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1. Introduction. Let L be an integer >2, and let A=[A(i9j)]iJ=slt2t...tL be

a zero-one LxL matrix. Let B=[B(i,j)]ij=12 ...L be a zero-one LxL matrix

such that

(1.1) B(t,j) = 1 implies A(i,j) = 1 .

We set

K = max#; B(i,j) = 1 for some;} .

Let C be the Kx K matrix defined by

We assume that

(1.2) CN>0 for some positive integer N ,

that is, all the entries of matrix CN are positive.

Following Parry and Pollicott [10] we set

Σί = iξ = (ξ19 ξ2, -> L, - ) e Π {1, 2, .- , L} A(ξi9 ξi+1) = 1 for all i} ,
ι = l

ΣJ = {ψ = (ψ,, ψ2, - , ψ,, - ) e Π 0, 2, - , K} B{ψif ψi+ι) = 1
ί

foraUί}.

We classify the elements of 2J into two groups:

2 ( 1 ) - { feΣ3 ; £ ( / , & ) = 1 for some l <

and
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Σ(2) - {?eΣJ; B(l, £,) = 0 for all

We regard 2c as a subset of Έ,A Denote by σ the shift transformation denned

by

and let σA and σc be the restrictions of σ to Σ5 and Σc respectively.

Let f !>0, and let

/„ λe<Ξ3Ί(Σi) for all O ^ e ^ (O<0<1).

Because we shall use often the Banach space £Fβ(Σ3) and its norm, we recall

the definition: For reC(Σj) we define varM r and HrlU by

varn r = sup{|r(f)—r(ψ) | ξ, ψ e Σ ί and ξ{ = ψ, for ί

||r|U = 8up{ | r( f) | ; feΣJ>.

WesetforO«9<l

||r||θ - sup varM r\θ\ \\\r\\\. = max{||r |U | |r | | f} ,

ff.(Σj)={reC(SJ);|||r|||l<oo}.

Let fce£yβ(Σ3) be a real valued function satisfying

(1.3)

and

(1.4)

Suppose that

(1.5)

For 0 < £ ^ £ !

(1.6)

where

(1.7)

ί*(£) = 0 if B(ξυξ,)=l

\k(ξ)>0 if B{ξι,ξ2) = 0

inf &(£);> sup k{ξ) = co>O .

lll/.-/.lll , IIIV-A 111,-0 as ε -

we define Zt(s) by

•S1, rt(ξ, s) = re(?, ij+r/o-,, ξ, s)~\ \-re(σ';

0.

0 ) } ,

r1 f, *)

and the summation in (1.6) is taken over all ξ^Ί,A such that σ"A ξ=ξ. Note

that Z,(s) is nothing but the zeta function ζ(r,( ,s)) in the sense of Parry [9,
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Section 3]. In this paper we call Zs(s) the zeta function of a symbolic flow

(Σί, σA) associated to r8.

Our main theorem is the following

Theorem 1. Suppose that (1.1)^(1.5) are satisfied, and that

(1.8) /0(f)>0 for all ξ^Σl,

(1.9) ho(ξ) is real for all £e=ΣJ satisfying B(ξ19ξ2)=l

and

(1.10) 0<Im ho(ξ)<π for all ξ^^t satisfying B(ξvξ2) = 0.

Then there exist so^R, D a neighborhood of s0 in C and So>0 such that, for every

0 < £ < £ 0 , Zz(s) is meromorphic in D and it has a pole sz in D with

st-+ s0 as £ -» 0 .

We should mention about the reason why we need the above theorem.

In stuides of scattering by an obstacle O consisting of several strictly convex

bodies, we introduced a function FD(s), which was defined by means of the geo-

metry of periodic rays in the exterior of O. The definition of FΌ{s) and its

brief explanation will be given in the beginning of Section 4. Theorem 1 of

Ikawa [5] says that, if FD(s) cannot be prolonged anlytically to an entire function,

the scattering matrix S(z) for O has an infinite number of poles in {z; Im

s<a} for some α > 0 . This means that the modified Lax and Phillips conjecture

is valid for 0(cf, [8, page 158] and [2]). But it is difficult in general to show the

impossibility of FD of prolongation to an entrire function, and we could verify it

only for special examples [5, Theorem 2].

