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1. Introduction.

Let M be a closed connected oientable 3-manifold admitting an oreintation
reversing involtuion 7 (i.e. 7*=identity and 74([M])=—[M] for the funda-
mental class [M] of M).

By Smith theory, each component of the fixed point set of =, Fix(+, M),
is a point or a closed surface and X(Fix(r, M))=0 (mod 2) (X(X) is the Euler
characteristic of X). A. Kawauchi [5] proved that for any (M, ), Tor H(M; Z)
=ADA or Z,(pAD A for some abelian group A4, and that rank,, H,(Fix(+, M);
Z,)=0 (mod 2) if and only if Tor H(M; Z)=~A@A. ]. Hempel has proved
in [3] that if Fix(r, M) is empty or contains a closed orientable surface of posi-
tive genus, then the first Betti number of M is greater than zero. He has also
shown in [4] that if z,(M) is not isomorphic to {1} or and Z, is not virtually repre-
sentable to Z, then Fix(r, M) consists of a 2-sphere or two points, or contains a
projective plane.

The auther gave a characterization of Fix(r, M) when M is a rational
homoogy 3-sphere in [6] and, for a general M, an inequality on the first Betti
numbers of M and Fix(r, M) in [7]. In this paper we give a complete
characterization of the topological type of Fix(r, M) for a general M.

Notations. For a space X, let B;(X) denote the /** Betti number and
Bi(X; Z,) the Z,-coefficient Betti number. For a group G, let B,(G)=
rank, H,(G; Z) and B(G; Z,)=rank,, H\(G; Z,).

First, we classify (M, 7) into two types.

Proposition 1. For any (M, ), one of the following holds :
(1) M —Fix(r, M) consists of two components and Fix(r, M) is a closed orien-
table 2-manifold.
(2) M —Fix(r, M) is connected.

For each type of (M, 7), we shall prove the following:
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Theorem 2. For any (M, r) with M —Fix(r, M) disconnected, we have the
following (1)—(3):
(1) TorH\(M; Z)=<ADA for some ablelian group A.
(2) By(Fix(r, M))[2+By(Fix (7, M))<1+£(M).
(3) By(Fix(r, M))[2+By(Fix(r, M))=1+£,(M) (mod 2).

Remark 1. (1) was proved by Kawauchi [5].

Theorem 3. Let G be an ableian group and E a closed orientable 2-mani-
fold satisfying the following conditions (1)—(3):
(1) Tor G=APA for some ableian group A.
@) B(E)2+BE)<1+B(G).
(3) BUE)2+BAE)=1+5(G) (mod 2).

Then there exists (M, ) such that M —Fix(r, M) is disconnected, H,(M; Z)
=@ and Fix(r, M)=E.

Theorem 4. For any (M, v) with M —Fix(r, M) connected, we have the
folloaing (1)—(7);
(1) Tor H(M, Z)=<ADA or Z,DADA for some abelian group A.
(2) B(Fix(r, M); Z,)=B(M; Z,)— 3,(M) (mod 2).

3) ‘,_220 Bi(Fix(r, M); Z,)<2+2B\(M; Z,).

(4) X(Fix(r, M))[2—20,(Fix(r, M))=1— 8,(M).

(5) X(Fix(r, M)2<1+B,(M).

(6) X(Fix(r, M))[2=1+8,(M) (mod 2).

(7) Consider a direct sum decomposition of Tor H(M; Z) such that each factor is
a cyclic group of prime power order. Let u be the number of Z, factors. Then the
number of nonorientable surfaces of odd genera contained in Fix (v, M) is not greater
than u.

‘ RemMARK 2. (1) and (2) were proved by Kawauchi [5]. (3) is obtained by
Smith theory (cf. [1] p. 126).

Theorem 5. Let G be an abelian group and X be a disjoint union of points
and closed surfaces. If G and X satisfy the following conditions (1)—(7):
(1) Tor G=ADA or Z,PAPDA for some abelian group A.
(2) BiX; Z)=p(G; Z,)—By(G) (mod 2).

