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1. Introduction

Let G be a connected Lie group such that 7zy(G)=Z. Connected simple
Lie groups satisfy the condition. Let f: S*>G be a map generating zy(G).
The purpose of this note is to study the image of

f*: z3(G) —» =3(S*)=Z

where z¥( ) is the reduced stable cohomotopy. The order of the cokernel of
f* which is finite by Proposition 2.5 below is called the codegree of G and de-
noted by ¢d(G). Since G and its maximal compact subgroup have the same
homotopy type, it suffices to study the case that G is compact. We denote
by ¢d,(G) the exponent of the prime number p in the prime decomposition of
¢d(G). Our result is

Theorem. Let G be a compact simply connected simple Lie group. Then
(1) ¢dy(G)=0 if and only if G is p-regular in the sense of Serre [22];
(2) ¢d,(G) can be determined except for the following cases:

Ey, E,, Eg, F,, Spin(n) (n=29) for p = 2;
Eg, E7’ EG’ F4 fOfp = 3*);
Eq forp=5.

More precise statement and upper bounds of the excluded cases in (2)
can be seen in 3.3, 4.1, and 4.2 below. For non simply connected groups,
see 2.7 below.

In §2, we prove general properties of codegrees, though some of them are
not used in this note. In §3, for classical groups G, we prove that cd(G) is
equal to the codegree of some canonical vector bundle. As a consequence,
cd(SU(n)) can be determined from Crabb-Knapp [4] and then c¢d(Sp(n)) and
odd components of cd(Spin(n)) can also be determined (see Proposition 3.3).

*) A. Kono informed me that we could prove cds(Es)=cds(Fy)=2 by using Harper’s mod 3
decomposition of Fy.
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In §4, we study relations of ¢d(G) and p-regularity [13, 22], quasi p-regularity
[15], and mod p decomposability [17] of G.

In this note all cohomology theories are reduced.

I am indebted to H. Minami for useful conversation and suggestions on
Lemma 4.4; to A. Kono for informing me that any map E;— U (240) factorizes
through U(124); and to M. Mimura for information on the topology of E; and F,.

2. Codegree of a map

Let f: S"—>X be a based map (or more generally stable map), where X is
a connected finite CW-complex having a base point. Let E be a generalized
reduced cohomology theory, that is, E is a spectrum, and let mZ. The E"-
codegree of f, cd(f; E™), is defined to be 0 or the cardinal number of the cokernel
of

Emtn f * mt+n( Q# 9 m+n( QB ~ F'm( Q0
(X)— E**(S™) = E™**(S")/Tor=E™(S°)/Tor

according as gof* is 0 or not, where Tor denotes the torsion subgroup and ¢ is
the quotient homomorphism. We set cd(f)=cd(f;=?) which is most interest-
ing, because, by 2.3(2) below, cd(f; E™)|cd(f) provided there exists a natural
transformation z¥—E**" inducing an isomorphism z3(S°)==E"(S°)/Tor. Here
a|b means that an integer b is an integral multiple of an integer a.

ReMARK 2.1.  Our codegree of a map f: S"—X is a multiple of Gottlieb’s
codegree of fy: Hy(S"; Z)—>Hy(X; Z) and degree of f*: H¥(X; Z)—>H*(S"; Z)
[7].

Proposition 2.2 ([21; 2.1]). For any integer k we have

(1) If f*=0: H'(X; Z)—>H"(S"; Z), then the image of f*: E¥X)—E*S")
is contained in Tor (E*(S™)), the torsion subgroup of E*S™).

(2) If EX(S"QQ=0, then the converse of (1) holds.

Proposition 2.3. (1) cd(f; E™)=cd(f; E[0, oo)") if m<n and X is (m—1)-
connected, where E[0, co)—E is the (—1)-connective covering.

(2) If 6: EX*>F*** {5 a natural transformation of cohomology theories of
degree k such that 0,: E™(S°)[Tor==F»*¥S%/Tor, then cd(f; F***)|cd(f; E™).

(3) Suppose that there exist stable maps g: X —>X' and f': S"—X' such that
gof=f"oke,, where X' is a connected finite based CW-complex, ¢,: S™—S" is the
identity map, and ke Z. Then cd(f)|k-cd(f). If k==%1, then cd(f; E™)|
cd(f'; E™), in particular, cd(f; E™)|cd(gef; E™).