An interesting property of FD is its close relation to the zeta function of a

symboic flow on (Σ5, σA). Namely, by using the matrix A determined by the

configuration of bodies, we define ζ(s) by

CW = exp{Σ!- Σ txp(Sn(-sf(ζ)+g(ξ)+iπ))},
«=i n σn

Λξ = ξ

where / and g are appropriate real-valued functions in SF9(ΣA) attached to O.

Then the singularities of — — log ζ(s) in a certain domain coincide with those of
ds

FD(s). Thus, the consideration of singularities of FD is essentially reduced to

that of ζ(s). But unfortunately it is likewise difficult to find singularities of ζ(s).

The main difficulty comes from the fact that there is no s^C such that —rf(ζ)
Jrg(ξ)Jriπ is real for all £ e Σ J . In the case that convex bodies consisting O

are small comparing to the distances between each others, we can apply Theorem

1 to find a pole of the zeta function ζ(s) corresponding to ©(Theorem 2). This
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application will be discussed in Section 4. Thus, by virtue of Theorem 1, we
can show that the modified Lax and Phillips conjecture is valid for obstacles of
this type.

Next we make some remarks on Theorem 1. Consider the term for an n
fixed

Σ exp (Sn{-sfz{ξ)+K{ξ)+k{ξ) log 6)),

and let £ tend to zero. Then it converges to

Σ tχv(Sn(-sfo(ξ)+ho(ξ)))>

because of the effect of the term k(ξ) log £. If we set

2oM = e x p { Σ - Σ exp (Sn(-sf0(ξ)+h0(ξ))} ,
n=i ft σ»ξ = ξ

ZQ(s) is the zeta function of the symbolic flow on (Σc, o"c) associated with — sfo-\-
h0. It suggests us that Z2(s) is a perturbation of ZQ(s). But if we compare the
symbolic flows of which they are the zeta functions, not only the function — s/0+
h0 but also the structure matrix C are perturbed. Thus we should call this
perturbation of dynamical system as "singular perturbation". Even though The-
orem 1 says that a pole of ZB(s) is close to that of Z0(s) when £ is small, we do
not know whether Zz(s) itself is close to ZQ(s) or not. It seems to us that Zz(s)
does not converge to Z0(s) as £ tends to zero.

We would like to express our sincere gratitude to Professor T. Morita
for his kind teaching of the ergodic theory of symbolic flows and discussions on
the geometry of rays in the exterior of several convex bodies. We also express
our hearty thanks to the referee for his suggestions, with which we could cor-
rect our original manuscript.

2. On the spectrum of XΌtS

In order to find a pole of Zz(s) it is important to examine the spectrum of
the Ruelle operator attached to rζ(ξy s) of (1.6), which is the operator in C(ΣA)
defined by

(2.1) A..u{ξ)= Σ S'^uh) for

where the summation is taken over all ??eΣj satisfying σA η=ξ. Namely, it is
crucial to show that Xζ>s has the property P of Parry [9, Section 2]. Here, we
say that an operator X has the property P when X has a simple eigenvalue λ
and the rest of the spectrum is contained in a disc with radius less than | λ | .
To this end we introduce another operator Xr

zs in C(ΣJ), which is defined as
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follows: for U^C(ΣA)

i 51 e-'f*™+W u(η) for £eΣ(l)
(2.2) -C:,su(ξ)=\°BV=t

{ 0 for feΣ(2),

where σB η=ζ means that σA η=ξ and B(η19 η2)—1> al*d the summation is taken

over all η satisfying σB η=ξ. We introduce another operator Xs in C(Σc) defin-

ed by

(2.3) Xsv(ψ) = Σ *- /oθ+*oθθ »(„) for z

Because of (1.2), (1.8) and (1.9) the Ruelle-Perron-Frobenious theorem [9, Pro-

postion 1] can be applied to Xsy and we have the following proposition

Proposition 2.1. There exist s0EϊR, a neighborhood D of sQ in C and a

positive constant δ such that, for every SZΞD, JCS is decomposed as follows:

(i) ESES = ES>1SES = \ES and Esv = Xs(v)ps for

where XeΞF^Σc)*, andps^3ϊθ(Σc) is an eigenfunction of Xs> namely

(ii) %s is a holomorphic function in D such that

| λ s - l | < δ for all

\ — 1 d 5v =bθ
^•50 — y ~T~ s ^ *

(iii) JB, S, = SSE. = 0 and
the spectral radius of Xj1 Ss \ 3'Θ(ΣCV)< 1 —2δ .