2

(3) ;=Eo Bi(X; Z,)<2+42B(G; Z,).
) X(X)2—28,X)21-B,(G).
(5) A(X)2<14+B4(G).
(6) X(X)2=1+8,(G) (mod 2).
(7) Consider a direct sum decomposition of Tor G such that each factor is a cyclic
group of prime power order. Let u be the number of Z, factors. Then the number



ORIENTATION REVERSING INVOLUTIONS 349

of nonorientable surfaces of odd genera contained in X is not greater than u.
Then there exists (M, 1) such that M —Fix(r, M) is connected, H(M; Z ) ==
G and Fix(r, M)=X.

Throughout this paper, we will work in the piecewise-linear category, and a
surface is assumed to be compact and connected.

The author owes the idea of B} to Prof. M. Sakuma. She is very grateful
to him for suggesting her Lemma 6.

2. Proofs of Proposition 1 and Theorems 2 and 4.

Proof of Proposition 1. We will show that if M —Fix(r, M) is discon-
nected, then M —Fix(r, M) consists of two components and Fix(r, M) is a
closed orientable 2-manifold.

Let C, Gy, -+, C, be the components of M —N(Fix(r, M)), where N
(Fix(r, M)) is the interior of a 7-invariant regular neighborhood of Fix (7, M).
Then the identifying space of C,UC,U - UC, by the identifying map 7|y, is
homeomorphic to M. Since r*=identity and M is connected, we can see that
r=2 and 7(C,))=C, Hence 7(0C,)=0C, and for each component X of
Fix(r, M), 9N(X) consists of 2-components. In general, if there exists an
isolated point p in Fix(+, M), N(p) is a ball, and if there exists a nonorientable
surface F in Fix(r, M), N(F) is a twisted I-bundle over F. Hence this X must
be an orientable surface. This completes the proof.

Condider the homomorphism 7§’ on H,(M: Q) induced by = (i=1, 2).
We may regard 7§’ as a linear transformation of the vector space H,(M; Q) over
Q. Since (r%’)’=identity, every eigenvalue of 74’ is +1 or —1. Let B} and
B7 be the eigenspace of H,(M; @) corresponding to 41 and —1, respectively.
Put B}=dim B} and B7=dim B7. Clearly, 8 +Br=085+Bz=6,(M). We

have the folloaing lemma:
Lemma 6. For any (r, M), we have
X (Fix(r, M)) = 2(1+8,(M)—2B%) .
Proof. Let {a,, a, -+, ag#} be a basis of Bf and {b,, by, -, ber} a basis of
Br. Then there exsists a basis {a, @, -, @gy, by, by, -+, gz} of Hy(M; Q)
such that Int(a;, @;)=Int(b;, b;)=3;; and Int(a;, b;)=Int(d;, a;)=0 (1<i< B},

1<j<@r), where Int(x, y) is the intersection number of x and y, and §;; is
the Kronecker delta. Then we have

Int(a;, 74(a;)) = {[M], p(a;) Up(T«(a;))>
= {rx[M], p(r(a:)) U p(a;)>
=<{—[M], p(a;) Up(a;)> = —3;;
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and
Int(b;, 74(a;)) = <[M], (b:) U p(7x(a,))>
= —<[M], (—e()Up(@;)>=0.
(e is the Ponncaré dual map).
Hence

T*(a,') = —a;.

By the same way, we have 74(b;)=Db;. Hence {a, a,. -, gy} is a basis of
B; and {b,, by, -+, bg;} is a basis of Bf. Therefore 8 =87 and Br=43.

On the other hand, it is known that for a periodic transformation f on a
compact ENR X, L(f)=X(Fix(f, X)), where L(f) is the Lefschetz number of
f (cf. [2], p. 261). For our (M, 7),

L(T) = ?-0 (—1)’ Trace Tgkl')
= 1—(Bf—B1)+ (B —Bz)—(—1)
= 2(14+-B(M)—281) .

Hence we have
X(Fix(r, M) = 2(1+B,(M)—2%) .
This completes the proof.

