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1. Introduction

For a prime p, there is a spectral sequence, called the Adams-Novikov
spectral sequence, converging to the stable homotopy ring of spheres localized
at p, w3y, whose E,-term is isomorphic to Extgp,zp (BPs, BPy), where BP
denotes the Brown-Peterson spectrum at p([2]).

In [1], the elements af® were defined in Ext} p,cz p(BPx, BPy) for every po-
sitive integer 7, ¢. (In [1], these elements were denoted by 7 (v}) instead of a{®.)
Here o™ stands for the n-th letter of Greek alphabet and we call them Greek
letter elements.

For n<3, it has already been prvoed that these elements are represented
by non-trivial elements in zg ) if p=>2n ([3], [4], [1], [2]) but in the case of
n>4, we have had few information on them yet.

The purpose of this paper is to prove the non-triviality of a{® in Ext}s,sp)
(BPy, BPy) for n>4 under suitalbe restrictions on p, ¢ and we succeed for p>n
and 1<t<p—1. Moreover we also prove p does not devide them.

In the next section, we recall the necessary information on BP and state
our results proved in §3.

I would like to thank Professor Akira Kono for useful conversations, kind
encouragement and reading this manuscript.

2. Recollections on BP and Statement of results
Let BP denote the Brown-Peterson spectrum at a prime p ([2]). Then
BPy=2Z[v,, v;, --*] and BPy(BP)=BPy[t,, t,, ---] where the generators v,, and
t, are defined as follows.
BP,®@Q=Q[\,, \s, ---] for canonical generators A,,, |\, | =2(p"—1). Then
v,, are determined inductively by
PAw=33 NMhi (Mo=10=p) ([2]A222)

0<i<m

and t,, by
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72(M) = 35 N o (=1 ([2]A2.1.27)

where 7;: BP+Q@Q—>BP4(BP)®Q is the right unit of the Hopf algebroid
(BPy, BP4(BP)) tensored with Q.
Under the above choice of generators we have

Theorem 2.1. ([2] A. 2.2.5).
St = Sl
Theorem 2.2 ([2] A 2.1.27).
DTAR) = SF 1,
i>0 i,j=0
i+5>0

where S3F denotes the formal group sum associated with BP and A: BPy(BP)—
BPy(BP)QBP.(BP) is the coproduct of BPy(BP).
BP,

Let I, be the ideal in BPy generated by p, v, .-+, v,,-;. Using 2.1 we see
easily that I,, is an invariant ideal in BP,. In fact we have the following the-
orem.

Theorem 2.3. ([2] 4.3.2). Let I,=(p, vy, ***; Vp_y)
(a) 1, is invariant.
(b) For m>0.

Ext(BPy/I,) = F,[v.],
and
Ext(BPy) = Zy -
(©) 0— X" BP, I, % BP,/I, — BPy/Ips; — 0

is a short exact sequence of comodules.
(d) The only invairant prime ideals in BPy are the I, for 0<m< oo,

(From here we abbreviate Ext(M) for Extgp,zp(BPyx, M).)

This result allows us to define Greek letter elements.

We consider the short exact sequence given by (c) which leads to a long
exact sequence of Ext and let

St Ext’'(BPy/1,,.,) — Ext**|(BPy/1,,)
denote the connecting homomorphism of the resulting long exact sequence.
DerFINITION.,  For t, n>0, let

af” = 88, 8,_,(vs) EExt"(BPy) .
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We now state our results. Let
#n Ext'(BPy) = Ext'(BPy/(l,-+117*))

be the homomorphism induced by the natural projection BPy—>BPy/(I,_,+
I77*1). (From now on we always assume p>n>>3.) Then we have

Theorem 2.4. @, (af”)*0if 3<n<p and 1<t<p—1.
As an immediate consequence of 2.4 we have

Corollary 2.5. «a{”=+0if 3<n<p and 1<t<p—1. Moreover p does not
devide them.

REMARK. For n<3 we have much more general results than 2.4. (See [1],
(21)

The rest of this section is devoted to describing the cobar construction
which we need in the next section.

Let (4, T") be a Hopf algebroid such that T" is flat over 4. Then the cate-
gory of (left) I"-comodules becomes an abelian category with enough injectives,
so we can define Exty(L, M) for (left) I'-comodules L, M as the s-th right deriv-
ed functor of Homp(L, M).

In the case of L=4, these Ext groups can be computed as the homology of
the cobar complex Cr(M) defined below.