(iv) \ps{ψ)\>c>0 for all ψ e Σ c , ΛWέZ
A ( ^ ) > ^ > 0 for all ψfBΣϊ when s^Rf)D.

REMARK. If/e£?β(Σc) is real valued, the limit

lim — log ( Σ exp (Sn f(v)))n~>"30 n a£v=ψ

exists and is independent of ψ. We denote it by P(f). It is known that we
have for all n

(2.5) Cλe
n?^< Σ exp(Snf(v)))<O2e

nF^ for all

By using the right hand side inequality of (2.5) we have for complex valued
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function r

(2.6) Σ \exp(Snr(v)))\ = Σ exp (Sn Rtr
σn

Gv=ψ σn

Bv=ψ
Now we state the main result in this section, which shows the property

Proposition 2.2. Let sQ^R be the one in Proposition 2.1. There exists a

neighborhood Do of s0 in C such that, for every s in Do, XΌtS has the following

decomposition:

is an eigenfunction(i) EOtS EOfS = EOtSy EOtS u = Xs(u I ΣO+) WS, where

of XQS, that is,

-£'0>sws = %sws.

(ii) Eo>sSOfr = SOtSEOt$ = O.

(iii) the spectral radius of XJ1 S0>s 3r

θ(Σ0

+)< 1 — δ.

(iv) fors<ΞRΠD0,

ws(ξ)>c>0 for

< f ) = 0 for

As preparations for the proof of Proposition 2.2 we shall show several lem-

mas.

Lemma 2.3. Let re9^(23). If ξ and ψ m Σ ( l ) satisfy

we have for n<m

e-Wr\\Q

exp(Snr(ξ))

(2.7)

and

(2.8)

Proof. Since

holds ίor j<m, we have

(2.9) \Snr(ξ)—Snr

exp (S.

»"-"/!-

Σ \r(σΆξ)-r(σ'A
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which implies the right hand side inequality of (2.7). To show the left hand

side inequality it suffices to exchange the roll of ξ and ψ. Note that it holds

that

\exp(Snr(ξ)-Snr(ψ))-l\<\Snr(ξ)-Snr(ψ)\txp(\Snr(ξ)-Snr(ψ)\).

The subsutitution of (2.9) into the above inequality gives (2.8). Q.E.D.

Lemma 2.4. For all ξ e Σ (1), it holds that

(2.10) Σ |ex P 5 r t r(9 7 ) |<C 3 exp(nP(Rer)) ( n = l , 2 , •••)
σ%η=ξ

When r(η) is real for allη^Σl satisfying B(ηly ^2)
=1> w e have for all

(2.11) Σ expSnr(η)>O4exp(nP(r)) ( n = l , 2 , - ) .

e constants C3 and C4 arc positive and independent of n.

Proof. From the definition of K and (1.2) we see immediately that, for

every k such that \<k<K, there exists \<η<K satisfying B(ky η)=l. Thus,

we can choose a sequence ηf\j=l, 2, --•> satisfying B(k,η[k))=l> and

B(ηγ\ vΫh)=ί f o r a 1 1 J ^ l T h e n obviously we have v<»=(v[
k>9 vff\ . . . ) e Σ ί .

Now we fix arbitrarily K elements η{l\ / = 1 , 2, •••, i^, in Σc satisfying JS(/, 97!°)=

1. For v19 v2, •••, z>we{l, 2, •• , i f} and Λ|reΣί we denote by (^, ι;2, •••, vn,ψ)

the element in f=(?,-)e Π {1, 2, •••, L} such that
1 = 1

For 97 such that B^i,yi+1)=l (i=ί, 2, •••, n— 1) we correspond the element

ΨΛ(τ7)<ΞΣc defined by

Ψ » ( ^ ) = (Vi> V2>~ >V*, Vil)) w h e n Vn = I.