Proof of Theorem 2. (1) holds from a theorem of Kawauchi [5], since
for any closed orientable surface E, B,(E; Z,)=0 (mod 2).
(3) holds from Lemma 6. Since

X (Fix(r, M)) = —By(Fix (v, M))+-2B,(Fix(r, M))
= 2(1+8,(M)—281) ,

we have

Bi(Fix(r, M))[2+ByFix(r, M)
=—By(Fix(r, M))/2+By(Fix(r, M))=B(M)+1  (mod 2).

We will prove (2). Let M, and M, be components of M —N(Fix(r, M)).
Then 0M, is homeomorphic to Fix(r, M). We identify 0M, with Fix(r, M).
Let I (resp.J) be the homomorphism from H,(Fix(r, M); Q) to H,(M; Q)
(resp. Hy(M,; Q)) induced by the inclusion map. We show Ker I=Ker J.

Ker I DKer J is trivial. Let x=[C] be an element of Ker I. Then there
exists a 2-chain D in M such that 0D=C. Put D,=DNM; (=1, 2). Byatiny
collapsing of D,+7(D,), we may obtain a 2-chain D’ in M, with 0D'=C.
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Therefore we obtained dim Im /=dim Im J. Note that for any orientable
3-manifold M with boundary, dim Im (incl.y: H,(0M; Q) — H,(M; Q))=
dim H(0M; @)/2. Hence dim Im I=dim H,(Fix(r, M); Q)/2. On the other
hand, for any x&Im I, 4(x)=x. Hence Im ICBf. Thus we obtain that

B (Fix(r, M))[2 = dim H,(Fix(r, M); Q)2< 81 .
Therefore by Lemma 6,

23, (Fix(r, M))—By(Fix(r, M)) = (Fix(r, M))
= 2(1+B,(M)—281)
< 2(14By(M)—By(Fix(r, M)).

Hence
By (Fix(r, M))[2+ B,(Fix(r, M))<B(M)+1.

This completes the proof.

Proof of Theorem 4. (1) and (2) are proved by Kawauchi [5]. By Smith
theory 33 B; (Fix(r, M); Z,) <33 B;(M; Z,) (cf [1], p. 126), and for a 3-manifold
M, >} ,(-B'j(M; Z,)=2B,(M,; Zz)i!—Z. Hence (3) holds.

JRecall that Bf is a non negative integer. Hence by Lemma 6, 0<28} =
14-8,(M)—(X (Fix(r, M))/2) and X (Fix(r, M))[2=1+ (M) —261 =1+6(M)

(mod 2). Therefore (5) and (6) hold.
Note that M —Fix(r, M) is connected and for any orientable surface E

contained in Fix(r, M), 7(E)=E and [E]CB;. Hence
By(Fix(r, M))< %
= BI(M)—BI‘
= B(M)—A(1+B(M))[2—X(Fix(r, M))/4}
and
X (Fix(r, M))[2—28,(Fix(r, M))>1—8y(M) .

Therefore (4) holds.

For (7), consider a r-invariant regular neighborhood N of the unoin of non-
orientable surfaces of odd genera contained in Fix(r, M) and let M'=M—N
(N is the interoir of N). Then the Mayer-Vietoris exact sequence for M=
M'UN and ON=0M'=M'N N is as follws:

I
<+ — H\(0N; Z) - H(M'; Z)PH,(N; Z)i H(M; Z)— -,
where I=(iyx, %), #,: ON— M’ and z,: 9N— N are inclusion maps. Since the
image of i,4; Hy(0N; Z)—H\(N; Z) is torsion free, we see that J|romw: 2"
Tor H(N; Z)— H,(M; Z) is injective. Hence (7) holds.
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3. Basic manifolds and operations.