(4) Suppose that E"(S°)Q@Q=0. Then cd(f; E™)=0 if and only if f*=0:
H"X; Z)-~H"(S"; Z).

Proof. We have (4) by 2.2. Others can be easily proved. We omit the
details.
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We call f: S"—X orientable if f*: H'(X; Z)/Tor<H"(S"; Z), and call f
quasi-orientable if f*: H*(X; Z)/Tor—-H"(S"; Z) is a non trivial injection. In
both cases an element U(f)eH"(X;Z) which generates H"(X;Z)/Tor is
called an orientation class of f.

ExamMpPLE 2.4. Let V be an n-dimensional vector bundle over a connected
finite CW-complex Y, and let f: S"=T(V; {y})—=T(V; Y) be the inclusion
of Thom spaces for some point y of ¥. Then f is quasi-orientable if and only
if f is orientable if and only if V' is orientable. Put c¢d(V)=cd(f). See [20].

Proposition 2.5. Let G be a compact connected Lie group such that n(G)=Z
and let f: S3—>G be a generator of nyG). Then cd(G)=:0. Also f is quasi-
orientable if and only if dim Z(G)=<2, where Z(G) is the centre of G. Moreover
f is orientable if G is simply connected.

Proof. Asis well-known, G has a covering group ¢: T* X G'—G whose kernel
is a central finite subgroup of 7*Xx G’, where G’ is a compact simply connected
simple Lie group, and T*=(S')* is the k-dimensional toral group with k=
dim Z(G). Leti: G'={1} X G'—T*X G’ be the inclusion and let f’: S*—>G" be
a map such that goiof’==f. Then ¢*: H¥G; Q) =H*(T*XG’; Q) and f*:
HYG'; Z)=H*S%; Z). Hence f*+0: H¥G; @)—H?3S?; @), therefore cd(G)=*
0 by 2.3 (4). Also we have

f is quasi-orientable <« f*: H¥G; Q) = H*S?; Q)
o *: H(T*xG'; Q) = H¥G’; Q)
e k2.

The last assertion of 2.5 follows from the fact that if G is simply connected then
G is 2-connected. This completes the proof.

Proposition 2.6. Let g: X—Y be a map between connected finite CW-
complexes. Suppose that H'(Y; Q)=@Q and f: S">X (n=1) is quasi-orientable,
and that there exists a stable map v: Y, —X, (Z, is the union of Z and the disjoint
base point) such that =* g*: H(Y,; Z)—>H"(Y,; Z) is the multiplication by an
integer X. Then cd(gof)|X-cd(f).

Proof. Consider the following commutative diagram in which 4 are the
Hurewicz homomorphisms.
f*
7y(S") = ai(Sh) <« #UXy)

|
hlg hlg lh h
f* g*
H'(S"; Z) = H'(S}; Z) < H'(X,; Z) < H'(Y,; Z)

¥

7s(Yy)

Lty
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Let ac H'(X,; Z), b H'(Y,; Z) be generators of respective free parts. There
exist integers &, /, m such that

fH(a)=k[S7T,

g*(b) = la mod Tor(H'(X,; Z)),

7*(a) = mb mod Tor(H"(Y,; Z))
where [S"] is a generator of H"(S"; Z). We have Xb=r1*g*(b)=Imb mod
Tor(H*(Y,; Z)), hence X=1Im. By definition, there exists B z5(X,) with
F*H(B)=h f*(B)=cd(f)[S"]. Hence h(B)=(cd(f)/k)a mod Tor(H(X,; Z)),
and so Ar*(B)=7*h(B) = (m-cd(f)/k)b mod Tor(H"(Y,; Z)), and therefore
hf* g* v4(B)=1* g* hr*(B)=f* g*((m-cd(f)[k) b)=1Im-cd(f) [S"]=X-cd(f) [S].
Thus cd(gof)|X - cd(f) as desired.

Corollary 2.7. Let q: G'—>G be a covering group such that G' and G are
compact connected Lie groups, ny(G)=Z, and dim Z(G)<2. Then

cd(G')|cd(G)|m-cd(G")
where m is the order of the kernel of q.

Proof. Note that m is finite and dim Z(G')=dim Z(G). By [2], there
exists a transfer map 7: G,—G’,, whic is a stable map such that +* ¢*: H¥*(G,; Z)

—H*(G,; Z) is the multiplication by m. 'Then the result follows from 2.5 and
2.6.