Then for each f GΣ(1) and / e {1, 2, •••, iζ'} Ψ n gives a one to one correspondance

between

First suppose that r is real valued. Then, for ξGΣ(1) we have

Σ exp Sn r(η) = Σ exp

from (2.7)

>β" l | r | lβ / 1~β Σ Σ eχP iSM r(z/)
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>£-|Ml0/l-0 Q g(

Thus by setting CA=CX e~wWι-Q

 e~
?(Re r ) we have (2.11). When r is complex

valued, by using the right hand side inequalities of (2.5) and (2.7) we get (2.11)

by a similar argument, where we set Cz^C2Kenr^l~B e~?iRe rK Q.E.D.

Corollary 2.5. Suppose that ξ and ψ in Σ(l) satisfy

ξi^Ψi for i^™-

Then, it holds that

(2.12) I Σ expS. r fo)- Σ exp Sn r(v)\ <C5 e»*Re'> θm .
σn

Bη=ξ σn

βv=ψ

Proof. Note that there is a one to one correspondance F between
{η] σ»B η=ξ} and {v\ σn

B v=ψ} such that Ψn(F(v))=Ψn(v). Note that F(η)=v
implies that v—ηi for i<nι-\-n. Then we have from (2.8) replaced m by m+n
that

the left hand sice of (2.12) < d θm Σ I exp Sn r(η)\ ,

where Cf

5={\\r\\βj\-Θ) e11'"*/1-*. The substitution of (2.10) into the right hand
side of the above inequality gives (2.12) for C5=G'5 C3. Q.E.D.

Lemma 2.6. Suppose that

(2.13) 7χ= l/^^λΓ'Kl

Then we have an estimate

(2.14) | | | ( ^ > κ | | | β < C 3 0 m ' 2 | | M | | β + C 6 ! J M U for all aeff^ΣJ).

where C6m is a constant depending on m.

Proof. Suppose that ξ, ψ e S ( l ) satisfy ?, = ψ«, for i<p(p> 1). Then

{es" r^-es^F^} u(v)+ Σ es»' (F(>I)) {u(v)-u{F(η))}
ζ σ%η=ξ

= 1+11.

From Corollary 2.5 it follows that

On the other hand, since
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\u(v)-u(F(v))\<\\u\\Θθ^y

with the aid of Lemma 2.4 we have

| λ s | -»\II I <C3 θp \\u\\θ(eΛRe r) Θ1/2\XS\ - 1 ) * θm/2.

By using the right hand inequality of (2.6) we have for all ξ

e^*** \\u\U .

Therefore under the assumption (2.13) we have (2.14) by setting C6 ) W ί=(C2+C5)

(^(Re0|χ7|-l)-. Q.E.D.

Now we fix s^D and set r=—sfo+ho. Let w e ^ Σ S ) . Suppose that
v={vιy v2y •••, vqy ξ) satisfies σ% v~ξ, and that vq—L Since σp

B ψGΣc implies
that ψ G ^ c , we have

(2.15) X ί . / u K ^ 2 , ..,^,V/))

where w—w | s+. Now we have

(2.16) X',J u(Vl, v2, - , »„ f )-^ί . , ' « K v2, -, vv

By using Corollary 2.5 we have

|/

Concerning II, since

it follows from (2.10) that

Thus we have for C7=C3+C5

(2.17) I the left hand side of (2.16) | < C 7 θ" ep?(-Re '*> \\\u\\\, .

By applying Proposition 2.1 to the right hand side of (2.15) we have
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(2.18) S.7*-£oV«K"»-.W ))
= Xs(U)ps(Vl, V2, -, Vq, η

W) + %7P St,s ΰ(Vl, v2, ••-, Vq, η
W) .