For proofs of Theorems 3 and 5, we construct eight basic manifolds with
involutions and then introduce six additive operations on manifolds with imvolu-
tions. For this purpose, we difine the data of (M, 7) as follows: Suppose
Fix(r, M) consists of m orientable surfaces E,, E,, -+, E,, n nonorientable
surfaces F,, F,, -+, F, and p points, and that the number of nonorientable sur-
faces of odd genera contained in F, F,, -+, F, is s. Then the data of (M, 7) is
defined to be

[ﬂl(M)’ S, 75 P35 81 825 5 8ms €1 €25 *, Cn] )

where r=(8,(M; Z,)— B,(M)—s)/2, g;=B\(E;)/2, the genus of E; (=1, 2, -, m)
and ¢;=p,(F;; Z;), the nonorientable genus of F; (j=1, 2, ---, n).

Now we consider eight basic manifolds with involutions.

(1) A,=(S?% 7); S%is the 3-sphere. A, has the data [0, 0, 0, 2; ; ].
7 is defined as follows: We regard S® as R*U {co}. Then v: S3— S% is
an involution defined by 7(x, y, 2)=(—x, —y, —2) (%, , 2) ER?®) and 7(c0)=c0.

(2) A,=(P% 7); P3is the 3-dimensional projective space. A4, has the data
[0,1,0,1; ;1J.
7 is defined as follows: We regard P? as {(x, y, 2)ER®|x*+y*+22< 1}/
((x, y, 2)~(—x, —y, —2) (¥*+y*+22=1)). Then 7: P*—> P? is an involution
defined by 7(x, y, 2)=(—x, —y, —2).

(3) A4;=(8*x 8% 7,); 4, has the data [1, 0, 0, 0; 1; ].

7, is defined as follows: Consider an orientation reversing involution 7’
on S? such that Fix(r’, S?)is a circle. Then 7,: $2x S'—>S82x S! is an involu-~
tion defined by 7,=7’ Xidentity.

4) A=(S*xS% 1,,); 4, has the data [1, 0, 0, 0; ;2].

T, is defined as follows: Consider an orientation reversing involution 7’
on S? as in (3). Regard S?X S*! as the identifying space of S*xI with the
identifying map from S?X {1} to S?x {0} : (x, 1)~(7'(x), 0), where I is the unit
interval [0, 1]. Then S*X S* has an orientation reversing involution 7, extend-
ing 7’ with Fix(7,, S'xS?) a Klein bottle.

(5) As=(N,, 7); A has the data [0, 0, 1, 2; ;2] and H\(N,; Z)=Z,,DZ,,
(gEN).

(N}, 7,) is defined as follows: Consider (¥, 7) such that V is a solid torus
with Fix(r, V) two points. Let K be a closed curve in V' such that [K]=b
generates Hy(V; Z) with K N7(K)=¢ (see Figure 1). Let V, and V, be solid
tori. Attach them to ¥ — N(K U +(K)) as follows: 8V, is identified with 8N(K)
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—<~—— s identified with —>— by ~
Fx{l}/~ cM,

Figure 1

so that a meridian of 0V, is a curve C on ON(K) with [C]=g¢c—bE
HI(V—Z\OT(K Ur(K)); Z). 0V, is identified with 9N(7(K)) so that a meridian
of 8V, is a curve C’ on ON(+(K)) with [C']=gc' —be H(V—N(K U(K)); Z)
(c and ¢’ are generators of H,(V—N(K Ur(K)); Z) as indicated in Figure 1). We
denote the resulting manifold by M;. Then M, has an orientation reversing
involution and

H(M,; Z)=b,c,c": g¢—b =0, gc'+b=0>.

Let F=0M,=0V and M, a quotient space of Fx I by the identifying map
of Fx {1}: (x, 1)~(7'(x), 1), where 7’=7|z. Then M, has an involution 7",
induced by . Fix(r”, M,) consists of a Klein bottle Fx {1} /~.

Let N;=M,U , M, where h is the identity map of the boundary F. Then
N, has an orientation reversing involution 7 such that Fix(r, NV,) consists of
two points and a Klein bottle.