We recall K-theory codegree from Crabb-Knapp [3]. Let KF denote the
complex K-theory K (F=C) and the real K-theory KO (F=R). If f: S">Xis
quasi-orientable, then we define

cd®F(f) = Min {m>0; m- U(f)&Im(chp: KF*(X) - H*(X; Q))}

where chg=ch, the Chern character, chy is the composition of the complexifica-
tion and ¢k, and Min and Im denote the minimum and the image, respectively.
If f is non quasi-orientable, then we define ¢d*7(f)=0.

Proposition 2.8 ([20; §2]). If f: S"—>X is quasi-orientable, then cd**(f)
1s well-defined and satisfies

cd(f; KF)|cd(f; H®) cd®*(f) and cd®F(f)|cd(f).
Next we consider J-theory codegrees

cd’™'(f) =T, cd(f; jE'<p>) »
ed’¥(f) = T, cd(f3 JF<PY).

See [3], [4] or [20] for their definitions. We denote the exponents of p in the
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prime decompositions of ¢d(f), cdX*(f), cd’F(f), --+ by cdy(f), cdE*(f), cdiF(f),
-+, respectively. We use also the notations cd(G; E™), cd**(G), cdfF(G), -+ in
canonical sense. Notice that the p-components of cd’F'(f) and cd’*(f) are
cd(f; JF'<{p)°) and cd(f; jF{p)°) respectively.

The following theorem can be proved by modifying the proof of Theorem
3.3 0of [20]. So we omit the details.

Theorem 2.9. Suppose that f: S"— X is quasi-orientable.

(1) cd¥(f)|cd®(f)|2ed%(f)

@ cd®(f)led™(flcd(f). ,

(3) If f is orientable, then cd**(f)|cd'F (f).

(8) If H*(X; Z(p)=0, then cdi'(f)=cdi(f)

(5) d®(f)|cd®(f).

(6) p>2.

(6-1)  edi€(f)=cdi® (f), cdi®(f)=cdi®(f), and they are equal if X is (n—1)-
connected.

(6-2) If H¥X; Z) has no p-torsion and f is orientable, then cdj*(f)=
edi* ().

(7) p=2.

(7-1) If H*(X; Z) has no 2-torsion and f is orientable, then cd5( f)=cdi® (f)
and cd{® ()< 14-cd5°(f).

(7-2) If H¥(X; Z) and KO"(X) have no 2-torsion and f is orientable, then
cdi® (f)=cdF°(f).

Given f: S"—>X with n=>1, we define abelian groups 4,, -+, 4,; by using
(f,X) instead of (4, T) in [20; Lemma 4.7]. For example A4,=Ker(yx:
KO[4, «)"(X)—KO[0, «)"(X)), where y: KO[4, c0)—>KO[0, =) is the con-
nective fibering. Then the following lemma can be proved by almost the same
proof as [20; Lemma 4.7]. We omit the details.

Lemma 2.10. (1) A=~A,~A;DA;D Ag=x++-=4,,

(2) If H"Y(X; Z)=0, then A;=A..

(3) If X is (n—1)-connected, then A= A,~=A.,.

4) If H'(X; Z,)=Z, and S¢’ is non trivial on H(X; Z,), then As=A;.

(5) Iff*: HY(X; Z,)=H"(S"; Z,) and f*: KO[1, o) {(X)—
KO[1, 00)*"Y(S") is surjective, then Sq® is trivial on H"(X; Z,) and byy:
KO[2, 0)(X)—>KO[1, ) (X) is injective, where b,: KO[2, 0)—>KO[1, o) is
the connective fibering. If moreover X is (n—1)-connected, then A,=A,==A,, so
Ay=A5=A4,.

(6) Ifi*: H\(X|X"; Z,)=H""(X"*'|X"; Z,), then

Ag=Coker(i*: KO*"(X/X")—KO*"(X**|X")).

Proposition 2.11. If G is a compact simply connected simple Lie group,
then v4: KO[4, 0)%(GQ)—KO[0, )G is injective, hence cd’® (G)=cd’®(G).
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Proof. We have 4,2=---2 A4;D Ay==-.- =4, by 2.10, since G is 2-connected.
As is well-known, HYG; Z,)=0, hence 4,,=0, and if G == Sp(n) for every n then
S¢? is non trivial on HG; Z,), hence A;=A; by 2.10 (4), so A== A,,=0 and v
is injective on KO[4, )} G). On the other hand, we have the following com-
mutative diagram, where f: S3=Sp(1) C Sp(n).