The difference of the representations of (2.18) for p and p+ί gives the estimate

(2.19) I (kj1 X'OiSy
+1 «(„„ V2y -., vv v^-βj1 Xί,,) pu{vv v2,-, vv vw) I

From the combination of (2.17) for p and p-\-\ and (2.19) we have

(2.20) KλΓ1 XΌ..Y+1 u(Vι, - , vv ξ)-^1 Xl..Yu(Vl, -, vv ξ)\

Let m=p+q. Note that

(2.21) Λfi u(ξ) = Σ eV^. - .v,.i) χ,o, M ( ... ; ? ) f

where the summation is taken oλ'er all (vv v2, •• ,vq) such that JB(P,-, V , + 1 ) = 1

( ι = l , 2 , •••,?—!) and β(v,, Q = l . Then, it follows from the representations
(2.21) for m=p+q and m+l=(p+l)+q, and (2.20) that

(2.22) I (S.71 Xί,s)m+1 u(ξ)-β.7ι XΌ.sT u(ξ) I

£1*7*1 Σ |eV(V .Vf)|

• ilij1 XΌ,sγ
+i u(Vιt -,pv f ) - ( λ r ι -CO.*)" u(vu -,vq,ξ)\

Assume that

(2.23) γ 2 = / ( R e ^/2 ((1—2δ) | λs | -
χ)

Then for large m> if we choose p and ^ as

where [x] denotes the integer part of x, it holds that

I the right hand side of (2.22) | <C 8(γΓ+Ύ?) IIMIIa,

which implies that for all ξ e Σ5

(2.24) (λ.71 -CΌ,s)
m u(ξ) converges in C as m tends to the infinity.

By using the formula (2,.21) we have from (2.17) and (2.10)

Σ Σ(2.25) |(Jl7ι-Ώ..)"«(e)-X.7Σ Σ
/=i v v«-i '
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On the other hand, we have from (2.15) and Proposition 2.1

(2.26) \%7' Σ *V<V".'.«> {(λΓ 1 -«. .) '*K -> W
V ..vff_,f/

It follows from (2.25) and (2.26) that for O9=C3(1 + C7)

(2.27) I ( ^ . y u(f )-λ7< Σ

Now we have

Lemma 2.7. Suppose that (2.13), (2.23) are satisfied. Then we have for

(2.28) lim (λ.71 J7ί..)" «(« = **(«) w.(f),

where ws(ξ) is a function defined by

(2.29) ws(ξ) = lim %jq Σ Σ ^ ^ i -^-i '

•iK-,V«U ( l ) ) /or

».(£) = 0 >r feΣ(2)

(2.30)

(2.31)

(2.32) ,/ s<ΞRf)D,ws(ξ)>C10 for all

where C10 is a positive constant.

Proof. The convergence of the right hand side of (2.29) follows from
(2.24) and (2.27), and at the same time (2.28) also follows. By applying (2.12)
to the right hand side of (2.29) we have (2.30). We have immediately (2.31)
from (2.28). If ί G β , we have ps(Ψ)>c for all ψ^'Σc from (iv) of Proposition
2.1. Therefore (2.11) and the fact that X , = / ( r ) for s real imply (2.32) for
C10=cC4.

Lemma 2.8. Assume (2.13) and (2.23) are satisfied, and let s(ΞRf)D.
Then, there is no eigenvalue λ of ~CΌtS such that

| λ | > | λ j and
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Proof. Let λ be an eigenvalue of -£'0,s, and let V^S^A) be an eigen-
function associated with λ, that is, αΦO and

Then, we have

(λ/λ,f v(ξ) = (λΓ1 -CΌ..T υ(ξ) -> Xs(v) ws(ξ).

which shows that (λ/λs)
w *;(£) converges for all J e Σ J . Since there is a £ such

that ϋ( | )φθ, this implies that (λ/λs)
w converges as m tends to the infinity. Thus

we have \=%s or | λ | < | λs | . Q.E.D.

With the preparation of the above lemmas, we proceed to show Proposi-

tion 2.2. First remark that the pair of spaces O(ΣJ) and 9^(23) satisfies the

required conditions on the pair of E and B in Ionescu, Turcea and Marinescu

[6]. Since \S0=e*W>'<>» = l9 we have for all m

(2.35) \0^ll Xf,.sJ n{l)\<\\u\U%-sl\
m Σ exp Sm ro(η, s0)

by using (2.10)

Then (2.35) and Lemma 2.6 for m satisfying C3θ
m/2<ί assure that the result

of [6, Section 9] is applicable to %7* -CΌ,s0, and it follows that

where

1̂ 1 = 1, Es E, = Ei9 E< Ej = 0 (i±j), SE, = E<S = 0

and

spectral radius of *S< 1 .