To compute Hy(N,; Z), we choose generators of H,(M,; Z)=H,(Fx {1}/
~; Z) represented by curves as indicated in Figure 1. Then we have

H\(M,; Z)=x, y: 2x+2y = 0)>.
We can check that
H\(N,; Z)=(b, ¢, ¢’y x,y: g¢—b=0, g¢'+b =0, 2x+2y =0,
2 = c+c', x+y =0
=, x: 2qc = 0, 2qx = 0) .
=2Z,DZ,, .
(6) Ag(g)=(IN3, 7); Ag(g) has the data [1,0, g, 2¢+2; g; ] and Tor H,(N,; Z)
g
g?gé(z’ui@zn.') (g, Qs 925 ngN)'

Let F be a closed orientable surface of genus g. There exists an orientation
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preserving involution @ on F such that the fixed point set consists of 2g+2
points. Consider FXIand 7': FXI—FXI, 7'(x, t)=(a(x), 1—t) (x€F, te1).
Then 7’ is an orientation reversing involution on F X I, and Fix(r’, FxI) con-
sists of 2g-+2 points. Let K, K,, -+, K, be closed curves in Fx I as indicated
in Figure 2. 'These curves satisfy the following:

Figure 2

1. K, K,, -, K,, 7(K)), 7(Ky), -, 7(K,) are mutually disjoint.
2. Let [K]]=beH(FxI; Z) (i=1, 2, -, g), then {b,, b,, ---, b} is a basis of
H(FxI; Z). ..

Consider 2g solid tori and attach them to FXxI— UN(K;U(K;)) as in (5)
so that the resulting manifold M, has =

H\(M,; Z)=<by, by, +++, b,, ¢, c1, €3, €5, +++, €4, Cot
gici—b; =0, qci+b; =0 (@=1,2,-,8).

Consider the identifying space of M, by the identifying map of F X {1} to
Fx {0}; (x, 1)~(a(x), 0), and denote the resulting manifold by N, Then this
manifold has an orientation reversing involution 7 induced by 7’ and the fixed
point set consists of 2g+2 points and F X {1} (an orientable surface of genus g).

To compute Hy(N,; Z), we choose generators of H)(N,; Z) represented by
curves as indicated in Figure 2. Then we have

H\(N,; Z)
a{a;, b, ¢, ¢l by qici—b; = 0, q;¢i+b; = 0, a;—(¢;+cl) = a;,
bi=_bi (l:‘l; 2’ ""g)>
=la;, ¢;, t: 2q,4; = 0, 2,6, =0 (i1=1, 2, -, 2)>

= &(2,,DZ1,)DZ -

(7) A;(g)=(Ns, 7); A7(g) has the data [g,0,0,0;¢; ] (g€ N) and
H\(N;; Z) is a free abelian group.

Consider a handle body V of genus g. Let N, be the double of ¥ and
7: N;—Nj, a map interchanging the copies of V. Then 7 is an orientation revers-
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ing involution on Nj, Fix(r, N;) consists of 0¥ (a colsed orientable surface of
genus g), and clearly H\(V;; Z) is a free ablelian group of rank g.

(8) As(n)=(Ny, 7); (As(n) has the data [1,0,n,0; 32, 2,++,2] and
” —

Tor HI(N4; Z)gge?l(zﬂi@zzﬁ) (n: 91 925 ***>» anN) n+1

Consider # manifolds with involutions (M;, 7,), (M,, 73), *+*, (M,, T) of type
A such that Tor H(M;; Z)=Z,,DZ,,, (i=1, 2, --,n). Note that Fix(r, M)
contains two points (i=1, 2, -+, n). Let B, (B, resp.) be a T-invariant ball in
M, (M,, resp.) containing a fixed point, and B; and Bj disjoint 7-invariant
balls in M, such that each balls contain a fixed point (i=2, 3, +--,n—1). Let
M=(M—B)U (U (M;—B;UBi)U(M,—B;), where B! is identified with

8B;_, so that the identifying map commutes with 7;,_, and =, (=2, 3, +, m).
Then M is the connected sum of M,, My, -+, M,_, and M, with an orientation
reversing involution = extending 7;, 73, ***, To—y and 7,. Let K be a T-invariant
closed curve in M as indicated in Figure 3.