KO[1, oo (Sp(n) = KO(Sp(n)) = [Sp(n), Sp/UT L [Sp(n), Sp]
L f* L f* ) f* ) f*
KO[L ) (8 =KOYS) = [Sp(1), SpIU] < [Sp(1) Sp]

Since 7,(U)=0, the above lower ¢4 is surjective. Let i: Sp(n)CSp be the
inclusion. Then f*(7) is a generator of 74(Sp)=~Z. Hence the fourth f* is sur-
jective, and so is the first f*. Thus we have 4,=A4,, by 2.10(5), so 4,=0
and vy is injective on KO[4, o0)?(Sp(n)). This completes the proof.

Recall from Serre [22] that a connected finite CW-complex Y is p-regular
if there exists a map g: II; S"—Y such that gy: =, (I1 S"@)—z,(Y) has the
kernel and the cokernel which are finite and have orders prime to p for every &,
that is, g is a p-equivalence. If moreover Y is a simply connected p-regualr H-
space, then there exists a p-equivalence n: Y —II S*® [16; Theorem 1.7].

Proposition 2.12. If a compact simply connected simple Lie group G is p-
regular, then cd,(G)=0.

Proof. Suppose that a compact simply connected simple Lie group G is p-
regular. Then there exists a p-equivalence g: G—II; S*®. Hence there is only
one n(z) with n(f)=3. Let ¢g: II S""—.S3 be the projection and f: S*->G be a
generator of z3(G). Then the degree of gogof is prime to p. Hence ¢d,(G)=0.

3. cd(G) for classical groups

Proposition 3.1. (1) cd(U(n))=cd(SU(n))=cd(§,-,) (n=2), where E,_, is
the Hopf bundle over the complex projective (n—2)-space P(C*™?).

(2) cd(Sp(n)=cd(t,) (n=1), where {, is the vector bundle over the quater-
nionic projective (n—1)-space P(H") associated with the canonical principal S3-
bundle S**~'—P(H") and the adjoint representation of S on its Lie algebra.

(3) ¢d(SO(m)) (n=5) is the order of the cokernel of i*: z3(SO(n))—
73(SO(3)), where i:S0(3) < SO (n).

4) cd(SO(n))=cd(ad,Pcan,) (n=5), where ad, (resp., can,) is 1 (resp., 2)
dimensional  vector bundle associated with the principal O(2)-bundle
O(n—1)/O(n—3)—>0(n—1)/(O(2) X O(n—3)) and the non-trivial representation
O(2)—0(1) (resp., the canonical representation O(2) on Hompg(R?, R)).
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Proof. We have cd(U(n))=cd(SU(n)), since U(n) is homeomorphic to
S'SU(n). By James[12; (7.11)], the inclusions 3 P(C")==T'(¢,-,; P(C* ™)) C
SU(n) and Q,=T(¢,; P(H"))C Sp(n) are stable retracts with which the compo-
sitions of S*=IP(C*CZP(C") and S°=Q,CQ, generate =y(SU(n)) and
7y(Sp(n)) respectively. We then obtain (1) and (2).

To prve (3), let =5 and ¢": S3=Spin(3)—Spin(n) be the inclusion. Then
Im(th: my(S3)—ms(Spin (n)))=2my(Spin(n)), since zy(Spin(n)[Spin(3))=<Z,. Hence
there exists f': S*—=Spin(n) which generates 7,(Spin(n)) and i'==f"02i,. Let g,,:
Spin (m)—SO (m) be the double covering and set f=g,of": S*>SO(n). Then f
generates 73(SO(n)), and fo2iy=gq,of 02¢;==q,0i'=ioq,, hence 2-cd(SO(n))=
cd(iog;). On the other hand, we have z3(SO(3))=Z and Im(g¥: z3(SO(3))—
73(S%)=27%(S%. Hence cd(SO(n))is the order of the cokernel of i*: 7z3(SO(n))
—7z3(SO(3)) and this proves (3).