DErFINITION. Let &: T—A be the counit and T'=ker &. The cobar complex
Cr(M) is defined by C3(M)=T®QM with the differential d: Cx(M)—Cs (M)
given by ‘

d(7,® - Qv.Qm)
=2 (DX 7@ Q7. @7i®7Q7in® - Qv.Qm
H=)M T 9,Q-Qv.Qm' @m”

for vy, -+, v, €T and me M where T®* denotes the s-fold tensor product of T' over
A, A(v)=1Qv;+ 2 viQv" +v,81 and yr (m)=1Qm-+>Im'@m". (A denotes
the coproduct of T and r denotes the coaction map of M). The element v,Q Q@
v.@m will be denoted by 7y,| - |y,|m.

Then the following isomorphism holds.
Theorem 2.6 ([2] A 1.2.12).
Exti(4,T') == H(Cr(M)) .

Finally we define a certain quotient complex of Cr(4) associated with a
sequence of non negative integers (ay, -+, @;) if T'=A[vy,, =+, v,] (m may be
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infinity.) and v, is primitive modulo (v, -+, ;-,) for all z.

Let E=(e,, e, +-*) be a sequence of non negative integers such that e;=0
for all but a finite number of . We introduce an order between such sequences
by saying that E<F (=(f;, f,, --+)) iff there is a positive integer ¢ such that ¢;=f;
for j<i and ¢;<f;. Let E4+F denote a sequence (e,+f,, &,+fz, =++) and y*=
yityreT

DEFINITION.

Col(@y -+ ) = Crl4)

ggA{'yEll--- [vEs; By A=+ +E>(ay, -+, a))}

where A{-} denotes the submodule of Cy(A) generated by the indicated generators.

(Clearly Cr((ay, **+, @;)) depends on the choice of ¢; but we do not indicate
the generators in our notation because our choice is always evident in this paper.)

Now we show that Cr((a,, -*+, 4;)) is a quotient complex of Cr(4). By our
assumption

Al = 17+ vi®vi+v:;®1
where ¥iE(yy, =+, Vi) OF ¥IE(¥y, 0, ¥i-1). Thus A(y,)€A4{y* Q7% F+G

>(0, -, 0, T)} and more generally we have A(v®)e A{y*®vy°; F+G>E} since

A is an algebra homomorphism and (y*®v°) (yF @y )=+ Qv°*¢’, There-

fore @ A{yEs}|---|yE; E\++-+E> (ay, -+, a;)} is a subcomplex of Cp(A4) as
=1

desired.

3. Proof of Theorem 2.4
Let C(n, m) (resp. D(n, m)) denote

Coruspilm(P" 241,073 -, b, 1))
(resp. CBP*(BP)/K,,.,,,((P”_2+13 P”—37 '"yP, 1)))

where [, ,=IL,+I 417" and K, ,,=L, 412224157742,
(Note that BPy(BP)=BPy[t,, t,, ---] and A({;) has the form

(3.1) A(t) = 1Qt+,®1 in BP*(BP)Bg)BP*(BP)/(tl, ey tiny)
for degree reasons.) It is obvious that the sequence

0= C(n, m) =% D(n, m) — C(n, m-+1) — 0
is a short exact sequence of complexes and letting

8u: H(C(n, m+1)) > H**(C(n, m))
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denote the corresponding connecting homomorphism we have a commutative
diagram
s 8"’
Ext’(BPy/1,,.,) = Ext"*(BPy/1,,)

“I’m+l \l’ l‘ '\b'm
HY(C(n, m+1) > HCn, m)

where v, is the homomorphism induced by the natural projection Cpp,(zp)
(BPy/L,)—~C(n, m).

Thus it is sufficient to show 3.2 below for the proof of 2.4 since +r, factors
through

@a' Ext'(BPy) — Ext(BPy/(L,-+157"))

Proposition 3.2. & =0 i H"(C(n,0)) if 1<t<p—1 where & denotes
the element () =8, 8, Yr,(vi) EH"(C (m, 0)).

In order to prove 3.2 we begin with giving an explicit representative for
& and this requires some formulas on 5 of BP.

Lemma 3.3 ([2] 4.3.21).
Ne(Vp) = Uyt Vpoy #" ' —vh_1t, modlI,_,.
Lemma 3.4.
7(Vm) Eogz_s}mv,- th_; mod I, .

For the proof of 3.4 we first prove the following simple fact about the formal
group law associated with BP.

Lemma 3.5.
X+, Y=X+Y in BPX, Y]/(X, Y).
Proof. Note that XY has the form
X+ Y_l_i%lai’j XY/ in BP4[X, Y]]
where a; j;=a; ;EBPy, ;.

Considering the degree of g; ;, it is clear that a; ;=0 if i4+j<<p so we get
the desired result. [

Proof of 3.4. In the degree of ng(v,,), the left hand side of 2.1 is congruent
to ng(v,) modulo I% by 2.3 (a) and 3.5.

