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1. Introduction. Let L be an integer >2, and let A=[A(7,)]; j=1.5,.... be
a zero-one LX L matrix. Let B=[B(i,})]; j=12,-. be a zero-one L X L matrix
such that

(L. B(i,j)=1 implies A(s,j)=1.
We set
K = max{i; B({,j) = 1 for some j} .
Let C be the K x K matrix defined by
C = [B( 1)) =12k -
We assume that
(1.2) C¥>0 for some positive integer N,

that is, all the entries of matrix C¥ are positive.
Following Parry and Pollicott [10] we set

Si={f= ok b )€ L2, L} AG, E) = 1 forall i},
St = {0 = (Vo oy ¥ )€ L2, - K} By i) = 1
for all ¢}.

We classify the elements of 37 into two groups:

S(1)={¢3i; B(l,g)=1 forsome 1<I<K}

and
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S(2) = {g€34; B(LE) =0 forall 1<I<K}.

We regard ¢ as a subset of 3. Denote by o the shift transformation defined
by

(O'E)i =&

and let o, and o be the restrictions of & to 3} and 3¢ respectively.
Let £,>0, and let

fo heFy(=3) forall 0<e<s, (0<6<1).

Because we shall use often the Banach space Fy(2%) and its norm, we recall
the definition: For r& C(Z]) we define var, 7 and ||r||.. by

var, r = sup{|7(E)—r(¥)|; E,V€21 and E,=+; for i<n},
lIrlle = sup{|r(§)]; E€Z4} .

We set for 0<0<1
lirlle = sup var, r/6", Wl 71lle = max {||7 ||, ll7[le} ,
Fo(2h) = {reCEi); llirllle<<oo} .

Let ke Fy(=1) be a real valued function satisfying

k(E)=0 if B(,&)=1

1.3 ]
(13) k(E)>0 if B(,&)=0
and

i k() = ¢,>0.
(9 (L2662 2R O = >
Suppose that
(1.5) W fe—Ffollles NlBe—Rollle—>0 as &—0.

For 0<€&<¢€, we define Z,(s) by

(1.6) Z) =exp {31 3 exp (S, )},
= onE=¢

where

(1.7) re(Ey8) = —s feo(E)+ho(E)+R(E) log €,

Sn re(f; S) = re(g) S)—{—VE(O'A g’ S)+ +re(o":1—l ‘E) 3)

and the summation in (1.6) is taken over all £€3} such that o% £=£. Note
that Z,(s) is nothing but the zeta function ¢ (r,(+,s)) in the sense of Parry [9,
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Section 3]. In this paper we call Z,(s) the zeta function of a symbolic flow
(24, o 4) associated to 7,.

Our main theorem is the following

Theorem 1. Suppose that (1.1)~(1.5) are satisfied, and that

(1.8) f{E)>0 forall Eczj,
(1.9) hy&) s real for all E€3}  satisfying B(E, &) =1
and

(1.10) 0<Im hy(E)<m for all E€3} satisfying B(E,E,)=0.

Then there exist s,€ R, D a neighborhood of s, in C and &>0 such that, for every
0<<E< &y, Zy(s) s meromorphic in D and it has a pole s, in D with

Se—>S8, as €—0.

We should mention about the reason why we need the above theorem.
In stuides of scattering by an obstacle O consisting of several strictly convex
bodies, we introduced a function Fy(s), which was defined by means of the geo-
metry of periodic rays in the exterior of O. The definition of Fy(s) and its
brief explanation will be given in the beginning of Section 4. Theorem 1 of
Tkawa [5] says that, if Fj(s) cannot be prolonged anlytically to an entire function,
the scattering matrix S(2) for O has an infinite number of poles in {z; Im
g<a} for some a>0. This means that the modified Lax and Phillips conjecture
is valid for O(cf, [8, page 158] and [2]). But it is difficult in general to show the
impossibility of F, of prolongation to an entrire function, and we could verify it
only for special examples [5, Theorem 2].

An interesting property of F}, is its close relation to the zeta function of a
symboic flow on (2}, o,). Namely, by using the matrix 4 determined by the
configuration of bodies, we define £(s) by

) =exp {31
n

n=1

E:fexp (Su(—sf(E)+g(E)+im))},

0%

where f and g are appropriate real-valued functions in Fy(=}) attached to O.