To prove (4), we prepare some notations. Let ad, denote the adjoint repre-
sentation of O(k) on its Lie algebra, can, denote the canonical representation
of O(k) on Homg(R*, R), and V, ,=O0(n)/O(n—k)—G, ,=O(n)/(O(k) X O(n—E))
denote the canonical principal O(k)-bundle. We may form the associated vec-
tor bundles over G, , for ad, and can,; we denote them by ad, and can, for sav-
ing of notations. Note that dim ad,=k(k—1)/2 and dim can,=k.

By Miller [14], there exists a stable homotopy equivalence which are na-
tural with respect to #:

SO(n) = Vizi T,

where T,=1T(ad,Pcan,; G,_,,;). As is easily seen, we have T;=P(R"), the real
projective (n—1)-space, the 3-skeleton of T, is S*=T(ad,Dcan,; G,,), and T,
(k=3) is 5-connected. The inclusion 7: SO(3)—SO(n) corresponds under the
above equivalence to

P(RY)V S*CP(RY)V T,C Vi T,.

Hence Im(i*: z3(SO(n))—=3(SO(3)))=Im (i*: zi(T,)—=3(S%), where 7 is the
inclusion, thus cd(ad,@can,) is equal to the order of the cokernel of i*: z3(.SO(n))
—z3(SO(3)). Therefore we obtain (4) from (3). This completes the proof.

RemaARrk 3.2. Of course we can prove (1) and (2) of 3.1 by using Miller’s
stable splitting [14] of SU(n) and Sp(n).

Proposition 3.3. (1) For n=3, we have

Max {i| p‘<n} p>2

cd)(SU(m)) = { Max {i| 2isn} p=2.

(2) For p>2, we have
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cdy(SO(2n+-1)) = cd,(Spin(2n+1)) = cd,(Sp(n)) (n=1),
¢dy(SO (2n)) = cd,(Spin(2n)) = cd,(Spin(2n—1)) (n=3).

() edi(SU([n/2]))=cdy(SO(n)) =cdy(SU([n/2]))+2 (n26), where [n[2] is
the largest integer smaller than or equal to n/2.
(4) cd(Sp(n))=cd(SU(2n)).

Proof. By 3.1(1), cd(U(n))=cd(SU (n))=cd(§,-,) for n=2. Crabb-Knapp
[4; 5.16] has determined cd(§,,) as in (1). Moreover they proved that cd(,)=
cd’®(g,). Notice from Theorem 1.1 of [20] and 2.9 that cd’®(&,)=cd*°(E,,).

To prove (2), let p be an odd prime. Then ¢d,(SO(n))=cd,(Spin(n)) by
2.7, and

Spin(2n+1) =, Sp(n),
Spin(2n) =, Spin(2n—1)x §*~*

by Harris [8]. Hence (2) follows by the technique which will be used in the
proof of Theorem 4.1 below.
Concerning the natural inclusions we have

Coker (m,(SO () > nU(n)) = m(UJO) = Z, (n=5),
Coker (U (n)) — (SO (2n))) == ,(0]U) = 0 (n=3).

It then follows from 2.3(3) that

cd(SOn))|2-cd(U(m)) (n=5),
cd(U(n))|cd(SO(2n)) (n=3)

and so we obtain (3).

The rest of this section is devoted to the proof of (4). We use Thom classes
which are defined by Atiyah, Bott and Shapiro [1]. Let g: P(C**)—P(H") be the
usual fibration, k: T(&,,)— T(£3,) be the map induced by the fibre preserving map
£, —E3,=E,,Q. &, which sends 2 into 22. Then g* £,=~£5,1 [26] and the
degree of / on fibres is 2. Let v be the canonical quaternionic line bundle over
P(H"), B K(S?) be a generator, and r: K—>KO be the real restriction. Set
0,=y—2€ K(P(H"), p=Epps—1 EK(P(C), y=1(8° u) € KO(P(C™+),
wo=r(p)€KO(P(C**")), and t=c,(&,,+,) EHY(P(C***"); Z). Recall from [24]
that K(P(H"),)=Z[0c]/(0%) and the complexification c¢: KO(P(H"),)—
K(P(H"),) is injective and has the image generated by e; 0&(0<i<n—1), where
e;is equal to 1if 7 is even and equal to 2 if / isodd. Let 0, KO(P(H").) be the
element with c(0%)=e; 85. Notice that % does not mean a power of some
element (=2). Recall from [6] that KO™5(P(C***")) is free module with basis
W3 W3 tbos ***> 3 wo'.  Note that ¢d¥9(§,,) is equal to