The right hand side of 2.1 is congruent to 3} v, t4_. modulo I% and the
0<i<m
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result follows. [
We now describe a representative for @&".

Lemma 3.6. a&”H"(C(n,0)) is represented by a cocycle

(p—n)!
Proof. In D(n,n—1),

d(vs) = ng(v.)'—s
= (U0, 8 —vh_ t)—0l  (by 3.3)

= —toltol ¢,

oi ozt b, || |8 1,EC7(n, 0)

So we have
§,_1(vh) = —tot 1t otz t, e HY(C(n, n—1)).

(We often abuse the same notation for a cocycle and its representing element

in the cohomology.)
In D(n, n—?2),

d(vi izl ) = d(vi "t vizi) |t (by 3.1)
= {n&(va) " np(@a-r)? T =0 OITH 1
= {0t v, ,+0,, 8" 0l vizl} |8, (by 3.4)
= (p—1) ot vt 0, , &8 "1,

and thus
80z 8ui(vh) = —t(p—1) vl 02z 2" |1, e HY(C (n, n—2)) .

More generally, by induction on k, we can easily show

X X t(p—1)! - n—
(3.7) s Boh) = P e o A
eHYC(n,n—k)) forall k 2<k<n.
Let k=n in 3.7 then we obtain the lemma. [

Next we define a subcomplex of C(n, 0) which will be denoted by C(z, 0).

Let (P(vp_y, v0)/ (05211, P(Vyry ny By ++y 1)/ (0521*1)) be the sub-Hopf al-
gebroid of (BPy/], o, BP«(BP)[], ) where P( ) denotes the polynomial algebra
which has the indicated generators over F,. We define

C(n’ 0) = Cp(vn—hvmtly'"»tn)/(‘vﬁ:’lﬂ-1) ((P”—Z”i“l’ Pn_s’ Y2 1))

and let
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B(n) m) = C_b(tl,-'-,t,,) ((Pn_z'l'l)p”_a’ ”’»P, 1))

where P(t;, :+, 1,) is considered as a Hopf algebra over F, whose coproduct is
given by A(f;)= X} t;,®@#.;(1<i<m). Then the following isomorphism of
0<j<i

differential graded algebras holds.
(3.8) C(n, 0) = P(v,_,, v,)/(4=1"")@B(n, n) .
Fp

This follows from 3.4 and the formulas on the coproduct of BPy(BP) given by
the next lemma.

Lemma 3.9 ([2] 4.3.15). For m>1
Alt,) = X t,Qth_; in BPy(BP)QBPy(BP)/1,
0<i<m BPy
and
A(tm+1) = 2 ti®t»’;+1—i
0<i<m+1
n BP*(BP)g BP(BP)/(I,,+BP,{t11Q12; e,+€,>p"}) .
Now note that |a{”|<|v,4,| for t<p—1 and C(n, 0) is equal to the sub-

complex C|(n, 0) defined above in the internal degree less than |v,,,| and there-
fore 3.2 is equivalent to

Proposition 3.10. ¢,_,|ti_, |-+ |t!""*|£,%0 in H"(B(n, n—1))

by 3.6 and 3.8 since B(n, n—1)=2B(n, n) in the internal degree less than |2, |
(> [taoy | thoa| -+ |8 7" |1,] for p>m).

In order to show 3.10 we need the following lemma proved at the end of
this section.

Lemma 3.11.  There is a spectral sequence converging to H*(B(n, m)) with
Ep* = HY(Cyq,y (F))@H(B(m, m—1))[R,
and
d’: Et:,b__>E5+r,b-r+l
where P(t,) is considered as a Hopf algebra over F', with t,, primitive and

R,;, = F,{x®@ yH¥C,y,, (F,))QH*(B(n, m—1)); Both x and y have
representative cocycles X and ¥ such that X3 = 0 in B***(n, m)} .

Moreover this spectral sequence has the third grading induced by the internal degree
in the cohomology which is preserved by all differentials.
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Proof of 3.10. First note that
#"7*|#, &+ 0 in HYB(n, 1))

by 3.12 below since B(n, 1) is a direct summand of Cy, (F,) as a complex.
(Recall our assumption #>3 which assures p*?>1.)

Lemma 3.12.

H*(Cp(tm) (Fl’)) = E(hm,O! hm,l’ )®P(bm,0: bm,l, "')

where h,, ; (resp. b, ;) is represented by th (resp. %O 2’(‘0_ ) 127 | 1410-9) and E(-)
<<

J
denotes the exterior algebra which has the indicated generators over F,.

Proof. This result is obtained by a routine calculation. []

Now suppose
(3.13) ]| 88" |8, % 0 in H™(B(n, m—1))

holds for some m, 1<m<n—1. Then the element £ "' /|- |8 |4
(€HY(C\yom (F,))QH"(B(n, m—1))) defines a non-trivial element in the E,-term
of the spectral sequence given by 3.11 which is clearly a permanent cycle and
moreover there is no differential killing this element as observed below.