e - o — — P

u®

K U C G

ON(K)x {1} j~ CM'

Figure 3

Let 7'=7| sy and M’ the identifying space of ON(K)X [0, 1] by the iden-
tifying map of ON(K)X {1}; (x, 1)~(7'(x), 1), and let N,::(M—N(K)) UM,
where % is the identify map of 8N(K). Then N, has an orientation reversing
involution and its fixed point set consisits of #+1 Klein bottles.
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To compute H,(N,; Z), we choose generators of H,(M—N(K); Z) and
H,(M’; Z) represented by curves as indicated in Figure 3. Then we have

H(N,; Z)

=la;, b, c;, ¢f, x;, y;, 4,0, d, €
gici—b; = 0, qici+b = 0, ay=citci-+d, e=31 by, 22y, = 0,
2u+20 =0, 2x; = a;, %;+y; = b;, 2u = d, uj—l—v =e (1=1,2,:,n)
=y, By, G, Ul Zy=x;—u, 2¢;%; = 0, 2q;¢;, =0 (i=1,2,-,m))
=2y, ¢, ut 20,2, = 0,2¢,¢;, =0 (I=1,2,-,n)

= @( qu 241)@Z

We defined eight types of basic manifolds with involutions as follows:

(M, ) data

A, [0,0,0, 2 ; ; ]

A4, [0,1,0, 1 ; ;1]

A, [1,0,0, 0 ;1; ]

A, [1,0,0, O ; ;2]

As [0,0,1, 2 ; ;2]

Aq(g) [1, 0,8 2¢+2; g5 ]

A(g) [£0,0, 0 ; g, ]

Ag(n) [1,0,n, 0 ; ;2,2,---,2]

Nl
n+1

REMARK 3. We have (M, 7) of type A;, Ag(g) or Ag(n) such that
Tor H(M; Z)=2,,®Z,, @( Z2,DZy,,) or EB(ZZq ®2Z,,,) for any ¢+0, any
q¢:+0 (=1, 2, -+, g) or any ¢;=%0 (1=1, 2, - ,n), respectively.

Now we difine six operations.

Operation 1. Consider (M’, ') and some closed orientable 3-manifold N
(which may not have involutions). Let B be a 3-ball contained in M’ with
Bnr (B)_qS, and B’ a 3-ball contained in N. Let M= (N—B yu
(M'—(BUT(B)U(— (N—B )) where 0B is identified with 0B’ and 9(7'(B))
with 9B’ (in —N). Then M has an orientation reversing involution 7 extending
7' with Fix(r, M)=Fix(r', M’). Note that H,(M; Z)=H,(M' Z)®H\(N; Z)
PH(N; Z).

Operation 2. Consider (M;, 7;) such that Fix(r;, M;) contains an isolated
point P; (=1, 2). Let B, be a 7;-invariant 3-ball in M; such that B; n Fix(r;, M;)
=P; (i=1,2). Let M be an identifying space (M,— l) U w(M,— 2) where the
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identifying map A: 0B,— 0B, commutes with 7, and 7, Then M is the con-
nected sum of M, and M, with an orientation reversing involution = extending
7, and 7,. Suppose that (M, 7;) has a data as follows;

(Ml’ Tl); [ﬁl) DTRAT) Pl! 815 825 ** 58w’ 5 C15 Cay °*°, C,,/]
(M, 73): [Bay Szs 725 P25 Bmr+1s Ewrt2s ***> m Car1s> Carzs =5 €l (m'<m, n'<n)

then (M, 7) has the data
[*’ *, %, P1+p2_2; 815 825 °*5 8ms €15 €25 °*°» C,,]

(* means the sum of numbers which are in the same column. For example, in the
first column, % means B,+3,.) Note that H,(M; Z)=H,(M,; Z)PH,(M,; Z).