Min{m>0| mt = Im(chy: KO 5(P(C**")) — H*(P(C**"); Q))}
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and that chg(us pt)=(e!—e™*) (¢! +e7*—2)’.
Consider the commutative diagram

g*
KF(P(C™),) « KF(PE),)
- . = , o gquKF
KF™P(C*"") < KF(T(£,.D6)) <~ KF(T(£5.96)) < KF(T(t.D5))
lchp B j{m,, chy chy .
o h* v g* L
H*"$(P(C*™*); Q) < H¥(T'(£,,D6); Q) < H¥(T(£,6); Q) — H¥(T(tD5); Q)
- oo =

H*"¥P(C*™),; Q) < H**(P(H)+; Q)

where vertical isomorphisms are Thom isomorphisms and % means the whitney
sum with the real k-dimensional trivial bundle. Computations show that

o h* g* ¢x(237121 a; 0¢)
= B ({(1+p)—(A+p)™} 271 a{(14+-p)+(1+p) ' —2});
o h* ¢py(x) = 2tx, x€ H¥(P(C*™),; @)

where we consider H*(P(C?"); Q) as a submodule of H*(P(C***'); Q) naturally.
Hence we have

o h* g* chp ppp(012h a; 0F) = (et —e™*) 2120 a; ef (e +-e7 —2)¢

where ¢§ =1 and ef=e¢;. By definition there exist integers af, -++, af_, such that
cd®F(¢,) 1=0¢7" chp pxr(21z5 af 67). In this case we have

2:cd¥F(L,) t = (¢—e7t) S30h af ef (et et —2) .
Hence af =cd**(t,), and also
2+ cd(L,) = cd*(Es) -
By [19] we have
ilaf = (—1) 20+30ee¢(241)+af for 1=<i<n—1
hence
vy(af) = () +vy(af)

since v,(i |)=i—a(i), where v,(m) is the exponent of 2 in the prime decomposi-
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tion of m, and a(z) is the number of 1’s in the dyadic expansion of 7. It follows
that

cdf(t,) = Max {a(i)| 1Si<n—1}
and from the similar reason that
cdFO(E,) = Max {a(i)+vy(e) [ 1S i<n—1}
= 1+cdF(¢,)
so that
cd®0(,) = 2-cd"(£,)
by 2.9(1). We then have
cd*(L,) = cd({,) = cd(U(2n)) (n22)

from the equations

cd®(L,) | cd(§a) = cd(Sp(n))
cd(Sp(n)) |cd(U(2n)) = cd(U(2n-+1)) = cd®°(Ez) = cd®°(L,,) -

This proves (4) and completes the proof of Proposition 3.3.

4. Mod p decomposition of Lie groups

The result of this section is

Theorem 4.1. Let G be a compact simly connected simple Lie group. Then
the following statements hold.
(1) ¢dy)(G)=0if and only if G is p-regular.
(2) ¢dy)(G)=11if G is not p-regular but quasi p-regular.
(3)  cdy(Es)= cdy(Ey) = cd E)—1.
4) cd(G,) = cd(Spin(7)) = cd(Spin(8))=cd (SO (7))=2-cd(SU(7))=23-3-5.
(5) 24.3%2.5.7-11|cd(G) for G=E, E,, E, F,.
(6) cd(E)S8; cdfE)=T; cdy(B) <5 cdy(F)S5;
cdy(Eg)<5; cdy(E;)<4; cdy(Eg) = cdy(F,)<3;
cdy(Eg) =< 3.

From 4.1 and Table (4.3) below, we have

Corollary 4.2. For simply connected exceptional groups, cd,(G)=1 if (and
only if provided G = Ey) G is not p-regular and has no p-torsion in H¥(G; Z).