Then the singularities of —;1‘1 log ¢(s) in a certain domain coincide with those of
s

Fy(s). Thus, the consideration of singularities of F, is essentially reduced to
that of £(s). But unfortunately it is likewise difficult to find singularities of £(s).
The main difficulty comes from the fact that there is no s&C such that —sf(§)
+g(E)+im is real for all E€3]. In the case that convex bodies consisting O
are small comparing to the distances between each others, we can apply Theorem
1 to find a pole of the zeta function {(s) corresponding to O(Theorem 2). This
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application will be discussed in Section 4. Thus, by virtue of Theorem 1, we
can show that the modified Lax and Phillips conjecture is valid for obstacles of
this type.

Next we make some remarks on Theorem 1. Consider the term for an »

fixed
21 exp (Sy(—sfe(§)+he(E)+k(E) log €)),

Oac—=

and let & tend to zero. Then it converges to
25 exp (Su(—so(E)+h(£)) »
anE=¢

because of the effect of the term k(£) log €. If we set

Zo(s) = exp {3} ;1; 3 e (S~ O HREN

7=l N ghE=

Z(s) is the zeta function of the symbolic flow on (¢, o) associated with —sf,-+
ho. Tt suggests us that Z,(s) is a perturbation of Z(s). But if we compare the
symbolic flows of which they are the zeta functions, not only the function —sf,+
hy, but also the structure matrix C are perturbed. Thus we should call this
perturbation of dynamical system as “‘singular perturbation”. Even though The-
orem 1 says that a pole of Z,(s) is close to that of Zy(s) when & is small, we do
not know whether Z,(s) itself is close to Z(s) or not. It seems to us that Z(s)
does not converge to Z(s) as € tends to zero.

We would like to express our sincere gratitude to Professor T. Morita
for his kind teaching of the ergodic theory of symbolic flows and discussions on
the geometry of rays in the exterior of several convex bodies. We also express
our hearty thanks to the referee for his suggestions, with which we could cor-
rect our original manuscript.

2. On the spectrum of [ ..

In order to find a pole of Z(s) it is important to examine the spectrum of
the Ruelle operator attached to 74(&, s) of (1.6), which is the operator in C(Z})
defined by

(2.1) Lo uE)= X e ™u(y) for usC(Z})

o4n=¢
where the summation is taken over all &3} satisfying o, p=&. Namely, it is
crucial to show that £, ; has the property P of Parry [9, Section 2]. Here, we
say that an operator £ has the property P when £ has a simple eigenvalue A
and the rest of the spectrum is contained in a disc with radius less than |\ [.

To this end we introduce another operator L7, in C(S}), which is defined as
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follows: for u C(3})

SV emsfeMtheM g () for E€Z(1)
2.2) L1 u(E)=qos1=¢
0 for £€3(2),

where o3 =& means that o, =£ and B(y,, 7,)=1, and the summation is taken

over all % satisfying o p=E. We introduce another operator £, in C(S%) defin-
ed by

(2.3) LoW)= 3 e foh® o) for veC(SE).

agVy=
Because of (1.2), (1.8) and (1.9) the Ruelle-Perron-Frobenious theorem [9, Pro-
postion 1] can be applied to £, and we have the following proposition

Proposition 2.1. There exist s, R, a neighborhood D of s, in C and a

positive constant 8 such that, for every s€ D, L, is decomposed as follows:
L =%\E+S,.
G) EE=E, LE,=\E, and Eov=xX(0)p, forveF,(f),
where XETFo(ZE)*, and p,EF o(Z¢) is an eigenfunction of .f's, namely
Lo, =%p,.
(i) A is a holomorphic function in D such that
[A—1|<8 forall s€D,

0

~ d «
A, =1, =X, 0.
) ds s=50:i:
(i) E S, =S E =0 and
the spectral radius of A7' S| Fy(zs)<1—28 .
(iv) | p()|=c>0 forall 3¢, and
p(¥)=c>0 for all &3t when s€RND.

REMARK. If fe Fy(S¢) is real valued, the limit
limLlog( 3 exp (S, )
R b

exists and is independent of 4. We denote it by P(f). It is known that we
have for all

(2.5) C, PN < Ewexp(S,, fEN<C PN forall ek,
oLv=

By using the right hand side inequality of (2.5) we have for complex valued
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function r

(2.6) 2 " lexp (S, r(@))| = 2 1'Ilexp (S, Re 7(»))) < C, e"P®e ) .

ohv=

oG v=
Now we state the main result in this section, which shows the property
P of L4 ..