Now Lemmas 2.7 and 2.8 imply that

p=ί and cλ = XSQ = 1 ,

and Lemma 2.7 shows that the dimension of the space of eigenfunctions for
cx is 1, namely

dimension of range of E1 = 1 .

Thus we have

Note that λ.71 -Z?o,s is continuous in s as a bounded operator valued function.
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Then the perturbation theory (see for example, Kato [7, Theorem 3.16, Chap-
ter IV]) assures the following fact:

There exist a neighborhood Do of s0 in C and a positive constant δ such
that we have for all SEΞD0

where μs is holomorphic in s and μ S o =l,

ESES = ES9ESSS = SSES = O, dimension of range Es=1

and

spectral radius of St<l—28 .

On the other hand, Lemmas 2.7 and 2.8 show that ^ = 1 and the eigenspace is
spanned by ws. Thus Proposition 2.2 is proved.

3. Proof of Teorem 1

As remarked in Section 1, we compare the spectrum of £%Λ and X^s in
order to get a decomposition of XZtV Note that XttS is represented as

We have from (1.6) by a direct calculus

(3.1) IIIA.--^wlll -o as e-o

Suppose that 17,= ,̂- for i<n-\-\. Then it follows that

I£*oo_£*cv> i <:θ» || A | | # ε« 0 | l o g ε | e x p φ"

where co= inf k(ξ)>0, namely
W W 0

Therefore we have

(3.2) |||-re

/./

s|

Thus we have from (3.1) and (3.2)

Lemma 3.1.

(3.3) IIIA.--£UII -»o as
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Now we shall show the following properties of -£8>s.

Proposition 3.2. There exist 62>0, and δ 2 >0 and a neighborhood D2 of
s0 in C such that, for all 0<£<£ 2 and seD 2 , XZfS is decomposed as follows:

(i) -£M = X...£

(ϋ) E*,s Et,s = EttS, XtfS EttS = λ... E9>s,

(iii) dimension of the range of Ees = 1, and there exists A^efF^ΣJ) satisfying

-Ct,s Ks = λ M Kt and

(3.4) IWf)l^c^(^>0),

(iv) | λ e , , - l | < δ 2 for all s<=D2y

(v) *...£,., = SMtf.., = 0,
ίAβ spectral rasdius of S2tS ^ / 2 +x< 1—2δ2,

(vi) I \ttS—%sI -> 0 uniformly in s&D2as S tends to zero.

Proof. As a direct result of the perturbation theory, the above proposi-
tion except (3.4) follows from Lemma 3.1 and Proposition 2.2. Then it suf-
fices to show (3.4). By using the fact that -{?eΣί B(ξlf ξ2)=0} is compact, it
follows from (1.9) and (1.11) that, for an α>0,

(3.5) a<lm {-sft{ξ)+K{ξ))<π-a

holds for all ξ satisfying B(ξly ξ2)=Όy by exchanging £0, Do and a for smaller
ones if necessary. As a result by the perturbation theory it holds that

(3.6) III :VM-«>, | | | # -*0 as £ - 0 .

Therefore we may assume also that

(3.7) |Argy..Xf)l^f for all feΣ(l)

by exchanging £0 once more for a smaller one if necessary, because

Re;ye,s(£)>4-C4 for all 0<£<£ 0 )

and

(f) -> 0 as £-^ 0 .

By taking account of (1.9), (3.5) and (iv) of Proposition 2.2, we may assume that
for all ̂ GΣ(l) such taht B(ηv η2)=0

(3.8) j-<Arg (X~l exp (-sf9(v)+ht(η)) yttS
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Since ws(ξ)=0 for ξGΣ(2), we have from (3.6) that

(3.9) βt,s=sup | Λ f f ( f ) | - > 0 as £ - 0 .
<?6EΣ(2)

Since yttS{ξ) is an eigenfunction of XttS it is represented as

- Σ t K . l ^ exp(-sfz(v)+ht(v))yt>s(v)

+ Σ K.I £k(v) exp (sft(v)+ht(v))ytfS(v)
^ 6 2 ( 2 )

Let £ GΣ(2). Note that B(Vl, V2)=0 for all v satisfying σA v=ξ and that (1.2)

implies feGΣ(l); σA η=ξ} Φφ. Then, by using (1.5) we have from (3.8)

Since we have from (1.5)

\II(ξ)\<LCScoβ,tS,

it follows from (3.9) that for small £ > 0

Sksm^ for all

which shows that (3.4) holds.