Precise values of p in 4.1 and 4.2 can be read from the following Table

(4.3).
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Table (4.3)
. quasi _
G p-torsion p-regular p-regular cdp(G)=1
SU(n) p<nsp? (p>2)
<
2<n) NO n/2<p n<p n=3 (p=2)
Sp(n) P<2n<p? (p>2)
=
2<n) NO n<p 2nsp NO (p=2)
Spin(n) _ _ p<n—1=p? (p<2)
(7<) 2 n—-1)2<p n—1=p NO (=2
G, 2 55p 7=p 2<p<?
F, 2,3 55p 135p 3<p<i3
E; 2,3 55p 13=p 3<p<13
E,; 2,3 11=5p 19=5p I<p<19
Eg 2,35 11=p 31=sp

Lemma 4.4. We have cd*(Sp(2))=2-3; cd*(Spin(7))=2%-3-5; cd®(G,)=
22.3.5; cd&(F)=2%:3%-5:7-11; cd®°(Q,)[cd®(G,)==cd®(F,)[cd%(F)=2.

Proof. The computation of ¢cd¥(G) can be easily done by using Watanabe
[27]. We omit the details.

Suppose that G=G, or F,. Set r=rank G. Consider the commutative
diagram:

RO(G) it KO™YG,)

cl J ¢

R(G) — KXG,)
<)

where RO(G), R(G) are real, complex representation rings of G, and 8 is the
patural homomorphism [11, 23], and ¢ is the complexification. By Yokota [28,
29], ¢: RO(G)=R(G). Let pf, -+, p° = R(G) be basic representations [5, 11] and
pR, -, pEERO(G) be representations such that c(pF)=pf. It follows from
Seymour [23; 5.6] that KO*(G,) is a free KO*(S°)-module and is generated
multiplicatively by B(pF), :+-, B(pF). Let AF denote the KF*(S°)-submodule of
KF*(G,) generated by decomposable elements with respect to {8(p1), -+, B(pr)}.
Then

KO¥(G) = KOYG,) = KOY(S°) {B(pF), -+, B(p?)} mod A
and so

¢(KOY(G.)) = 2KX(S") {B(pf), -+, B(pf)} mod A° .
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Therefore cd*°(G)=2-¢d*(G) and this completes the proof.
REMARK 4.5.  ¢cd(Sp(2))=cd({;)=cd®(¢,)=12.

Proof of Theorem 4.1 (1), (2), (5). If Gis p-regular then ¢d,(G)=0 by 2.12.

By 3.3 or [19], ¢d,(SU(n))=0 if and only if n<p. Hence (1) holds for
SU (n). ‘
By 3.3, 4.3, and 2.3(3), we have ¢d,(Sp(n))=0 for 2<n and p<2n. Hence
(1) hols for Sp(n).

By 4.4 and 2.3(3), we have 3=<cd,(Spin(n)) for n=7. It follows from 3.3
that if cd,(Spin(n))=0 then n—1=<p and so Spin(n) is p-regular. Hence (1)
holds for Spin(n) (n=7).

It follows from 4.4 that if ¢d,(G,)=0 then p=7 and so G, is p-regular, and
that if cd,(F,)=0 then p=13 and so F, is p-regular. Hence (1) holds for G,
and F,.

Since there exist embeddings F,C E,C E,C E; which induce isomorphisms
of the third homotopy groups, we have ¢d¥°(F,)|cd¥%(Q)|cd(G) for G=E,, E,,
E; by 2.3(3). It follows from 4.4 that (5) holds and that if ¢d,(E,)=0 then
p=13 and so (1) holds for E.

By [15], if G is quasi p-regular, then there exists a p-equivalence u:
By(p) X Y—>G where By(p)=S*Ue?*'U¢e** is a S*-bundle over S**! such that
H*(B\(p); Z,)= (%3, " x5), and Y is a 4-connected finite CW-complex. There
exists a p-equivalence v: G—B,(p) X Y, since G is p-universal [16]. Let f: S*—
G represent a generator of z3(G), and f': S*C By(p) be the inclusion. Then f’
generates 7y(B,(p))=Z. Since f'*: H¥B,(p); Z)==H3S?; Z), it follows that
cd(f")=+0 by 2.3(4). Let q: B,(p) X Y—B,(p) be the projection, and i: B,(p)=
Bi(p) X {*} CB,(p)X Y be the inclusion. Since g, ¢ induce isomorphisms on
73( ), and since u, v are p-equivalences, there exist integers m, # such that m, n
are prime to p, govof==f"omu;, and woiof'==fom;. It follows from 2.3(3) that
cd(f)|m-cd(f') and cd(f')|n-cd(f), so that cd,(f')=cd,(f)=cd,(G). On the
other hand, since the attaching map a: S?*—S? of (2p+1)-cell of By(p) is a gen-
erator of 7,,(S%)(,=73,(S%)n=Z, (see [15, 25]), it follows that c¢d,(f')=1 and
that the map peoa extends stably to a’: S3Uée?*'—S3.  Since 735.3(S%) =0
(see [25]), a’ extends stably to a”’: B,(p)—.S® such that a”of =p¢,, hence cd,(f’)
=1, so cd,(G)=cd,(f')=1, and this proves (2). In particular we have cd,(E;)=
1 for 11=<p=17 and cd,(Es)=1 for 11< p=<29. This completes the proof of (1).