Proposition 2.2. Let sy, R be the one in Proposition 2.1. There exists a
neighborhood D, of s, in C such that, for every s in Dy, L5, has the following
decomposition:

-Eé,s = i‘s E0,3+S0,s
() Eo.E,,=E,, E,.u=X(uls;)w, wherew,cFy(Z})is an eigenfunction
of L§.s, that is,
LW, = A, W, .

(ll) EO.S SO,r = So,s Eo,s =0.
(iti) the spectral radius of X' S,
(iv) for s€e RN D,,

Fe(zt)<1—38.

w(E)=c>0 for E=3(1),
w(E)=0 for E€3(2).

As preparations for the proof of Proposition 2.2 we shall show several lem-
mas.

Lemma 2.3. Letr€Sy(3}). If £ and ) in 3(1) satisfy
E;=; for i<m,

we have for n<m

(2.7) e-lirilg 8"~ | €XP (S 7(8)) |  piiritg 6m-"11-0
exp (S, 7(yr))

and

2.8 M_l < 0 (07771 —0) ellrilg 0™ "11-0

I e S L

Proof. Since
[7(ch E)—r(ch )| <||7|ly 6™

holds for j<m, we have

29) 1S, 7E =S, ()< 33 Ir(ch H)—r(ch W) <IIrlly 6" */1-0,
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which implies the right hand side inequality of (2.7). To show the left hand
side inequality it suffices to exchange the roll of £ and . Note that it holds
that

lexp (S, 7(8)— Sy 7(¥) =1 <[ S, 7(E)—=Sa 7 (¥) | exp(| S, 7(E) =S, 7(¥) 1) -
The subsutitution of (2.9) into the above inequality gives (2.8). Q.E.D.

Lemma 2.4. For all £=3,(1), it holds that
(2.10) > : lexp S, 7(n)| <C; exp (nP(Rer)) (n=1,2,-).

oB7N=
When () is real for all n& 3} satisfying B(n,, n,)=1, we have for all E€3.(1)
(2.11) P eexp S,7(p)=>C, exp (nP(r)) (n=1,2,-).
0B7=

Here the constants C; and C, are positive and independent of n.

Proof. From the definition of K and (1.2) we see immediately that, for
every k such that 1<k<K, there exists 1<»<K satisfying B(k, )=1. Thus,
we can choose a sequence n%¥,j=1, 2, .-+, satisfying B(k, »{¥)=1, and
B(n%P, n%1)=1for all j>1. Then obviously we have n®=(5{", 5§, -.-)e=¢.
Now we fix arbitrarily K elements »”, I=1, 2, .-+, K, in 3¢ satisfying B(l, n{")=
1. For v, v, -, v,E{1,2, -, K} and &3] we denote by (v, v,, -+, v,, V)

the element in £=(§;)& f[ {1, 2, -+, L} such that
Ei=v (Z: 1,2, n)’ §n+j =P (]: 1,2, '") .

For 5 such that B(y;, ;+)=1 (i=1,2, ---,n—1) we correspond the element
¥, (p)E ¢ defined by

Wrz(’?) = (7)1, N2y **°s Ny 7](')) when Ny = l.

Then for each £&€=(1) and l€{1, 2, -+, K} ¥, gives a one to one correspondance
between

mesi; ot n=En, =1} and {PEZE; ot P=9D, 4, =1} .

First suppose that r is real valued. Then, for £€3(1) we have

_ exp (S, 7(2)
P STl = 2 e Sr () S r )

from (2.7)

Ze—llrlloll—o E 2 exp S,, r(v)

= ag =)
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Ze—llrllgll—a Cl e(n—l)é“(ne n

Thus by setting C,=C, e~!"le/1-¢ ¢~P®e ) we have (2.11). When r is complex
valued, by using the right hand side inequalities of (2.5) and (2.7) we get (2.11)

by a similar argument, where we set Cy= C,K ¢!!7!le/170 g~P(Re 1), Q.E.D.

