be a reduced S,-structure of (P, w) over M., with structure group K. Suppose
that ¥ is of constant coefficients. Then
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(i) each connected component of RF is identified with an open subset of a certain
right coset -G, where G is a connected Lie subgroup of G(N) and r€G(N);
(i) each connected component of M, is an open set of an orbit in S(N) of the
above Lie subgroup G of G(N).

The method of proof, given below, of this proposition is due to Sulanke.

Proof. We may assume that the submanifold (}, g) is full in S,(N). We
denote by F the imbedding RF—G,(N) which is defined by the composition of
the canonical injection RF—P and the inclusion mapping P—G,(N). Then we
have F*®=1, where ® denotes the Maurer-Cartan form of G(N). Choosing
a basis {E,} of , let {#*} be the components of the reduced connection form
0 of RF with respect to this basis. Then by (4,10)-(4,13) each component of
J can be expressed in the form

i_ z9i
(4,14) 4 — ch, O tchy Ftchid (A4, B=1,-,N),
=0 (n<r<N),

where the coefficients ¢’s are certain C-valued functions on RF. By the assump-
tion on & the ¢’s are constant. Let ¥=Y*QE, be the t-part of ®.
Now we consider the differential system

@i:¢l' (i:_- 1’ ...,n)’
(4,15) Df = c5\ T +cs, PHc5: P (4,B=1,--,N),
P =0 (n<r<N).

Since each term of (4,15) is a left invariant 1-form on G/N), the distribution
defined by (4,15) is G(N)-invariant. Moreover, since {¥*, &, &*, , are li-
nearly independent, the dimension of our distribution amounts to dim 42z,
which coincides with dim RF.

Let M, be a connected component of M, and RF® a connected component
of RF|y, Then (4,14) shows that F(RF°) is an integral manifold of (4,15).
Therefore it turns out that the differential system (4,15) has a maximal dimen-
sional solution and it is involutive. Since the equation (4,15) is of constant
coefficients, the maximal integral manifold of (4,15) through the identity element of
G,(N) becomes a connected Lie subgroup of G,(N), which we denote by G, and
any other maximal integral manifold of (4,15) is a right coset -G (r&G(N)).
Hence (i) follows.

At the same time, we see that M, is an open set of a G-orbit in S,(N),
because it is the image of RF® under the projection G(N)—S,(N) with which
the G-actions commute. Thus we have proved (ii). q-e.d.

Theorem 4.1. In addition to the condition of Proposition 4.5, suppose that



618 Y. TaNIGUCHI

(M, g) is complete. Then (M, g) is a homogeneous Kahler submanifold of S(N).

Proof. By Proposition 4.5 (ii), there is a non-empty open subset M’ of
M which is, at the same time, an open subset of a G-orbit in S,(N), G being a
Lie subgroup of G,(N). Since the submanifold M is connected and analytic,
M is necessarily contained in that G-orbit. By the assumption that (M, g) is
complete, M must coincide with that orbit. Then we see that each element
of G induces a holomorphic isometry of M, because it is an element of G,(V)
and preserves M. This implies that JM is homogeneous. q.e.d.

RemMark 4.1. Theorem 4.1 is valid without the assumption in Remark 2.1.

Conversely we have the following

Theorem 4.2. Let (M, g) be a connected homogeneous Kéhler submanifold
of S(N) and Aut (M, g) the Lie group of holomorphic isometric transformations of
M.

(i) The S,-structure (P, w) induced by the inclusion f: M—S,(N) is defined
over the whole M (cf. Remark 2.1).

(i) Let (RF, ) be a reduced S,-structure of (P, w). Then
(a) RF is defined over the whole M, i.e., M,.q=M,;

(b) & s of constant coefficients;
(c) the Aut(M, g)-action on RF is simply transitive, i.e., Aut(M, g)e=RF
(eERF).

Proof. We set G=Aut (M, g). We may assume that f is full. By the
rigidity theorem of Calabi, any »€G extends to a unique holomorphic isometric
transformation p(7) of S,(IV), and we have an injective homomorphism p: G—G,
(N). Hence we see that all the things used to define O?(f) for p=1, ---, d(f)
are invariant under = and p(7). This together with our assumption that G is
transitive on M implies that the rank of O?(f) is constant on M for p=1, -+, d(f).
Thus we get (1).

Next, we will prove (ii), By Proposition 4.4, G acts on RF and G is tran-
sitive on M. Hence (a) follows. Let F: RF—G,(N) be the imbedding defined
in the proof of Proposition 4.5. Then we have $4=F*®4 and J5=F*®j for
any 4, B=1, -, N and moreover *=F*®¥?* for any A. Since F commutes
with both the left G-actions on RF and G,(N), all the 94, 93, and 6* are G-
invariant, because the corresponding components of & are left invariant. Hence
the coefficients in (4,14) are G-invariant. Since they are constant along any
fibre of RF and G is transitive on M, we see that they are constant on RF.
Thus we have shown (b).

Finally, we will prove (c). In the following, we identify RF with its image
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F(RF). We may assume that RF contains the identity element ¢, of G,(N).
Otherwise, we multiply a certain element of G,(V) to both F and M. Since
¢,ERF, it follows from Proposition 4.4 that G is contained in RF. Denote by
RF® the connected component of RF through ¢,&G,(N) and by G° the con-
nected component of G containing e,.

First, we claim that RF°’=G". From Proposition 4.5 (i) and the above (b),
it follows that there exists a connected Lie subgroup G, of G,(N) which is the
maximal integral manifold of (4,15) through e, and includes RF® as its open
set, because RF° contains ¢, of G. As we have seen in the proof of Theorem
4.1, G, acts on M as holomorphic and isometric transformations. Hence G,
is a subgroup of G° and in particular RF° is a subset of G°. On the other hand,
since G° leaves RF? invariant by virtue of the connectivity of them and the
latter contains e,, we see G°C RF®. Therefore we have G;=G°=RF® and in
particular RF® is the maximal integral manifold of (4,15) through e,.

Next, let K denote the structure group of our principal bundle »: RF—M.
Then the image of the fibre 77z (e,)) by F is just the subgroup K of G,(N),
because F commutes with both the right K-actions on RF and G(N). For any
a€ K, we denote by RF(a) the connected component of RF containing a.

We will show that RF(a)=a-RF°. For that purpose, we will first show
that RF(a) is the maximal integral manifold through a of (4,15). If we replace
our f by f'=a"'-f, then F'=a"'+F becomes the corresponding imbedding of RF
into G(N). Moreover F'(RF(a))=a'-F(RF(a)) turns out to be the connected
component of F'(RF) containing e, and hence it is the maximal integral mani-
fold through e, of (4,15) as we have seen above. 'This implies that the integral
manifold RF(a) is maximal, because (4,15) is left invariant. On the other hand,
by the same reason, @-RF° is also its maximal integral manifold through a.
Hence we must have RF(a)=a-RF".

From this we have RF=K:RF°. 'The left multiplication by each element
of K preserves RF and also its base manifold M. This shows that K is a sub-
group of G. As we have seen above, RF’ is also a subgroup of G. From these
facts, we see that RF is contained in G. Thus we have completed the proof
of Theorem 4.2. q.e.d.
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