To prove Theorem 4.1(3), we need the following theorem. See [17] for
notations.

Theorem 4.6 ([17; 8.1]). (1) E,=; Bi(5)x B3(5).
(2) Ey=, BY(7)xBY7)x S®.
(3) Ey=, Bi(7)x Bt(7).

Proof of Theorem 4.1(3). We will prove only that cdy(E;)=1, because
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other cases can be proved by the same method. Note that the 16-skeleton of
Bi(7) is S3, and that B1,(7) is 22-connected. Let i: S*—B1(7) be the inclusion.
By the same method as the proof of (1), we have 7-equivalences u: Bi(7) X B1(7)
—E,, v: E;.—>Bi(7)xBi,(7), and cd,(E;)=cd,(i). By definition (see [17]), there
exists a map 4: Bi(7)—SU(20) such that #*: H*(SU(20); Z,)—H*(Bi(7); Z,)
is a surjection. In particular the index of the image of /4 : 74(Bi(7))—=y(SU(20))
=~Z is prime to 7. 'That is, hoi= fom, for some integer m which is prime to
7, where f: S3—>SU(20) represents a generator of z;(SU(20)). By 2.3(3), we
have cd(z) | m-cd(SU(20)), so cd,(i)=cd,(SU(20))=1 by 3.3, hense cd,(Eg)=cd,(i)
=1 by (5).

Proof of Theorem 4.1(4). 'There exist homomorphisms G,C Spin(7)—SO(7)

which induce isomorphisms on 7y ). Hence
cd(G,) | cd(Spin(7)) | cd(SO(7))|2-cd(SU(7))

where the last divisibility was proved in the proof of 3.3(3). Since ¢d¥%(G,)=
2-¢d(SU(7))=120 by 3.3(1) and 4.4, the above four codegrees are the same.
We have also cd(Spin(7))=cd(Spin(8)), since Spin(8) is homeomorphic to
Spin(7)x S7.

ReMaRk 4.7. We can prove ¢d(G;)=120 by constructing a stable map g:
G,—S?® having the degree 120 on S°

Proof of Theorem 4.1(6). Let {w, :--,w,} be a system of fundamental
weights with respect to a system of simple roots of G, p(w;) be the irreducible
representation with highest weight w; (1=:/<r), 8 be a root of G of maximal
length, and set §=X3; w;. 'Then, from an observation of Harris [10] (cf., Naylor
[18]), we know that the cokernel of p(w;)x: 73(G)—>7y(U(dim p(w;))) is a cyclic
group of order

_ 2(wi, w;4-28) | dim p(w;)

' (B, B) dim G
where (, ) is the Killing form. The number #; was called by Dynkin [5] the
index of the representation p(w;). It follows from 2.3(3) that
(4.8) cd(Q)|n;+cd(U(dim p(w;))) .

From Tables 5 and 41 of Dynkin [5] (cf., Harris [10]), we know that there

exist irreducible representations of minimal dimension
G,—-U7), n=2,
F,—-U(26), n=6,
E,—-U27), n=6,
E, - U(56), n=12,
E;— U(240), n=60.
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Hence we obtain the desired upper bounds except ¢d,(Eg) for p=2, 5 by (4.8)
and 3.3(1). Since the complex Stiefel manifold U(240)/U(124) is 248-con-
nected and the dimension of Ej is 248, the representation E;— U(240) factorizes
up to homotopy Ez— U (124)C U(240) as an unstable map, it follows that cd(E) |
60-cd(U(124)) so that cd,(Eg) =8 and cdy(E;) <3.

By [9; Proposition 1], we have Ey—; F,X Eg/F, so that cdy(Es)=cdy(F)),

since Eg/F, is 8-connected. This proves (6) and completes the proof of Theorem

4.1.
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