Corollary 2.5. Suppose that & and  in (1) satisfy

Ei = 'llf'; for igm .
Then, it holds that
(212) I 2 exp S,, 1‘(77)-— 2 exp Sn T(V)l SCS enF(Re e .
op= ot y=

Proof. Note that there is a one to one correspondance F between
{n; o n=E} and {v; o5 =1} such that ¥, (F(y))=Y,(»). Note that F(»)=v»
implies that v,=x; for i<m+n. Then we have from (2.8) replaced m by m-+n
that

the left hand sice of (2.12)<C{ 0" 31 |exp S,7(n)!,

op7=¢
where Ci=(||7|l/1—0) e'"™e/*~%.  The substitution of (2.10) into the right hand
side of the above inequality gives (2.12) for C;=C¥% C.. Q.E.D.
Lemma 2.6. Suppose that
(2.13) v, = |ef®en 92571 <1,

Then we have an estimate

@) U (Z) ulle< G0 lallot ol for all wE ().

where Cg ,, is a constant depending on m.

Proof. Suppose that &, Jr&3(1) satisfy &;=+; for i<p(p>1). Then

L. w(E)— L4, u(w)
= 3 {5 uly)— e u(F ()}

opn=¢

_ 2 {eSn7™ —eSmrFONY ()b 3T SmrFOM {u(n)—u(F ()}
o5 n=¢ ogn=<¢

= I+11.

From Corollary 2.5 it follows that
Rl 7 [T <Cllullo (R 7|3, )" 67

On the other hand, since
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lu(n)—u(F ()| <lulle 0°*",
with the aid of Lemma 2.4 we have
R " LT| < Cq 62 ||ullo(e"e 7 02| R,| 7y 672
By using the right hand inequality of (2.6) we have for all &
| L8," u(E)| < Cyemf®en ||y, .

Therefore under the assumption (2.13) we have (2.14) by setting C; ,,=(C.+C5)
(ep(Re 7%z ] Q.E.D.

Now we fix s&€D and set r=—sfy-+h,. Let uc%Fy(=}). Suppose that
v=(v), vy, **, v,, £) satisfies o§ v=E, and that »,=I. Since o} Yy EZ¢ implies
that &3¢, we have

(215) ’E(/).sp u(”l’ Vyy "y Vg 77(1)) = 2 ) exp (Sp T(‘\]/‘)) u(“]’)

o5 =(vVa, Ve
= L2 q vy vy -, v 7)),

where #=u|xs. Now we have

(216) 'Ef/),sp u(yl, Vs ***y Vs ‘E)_-E(’)sﬁ u(Vp Vay ***s Vs 7)(’))

=S u() e ™ u( (0))}
opn=(,vz Ve, €

_ by {es}, 7N __gSp r(‘l'p+q("))}. u(’?)
ob7=(vy,v5,v4,€)
+ > €50 "@p1a {y () —u(W ()} = I+11.

of 7=(Vy,Vz,*Ve,€)

By using Corollary 2.5 we have

|| <Cse?P®en 0% |7 ]y |l .
Concerning 11, since

[ () — (W o)) | <|l2elg 677,
it follows from (2.10) that

|IT | <Cyllully 67+ ?PRe )

Thus we have for C;=C;+C;
(2.17) [the left hand side of (2.16)| < C, 6 e?P®e » |[|ul|, .

By applying Proposition 2.1 to the right hand side of (2.15) we have
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(2.18) AP LG Pu(vy, vy -, Vg 7P)
= Xs(ﬁ)ps(yli Vyy *** Vg 77('))+X:1’ Sg,s 12(1}‘, Vg *** Vg 7](1)) .
The difference of the representations of (2.18) for p and p-+1 gives the estimate
(219) I(s"s_l -E(,),s)‘““1 u(vly Vay **"y Vgpy 7)(1))_(15_1 -E(,),s) Pu(y“ Vg **y Vg 77(1))‘
<IN 8o, &l (A" So0)? Z g
<2((1—=28) [ | =) MMl el -
From the combination of (2.17) for p and p+1 and (2.19) we have
(2'20) I(X;-l -L,(,),s)p—H u(yly Tty Vg g)_(x;-l -E(,),S)P u(Vl, AR 2T g)]
< IR P42(1—28)+C; 6 &P ) ||l -
Let m=p+q. Note that
(221) 6,”5‘ u(g) - 2 eSqr(vl,---,vq,g) -L’aps u(”l) Yy Vg E) )

where the summation is taken over all (v, v,, -, »,) such that B(y;, v,4,)=1
(1=1,2,-+,9—1) and B(v,, &,)=1. Then, it follows from the representations
(2.21) for m=p+q and m+1=(p-+1)+¢, and (2.20) that