The properties of Xt s shown in Proposition 3.2, more precisely (i)~(v) of

Proposition 3.2 guarantee that the procedure of Parry [9] can be carried out for

J2ts without any modification, and Theorem 1 of [9] implies that Zζ(s) =

ζ(sft+ht+log£ k) is well defined for all 0 < £ < £ 0 and ίGfl2 and that Z,(s) is

of the form

(3.10) Zt(s) = (\-eWyι Ψs(s)

where

Pt(s) - log λ t f,

and φt is a holomorphic function in D2 without zero. Note that Pt(s) is well

defined and analytic in ί G D 2 because of (iv).

Here, we would like to make a remark on the dependency of φt on £.

Fix an s^D2 and denote —sf^+hg by r8. If we cnostruct fttm by following the

process of [9], which is a function depending on (ξu ξ2, ••-,?„,) only such that

the largest eigenvalue of the Ruelle operator for Fε>wί equals λg>s, it is possible to

have an estimate
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\\rt-?t,JL<:Cε-co\logε\θm.

This estimate is sufficient for the convergence of φt in D2, but the dependency
on S seems to be singular when £ tensd to zero.

Since φt(s)Φθ for all s^D2, in order to show the existence of pole in D2

it suffices to show the existence of zero of 1— ep*ω. The relation (vi) of Pro-
position 3.2 implies that |P ε(s)—^(ί)|-*0 uniformly in D2 as £->0. On the
other hand, (i) of Proposition 2.1 shows that 5=s0 is a simple zero of P(s). Then
according to Rouchέ's theorem, we see that P2(s) has a zero near s0 for £ small.
Thus Zt{s) has a pole in D2 for small £.

4. Application to an obstacle consisting of several convex bodies

First we shall give a brief explanation on the definition and fundamental
properties of FD(s). Let Ojyj=l, 2, ••-,£, be bounded open sets with smooth
boundary Γ, satisfying

(H.I) every Oj is strictly convex,

(H.2) for every {j19j2,jά e {1,2, . ,L}3 such that J . Φ J V if / Φ / \

(convex hull of (5^ and Oj2) Π Oy3 = Φ .

We set

O = U f,i Oy, Ω = Λ 3 - © and Γ = 8Ω .

Denote by γ a periodic ray in Ω, and we shall use the following notations:

dyi the length of γ ,

Ty: the primitive period of γ ,

iyi the number of the reflecting points of 7 ,

P γ : the Poincare map of γ .

We define FD(s) by

FD(s) = Σ ( - l)'v ΓvI / - P y I "1/2 ^srfv
γ

where the summation is taken over all the periodic rays in Ω and | /—Py | denotes
the determinant of I—Py.

Let X(s) (s^R) be a representation of a broken ray in Ω by the arc length
such that J ( 0 ) G Γ . When i\X(s)| ίEΛ} is bounded, X(ί) repeats reflections
on the boundary Γ infinitely many times as s tends to ± °° Let the j-th re-
flection point Xj be on Γ/y. Then a bounded broken ray defines an infinite se-
quence ξ= {•••, /_j, /0, Zj, •••}. Obviousely we have / ; 4/ i + 1 . We call this infinite
sequence as the reflection order of X(s).
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We deonte by A the LxL matrix defined by

0, if ι=j,

and set

) = 1 for aU j}

Then as was shown in [3], for every ξ^ΣA there exists uniquely a broken ray

whose reflection order is just equal to ξ. We set

where Xs denotes the j-th reflection point of the broken ray corresponding

to ξ. For each periodic ray it corresponds a periodic element ξ&Σ,Λ, that is,

σA ξ=ξ for some n. Denote by Xχ(ξ) and λ2(£) the eigenvalues of Py greater

than 1, and by #/(£), 1=1, 2, the principal curvatures at XQ of the wave front of

the phase function φΓ,o defined in [3, Section 5], where i=(ξ0, •••, £n-i) Then

we have

(4.1) \(ξ) X2(ξ) = Π

It is easy to check that

(4.2)

and

(4.3) # {y peridic ray in Ω suin that dΊ<r} <eaor.