Let ¢,, denote the internal degree of the above element then

G14) o =2(p—1) tmp" - (m—1) e 2" AP 1)

and it is enough to prove Ey~""*»=0 for all r>2.
Using 3.11 and 3.12 we can identify the E, with an appropriate subquotient
of @ (E(h;;)®P(b;,;)) and let ¢; ;... i,.iti4.i2,7, denote the internal degree of
1<i<m
j20

Bigiyee iy i, big, e eobig iy (1<, < oo iy <m, 1<i{< -+ <i{<m) then

i d;
(3.15) Civsitrnrininnilsilserils it

=2(p—1) {1S2ks,ﬁi;.(1,ik—l+...+P+1)+1Skzsspii+1<pi;—l+...+P+1)} .

Comparing 3.14 with 3.15 we see easily that c,=c¢; j, ...i,.j,.i1,,.it,74 does not
hold for I42s<m under our assumption m<<n<p(=>3) and consequently
Em=rrm=( for all r>2. Therefore

tl’,”n_m~1‘ . lt{,n_thl +0 in H"’+1(B(n) m))

and by induction on m we have shown 3.13 for all m, l<m<n.
Letting m=mn in 3.13 we get 3.10 and thus complete the proof of 2.4 assum-
ing 3.11. J
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Proof of 3.11. We begin with recalling the construction of the Cartan-
Eilenberg spectral sequence for the following cocentral Hopf algebra extension

P(ty, -+ tyoy) EA P(ty - 1) S P(t,). (cf. [2] A 1.3.17)

We first define a decreasing filtration on C,,,...+,» (F,) by

(3.16) Fob — F,{tF1] --- | tFa+s; at least a of the % lie in kerg}
CCHi vt (Fy)
and let E| denote the E,-term of the spectral sequence associated with this

filtration.
Next define a homomorphism

Foy: Chty (F)®Ciisy.ot,_p (Fp) > B
which is given by
By y(tea] ooe |EOQtEL | ve | £Ea) = 3] o |228]2E1 | .. | £E0
EF’a,b/F’a+1,b—1 — E’g,b
for 3| |t2€Ch,y (Fy) and 81| |tFecCh, .1, (F;). If we consider

Coty Fp)RChit,. - t,,_p (Fy) as a complex with its differential d@1 then Z,,,*
becomes a chain map and induces

Bip: HNChirpy (Fp))QChity ot (Fp) = E20 .

Moreover we can prove %’ is an isomorphism and if we consider H¥(C,(F,))
Q®C\ty, -ty (F5) as a complex with its differential (—1)? 1Qd then &% ; is also
a chain map.

Hence we obtain an isomorphism

ii;fb: Hb(cp(tm) (Fﬂ))®Ha(CP(t1.“'.'m-1) (F)) ; Eg'b

induced by %'.

Therefore we have a spectral sequence converging to H*(Cyq,,...s,» (F))
whose E,-term is isomorphic to H*(C)q,) (F,))@H*(Cyity, - tm_p(F5)). This
spectral sequence is called the Cartan-Eilenberg spectral sequence.

We now turn to our case. It is trivial that F** given by 3.16 also defines
a decreasing filtration on B(n, m) naturally. Thus we obtain a spectral sequence
E, converging to H*(B(n, m)) and a homomorphism

{1y HYC oy (Fp)QH (B(n, m—1))[R, s — E3*
induced by a chain map

Wep: HY(C s,y (F,)) @B (m, m—1)| Ry — EY
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where

R, = F,{x®@ycH"C), (F,))@B*(n, m—1); x has a representative
cocycle % such that £y = 0 in B**(n, m)}

and A’ (resp. k') is the map induced by %’ (resp. /") naturally. So we will
show that 4’ is an isomorphism.
Let

R’ = F,{xQyeC,, (F;)@B(n,m—1); xy =0 in B(n, m)} .

It is easy to see that C,,, (F,)@B(n, m—1)/R"” (resp. E;) is a direct sum-
mand of Cyq,y (F,)Q@Chuy,..t,,_p (F) (resp. E,) as a complex where Coe,y (F)
QChuy, - tm_p (F) is endowed with the differential d®1 and C,q, (F,)@B
(n, m—1)/R” with the induced one, and moreover through %, C,, (F,)®@B
(n, m—1)|R" corresponds to E, and another summand of Cy,) (F5)®Ci,,.
(F,) corresponds to another one of E,.

Hence the fact %’ is an isomorphism implies 4’ is also an isomorphism
and we complete the proof of 3.11. []

":tm—l)
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