(2.22) (AP L8 u(E)— (AT L5, u(E)|

SIATI 3 [t

O L5017 U0 10 )~ L5, (o9 B

<Cal 71| e8P ®e 0|5, 72 {2(1—28)+C; 6% e?P®e M} ||| ullo -
Assume that
(2.23) v, = eF®e N2 ((1-28)| X, | ) 2<1.
Then for large m, if we choose p and g as

R
where [x] denotes the integer part of x, it holds that
|the right hand side of (2.22)| < Cy(v7+v7) Il %llle ,

which implies that for all E€X}
(2.24) (AT L5.)" u(E) converges in C as m tends to the infinity.
By using the formula (2,.21) we have from (2.17) and (2.10)

(2.25) |G Lo uE)—31S 3 eSwEho

=1 Yy, Vgoql

(AT Lo u(vy, s D) < Ca Crot [l ullle -
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On the other hand, we have from (2;15) and Proposition 2.1
(2.26) lj\-s_q 2 eSar Wy hE) {(7\-5_1 —L’é}s)ﬁ u(”n ey l, 7)(D)

vl,.u’yq_],[

—X (@) ps(wy, -5 1, 77(1))} | <Cs % |lullle -
It follows from (2.25) and (2.26) that for Co=Cj(14-C)

(2.27) I(-L;f,s )’” u(E)—X;qv s , £S5y LE) xs(ﬁ)

s Vg -1

Du(vy 0 b ) S Co(vT+%) Hlullle -

Now we have

Lemma 2.7. Suppose that (2.13), (2.23) are satisfied. Then we have for
all Ee>}

(2.28) lim (A;' L3,)" u(€) = X (%) wy(&) ,

where w (&) is a function defined by

(2.29) w(E) = lim X773 3] eSwturveenhp
gyroo I=1 "1"""’4-1

'Ps(vl’ Sty Vo l) 77(1)) for ‘EEE(I) ’
w(E)=0 for £€3(2)

satisfying

(2.30) w,(§)EFo(21)

(2.31) L5, wy(€) = A w(§)

and

(2.32) if s€RND,w,E)>C, forall Ec3(1)

where C,, is a positive constant.

Proof. The convergence of the right hand side of (2.29) follows from
(2.24) and (2.27), and at the same time (2.28) also follows. By applying (2.12)
to the right hand side of (2.29) we have (2.30). We have immediately (2.31)
from (2.28). If s&R, we have p(yr)>c for all &3¢ from (iv) of Proposition
2.1. Therefore (2.11) and the fact that N,—e’® for s real imply (2.32) for
Cy=cC,.

Lemma 2.8. Assume (2.13) and (2.23) are satisfied, and let s€ RN D.
Then, there is no eigenvalue A of Lg s such that

IN] > X| and AN, .
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Proof. Let A be an eigenvalue of L3, and let vEF,(Z}) be an eigen-
function associated with A, that is, 940 and

AL LG v(E) =v(E).

Then, we have

(VA" 0(8) = (A L5.)" v(8) = X(D) wy(£) -

which shows that (A/A,)" v(£) converges for all £E3. Since there is a £ such
that o(£) =0, this implies that (A/X,)" converges as m tends to the infinity. Thus
we have A=}, or [A|<|]. Q.E.D.

With the preparation of the above lemmas, we proceed to show Proposi-
tion 2.2. First remark that the pair of spaces C(3}) and Fo(S}) satisfies the
required conditions on the pair of E and B in Ionescu, Turcea and Marinescu

[6]. Since X, =eP"o")—1, we have for all m

(2.35) [y Lo.:)" w@ I <llull-ING" 2 P Sy 7o(15 %)

m

Op7=

by using (2.10)
$llulla A" CpemPtats = Cy || u]l.. .

Then (2.35) and Lemma 2.6 for m satisfying C; "/*<1 assure that the result
of [6, Section 9] is applicable to X5} -L} ,,, and it follows that

Sl L4, =3¢ EA-S,
i=1
where
le;|l =1, E,;E;=E, E;E; =0(i%j), SE; = E;S=0
and

spectral radius of S<1.
Now Lemmas 2.7 and 2.8 imply that
p=1 and =X, =1,

and Lemma 2.7 shows that the dimension of the space of eigenfunctions for
¢, is 1, namely

dimension of range of E; = 1.

Thus we have
i's_ol -Cé,so = 1+S .