Since the other eigenvalues of Py are λΓ1 and λϊ"\ it holds that

(4.4) IX, λ 2 - I I - P Ί I I <C(λi λ2)
1/2 for all γ .

Define g( |) for an periodic element ξ by

Remark that we have from (4.1)

and that g(ξ) can be extended to a function in 3ϊβ(ΣA). Define ζ(s) by

l - Σ exp 5,(-i
i » \ζ ξ
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The estimates (4.2)^(4.4) imply that both FD(s) and ζ(s) converge absolutely
for Re ί large. Denote by v0 the abscissa of convergence of ζ(s), that is,

v0 = inf {v\ ζ(s) converbes absolutely for Re s >v} .

Then it holds that for Re s >pQ

-flog Z(s) = Σ - Σ Snf(ξ)exp(Sn(-sf(ξ)+g(ξ)+πi))

Obviousely we have

SJ(ξ) = dy,n = i,.

Taking account of the number of elements ξ^ΣA corresponding to <y, we have

Σ
(

where the summation is taken over all ξ corresponding to γ. Thus we have

(4.5) l ? l < * M - ^ ^

Since | | /-Pyl~ 1 / 2 -(λ 1 λ 2 )- 1 / 2 | <C(λ 1λ 2)~ 1 the left hand side of (4.5) is abso-
lutely convergent in Res >vo—a(a>O).

Now we consider the case that O; are small balls. Let Pjy j—l, 2, •••, L,

be points in R3. Suppose that

(A.I) any triad of P/s does not lie on a straight line.

Set

and

0 if |P, P,|<rfm a x.

By changing the numbering of the points if necessary, we may suppose that
there exists 2<K<L such that

B(i,j) = 0 for all i if j>K+\

and
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B(i, j) = 1 for some i if j <K .

We ssume that

(A.2) CN>0 for a some positive integer N

and

(A.3) min | P , . P y | > max |P, P y | .

We denote by 0 ; > β the open ball with center P ; and radius £, and set

Note that under the assumption (A.I) On satisfies the condition (H.2) for 6
small. We denote /(£), *(£) and ζ(s) attached to 0 f by /t(g), ^(f) and ?f(ί)
respectively. It is easy to see that, by setting fo{ξ)= | P | 0 P$x |,

(4.6) I log 61 IIIΛ-/olllβ-O as S -> 0 .

From the relationship between the curvatures of the wave fronts of incident and
reflected waves we have

where Θ(f) is the angle Pξ_x P | o P^. Thus we have immediately

| β ->0 as £ -

Then, by setting &(f)=£,(£)-log 6 and ft(f)=-J- log (- | cos®^) we have
2 \ 4 2 /

(4.7) IIIΛ-AII! -^O as f - 0 .

We see that k defined by

satisfies (1.3) and (1.4). Indeed, (1.3) is trivial, and (1.4) follows from (A.3).
By putting s'=s—(log 6+ y/^Λ 7t)jdmΛyi we have

^ * - s'ft+K+k log 6 ,

where

Aβ = g,+ yf=ϊ π k+(log S+V^ϊ π) ίίf^M
d

Evidently it follows from (4.6) that
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hence we have

for ξ satisfying B(ξvξ2)=l.

Since Im ho(ξ)=π k(ξ),

a<tϊmh0(ξ)<π-a(a>0) for all ξ satsfying B(ξlf ξ2) = 0

follows from (1.3). Thus ht, ht, k satisfy the conditions required in Theorem 1.

Let Zt(s) be the zeta function defined by (1.6) and (1.7) for these h^h^k.

Then, Theorem 1 says that there exist £0>0, so^R and Do such that Zz{s) has

a pole in Do. Then, it follows that

ξt(s) = Z8(*-(log £ + V=ϊ τt)ldm9X)

Thus we have the following

Theorem 2. Suppose that the configuration of L points {Pj G R3 j= 1,2, ,

L} satisfies (A.I), (A.2) and (A.3). Then there exist 60>0, so^R and a neighborhood

Do of s0 in C such that, for every 0<6<S0, ξ£(s) is meromorphίc in D g = {s—z+

(log S+V:=rT aOMna*; z^D0} and has a pole near *0+(log f + V ^ π)ldmax.
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