Note that A;! L, is continuous in s as a bounded operator valued function.
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Then the perturbation theory (see for example, Kato [7, Theorem 3.16, Chap-
ter IV]) assures the following fact:

There exist a neighborhood D, of 5, in C and a positive constant § such
that we have for all s& D,

At LG = p EA-S,
where p, is holomorphic in s and p,,=1,
E,E,=E,ES,= S,E,= 0, dimension of range E, = 1
and
spectral radius of S,<<1—28.
On the other hand, Lemmas 2.7 and 2.8 show that u,=1 and the eigenspace is

spanned by w,. Thus Proposition 2.2 is proved.

3. Proof of Teorem 1

As remarked in Section 1, we compare the spectrum of £,, and L3, in
order to get a decomposition of L, ,. Note that [, , is represented as

L, uE)= 3 esfemrhm )t b £ gmse M +he 4y ()
oa7=¢ 047=E,B(1,72)=0
=L u@)+-LuE).

We have from (1.6) by a direct calculus
3.1 ML s—Lillle—0 as €—0.
Suppose that »,=v; for i<n+1. Then it follows that

|6+ —*M | < 6" || klo & |log & |exp (6" |IElo) ,
where cOzB(fj?,f) 0 k(£)>0, namely

1¥ <l kllo €| log & |exp (6" || 1lo) -

Therefore we have
(3.2) LM< C(lll felllo+ 111 A lllo+ 11 E1llg) €| log €] .
Thus we have from (3.1) and (3.2)

Lemma 3.1.

(3.3) | Le—Losllle—=0 as €—0.
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Now we shall show the following properties of £, ..

Proposition 3.2. There exist £,>0, and 8,>0 and a neighborhood D, of
s, tn C such that, for all 0<&<LE, and s€D,, L, , is decomposed as follows:

@) Lo =N Eq\+Ses s

(i) E,.E,,=E,,, L, ,E  =MN\,E,.,.

(ili) dimension of the range of E,, = 1, and there exists h, & Fo(Z2) satisfying
Loghes = Nesheyand

(34) Lhe,(E) | 2 & (c>0),
(iv) [Ne,,—1| <8, forall s€D,,
(V) E!,s Se,s = Se,s E!,s =0 ’
the spectral rasdius of = S, | g5 ) <1—28;,
(vi) [Aes—As| = O uniformly in s€ D, as € tends to zero.

Proof. As a direct result of the perturbation theory, the above proposi-
tion except (3.4) follows from Lemma 3.1 and Proposition 2.2. Then it suf-
fices to show (3.4). By using the fact that {€X3]; B(£,, £,)=0} is compact, it
follows from (1.9) and (1.11) that, for an >0,

(3.5) a<Im (—sf(E)+h(E))<m—a

holds for all ¢ satisfying B(&), £,)=0, by exchanging &, D, and a for smaller
ones if necessary. As a result by the perturbation theory it holds that

(3.6) lyes—willle—0 as £€—0.

Therefore we may assume also that

(3.7) |Argy, ()| <5 forall Eex(1)

by exchanging &, once more for a smaller one if necessary, because

Re y,,s(.f)zé C, forall 0<e<é,,

and
Imy, (£)—=0 as €—0.

By taking account of (1.9), (3.5) and (iv) of Proposition 2.2, we may assume that
for all &3 (1) such taht B(y,, ,)=0

(3.8) 5 SATB (L exp (=sfi(n)Hiu(n) yes(m) Sm—2-
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Since w,(£)=0 for £ 3(2), we have from (3.6) that

(3.9 e = S (E)] =0 E—>0.
) B, feuzgz)ly,(f)l as

Since y, (£) is an eigenfunction of £, , it is represented as

ye.x(E) = X;.i —fmy.,s(f)
= 2 )\«:i &xm — 5 h: e,s
S > S exp (—5fe(n)+he(7)) Ye.o(n)
2 >"e_i EH™ exp (—s e +hz e,
ra—Eaez®) P (= () +he(n)) e (1)

— IE)+IIE).
Let £€X(2). Note that B(y,, 5,)=0 for all 5 satisfying o, n=£ and that (1.2)
implies {€=(1); o, 7=E} +¢. Then, by using (1.5) we have from (3.8)

Im I(§)>&% % sin-2.

Since we have from (1.5)
HI(E)| <LCE B,,,,

it follows from (3.9) that for small >0

Im g, (§) 260 <

sin% forall £€3(2),

which shows that (3.4) holds.

The properties of £, ; shown in Proposition 3.2, more precisely (i)~(v) of
Proposition 3.2 guarantee that the procedure of Parry [9] can be carried out for
L, without any modification, and Theorem 1 of [9] implies that Z(s)=
E(—sfe+h.+log € k) is well defined for all 0<€<E, and s€ D, and that Z,(s) is
of the form

(3.10) Z(s) = (1—eP+) 71 g (s)
where
Py(s) = log A,

and g, is 2 holomorphic function in D, without zero. Note that Py(s) is well
defined and analytic in s& D, because of (iv).

Here, we would like to make a remark on the dependency of @, on é&.
Fix an s€D, and denote —sf,-+k, by r,. If we cnostruct 7, , by following the
process of [9], which is a function depending on (¢, &,, -+, £,,) only such that
the largest eigenvalue of the Ruelle operator for 7, , equals A,,,, it is possible to
have an estimate
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[|7e—Pe mll.<C & %|log £|6™ .

This estimate is sufficient for the convergence of @, in D,, but the dependency
on & seems to be singular when & tensd to zero.

Since @,(s)=0 for all s€D,, in order to show the existence of pole in D,
it suffices to show the existence of zero of 1—efe®). The relation (vi) of Pro-
position 3.2 implies that |P,(s)—P(s)|—0 uniformly in D, as €&-0. On the
other hand, (i) of Proposition 2.1 shows that §=s, is a simple zero of P(s). Then
according to Rouché’s theorem, we see that P,(s) has a zero near s, for € small.

Thus Z,(s) has a pole in D, for small &.

4. Application to an obstacle consisting of several convex bodies

First we shall give a brief explanation on the definition and fundamental
properties of Fy(s). Let O,, j=1, 2, -+, L, be bounded open sets with smooth
boundary I'; satisfying

(H.1) every O; is strictly convex,
(H.2) for every {j,,J»jst €11, 2, ---, L}® such that j,=&j, if I,

(convex hull of @,-l and 6;2) NO;,=¢.
We set
O=UL09;,, Q=R-0 and T=090.

Denote by v a periodic ray in £, and we shall use the following notations:

dy: the length of ¢,

Ty: the primitive period of v,

Zy: the number of the reflecting points of vy,
Py: the Poincare map of v .

We define F D(s) by
I D(s) =2 ('—l)j" 71|1—1 y|—l/2 ey
¥

where the summation is taken over all the periodic rays in Q and |/—Py| denotes
the determinant of /—P,.

Let X(s) (s& R) be a representation of a broken ray in ) by the arc length
such that X(0)eT". When {|X(s)|; s€ R} is bounded, X(s) repeats reflections
on the boundary T' infinitely many times as s tends to 4-co. Let the j-th re-
flection point X; be on T';;. Then a bounded broken ray defines an infinite se-
quence E={---,[_,, L, I, --:}. Obviousely we have [;%1,,,. We call this infinite
sequence as the reflection order of X(s).
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We deonte by A the Lx L matrix defined by

.. .. 1, if ij

A= (AG))sjorrz> Al) = { i ik
0, if i=j,

and set

2A = {f = (: E—p 2:»:oa gu ): A(Ej: E,‘H) =1 forall ]} .

Then as was shown in [3], for every £€3,, there exists uniquely a broken ray
whose reflection order is just equal to £&. We set

fE) = 1X X

where X; denotes the j-th reflection point of the broken ray corresponding
to £. For each periodic ray it corresponds a periodic element £€3,, that is,
o E=E for some n. Denote by A,(£) and A, () the eigenvalues of Py greater
than 1, and by «,(§), I=1, 2, the principal curvatures at X, of the wave front of
the phase function @y, defined in [3, Section 5], where i=(&,, :--, £,_,). Then
we have

*+1) M(E) MAE) = ,Hl (1+£(078) k(' 8)) (1+S(a7€) roaE)) -

It is easy to check that

(4.2) M(E) A(E) =€ (c>0)
and
(4.3) # {y; peridic ray in Q suin that dy<r} <e%".

Since the other eigenvalues of Py are A7 and Az’, it holds that
(4.4) A Ap— | T—Py| | SC (A )2 forall .

Define g(£) for an periodic element £ by
8(8) = —-5 log (1-+(8) (&) (1-+£() w(E)) .

Remark that we have from (4.1)

(M(E) Mo(E)) ™2 = exp S, g(£),
and that g(£) can be extended to a function in F¢(Z,). Define {(s) by

(@ = (o 3 o S-@+E)+m).

1
»=1 N g4é=
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The estimates (4.2)~(4.4) imply that both Fy(s) and ¢(s) converge absolutely
for Re s large. Denote by », the abscissa of convergence of ¢(s), that is,

v, = inf {v; {(s) converbes absolutely for Re s >v} .

Then it holds that for Re s >y,
~Liogz0) =51 0 5. 5(®) exp (S~ @) +e®+)
s =1 M g4f=¢

S,,];(E) (—1)" (u(E) Aao(E)) 2 exp (—s S, f(E)) .

R
Obviousely we have
Snf(g) =dy,n=1y.

Taking account of the number of elements £ €3, corresponding to vy, we have

Snf(f) — T_y
¢e(r) m»

where the summation is taken over all £ corresponding to v. Thus we have
(43) Fols)—(— - 10g Z() = 33 To(— )1 I—Pyl ™= 2) ™} exp (—sdy).

Since | | I—Py| "2 —(A Ng) V2| <KC (A Ay) 7! the left hand side of (4.5) is abso-
lutely convergent in Re s >yy—a(a>0).

Now we consider the case that O; are small balls. Let P, j=1,2, -, L,
be points in R®. Suppose that

(A.1) any triad of P;’s does not lie on a straight line.

Set

dmax = maxIPlPJI
%5

and

B i) —
(&) {o if PP, < dpu -

By changing the numbering of the points if necessary, we may suppose that
there exists 2<K <L such that
B(i,j) =0 foralli if j>K+1

and
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B(z,j)=1 forsome: if j<K.

We ssume that

(A.2) CN¥>0 for a some positive integer N
and
(A.3) min  |P;P;| > max |P,P,|.
1<iSK,1<5<L i j2E+1
i

We denote by O, the open ball with center P; and radius &, and set
Og = U 5"-1 Oj,g .

Note that under the assumption (A.1) O, satisfies the condition (H.2) for &
small. We denote f(£), g(§) and {(s) attached to O, by fi(&), g(&) and &.(s)
respectively. It is easy to see that, by setting fo(&)= | Py, Py, |,

(4‘6) Ilog el |||fe_fo“Io_)0 as 5—>0

From the relationship between the curvatures of the wave fronts of incident and
reflected waves we have

a(®) = 2 (s ®E) " 101), i) = 2+001)
where ©(£) is the angle P¢_, P¢, Py,. Thus we have immediately
llge8)—(1og £+ log (- co 9(5)))m.,eo s 60,

Then, by setting g,(&)=g.(§)—log & and go(f)— log (4 8(5)) we have

(4.7) Nlge—&llle—>0 as €—0.
We see that & defined by
k(&) = 1—£o(&)/dmax
satisfies (1.3) and (1.4). Indeed, (1.3) is trivial, and (1.4) follows from (A.3).
By putting s'=s—(log €++/—1 7)/dmax We have
—S$fetgetV—17m = —s'fet+h+kloge,

where

hy = gt/ —1n k+(log €+ 1) (J“;—fe) ,

max

Evidently it follows from (4.6) that
b= gt/ —T7k,
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hence we have
ho(&) = g)(&) for £ satisfying B(§,&)=1.
Since Im hy(E)=mn k(E),
a<Im hy(§)<m—a(a>0) for all £ satsfying B(&,, &) =0

follows from (1.3). Thus &,, A,, k satisfy the conditions required in Theorem 1.
Let Z,(s) be the zeta function defined by (1.6) and (1.7) for these h,, h,, k.
Then, Theorem 1 says that there exist §>0, ;€ R and D, such that Z,(s) has
a pole in D,. Then, it follows that

) = Zs—(10g E-+V/—17)/dmer)
Thus we have the following

Theorem 2. Suppose that the configuration of L points {P;E R®; j=1, 2, ---,
L} satisfies (A.1), (A.2) and (A.3). Then there exist £,>0, s, R and a neighborhood
D, of s, in C such that, for every 0<E<&, L(s) is meromorphic in Dy={s=z-+
(log &++/—1 7)/dmax; RE Do} and has a pole near sy+(log E++/—1 7)/da-
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