Operation 3. Consider (M;, 7;) such that Fix(7;, M;) contains a surface
F; (=1, 2). Let B;CM; be a r;-invariant 3-ball such that B; NFix(#;, ;) is
a 2-disk on F; (=1, 2). Let M=(M,—B,)U ,(M,—B,), where the identifying
map h: 0B,— 8B, commutes with 7, and 7, Then M is the connected sum of
M, and M, with an orientation reversing involution 7 extending 7, and ,.
Suppose that (M, 7;) has a data as in the definition of Operation 2 (=1, 2).
If F, and F, are orientable with genera g; and g,, respectively, where j<m'<
k<m, then (M, 7) has the data

v
[*) *, k¥, %5 24, £o 8- gj+gln gi+1s 58kt 8ms C1s €yt Cn]

(" means removing the specified element). And if F, and F, are nonorientable
with nonorientable genera ¢; and c,, respectively, where j<n'<<k<m, then
(M, 7) has the data

[*, ¥, ¥, %5 21, 82 s Bms €1 €5 ***5 Cjy, cj+ck: Civs **%» Z'k) HR) Cn]
Note that H\(M; Z)=H(M,; Z)DH,(M,; Z).

Operation 3’. Consider (M, 1)), (My, 75), =+, (M,, 7,) (n=>2) and (M’, 7")
such that Fix(r;, M;) consists of a surface F; and certain points (=1, 2, ---, n),
and such that Fix (7', M") consists of n surfaces E,, E,, -+, E, and certain points.
Let B; be a 7;-invariant 3-ball in M; such that B; N Fix(r;, M;) is a disk on F;
(=1, 2,-++, n), and let C; be a 7'-invariant 3-ball in M’ such that C; N Fix(+', M")
is a disk on E; (i=1, 2, ---,n). We consider an operation similar to Operation 3
with attaching homeomorphism #;; 9B;—9C; (1=1, 2, ---,n). Then we can
obtain (M, 1) such that M is the connected sum of M, M,, ---, M, and M’,
and such that Fix(r, M) consists of the connected sum of F; and E; (=1,
2, --+,m) and certain points. Suppose that (A}, 7;) (=1, 2, -+, n) and (M’, 7’)
have data as follows;
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(Mi) Ti): [/8:’) Sis Vs pz; > ci] (l= 1) 2’ °% "’)
(M',7"): [B, 8", 7', p"s el ch, - cn].
Then (M, =) has the data

[zil Bi4-B', é s, 'gnl} ri+r', épi—l—‘p’; ; e, Cch, o, C,F“C;’:]
Note that H,(M; Z)gé(Mf; Z)OH(M'; Z).

Operation 4. Consider (M, ,) and (M,, ) Let B; be a 3- ball in M;
with B;N7i(B))=¢ (i=1i,2). Let M=(M,—(B,Ur,(B))U(M,—(B,Ury(B,)),
where 0B, is identified with 8B, and 97,(B,) identified with 87,(B,) so that the
identifying map commutes with 7; and 7,. Then M has an orientation reversing
involution = extending 7, and 7, with Fix(r, M)=Fix(r,, M,) U Fix(7,, M,).
Suppose that (M;, 7;) (=1, 2) has a data as in the definition of Operation 2,
then (M, 7) has the data

[Bl+ﬁ2+1) ¥, %, %5 81, 82 °*» 8m> C1s €25 **, Cn] .
Note that H(M; Z)=H,(M,; Z)YPH,(M,; Z)DZ.

Operation 5. Consider (M;, 7;) such that Fix(r;, M;) contains two isolated
points p; and p,, (i=1, 2). Let B;; be a -r,-lnvarlant 3- ball 1n M; containing
bi; (=1, 2, j=1, 2). Let M=(M, (B B,))U (M, (Bz,UBzz)) where 0B,;
is identified with 9B,; (j=1, 2) so that the 1dent1fy1ng map commutes with 7,
and 7,. Then M has an orientation reversing involution = extending r, and ,.
Suppose that (M;, 7;) (i=1, 2) has the data as in the definition of Operation 2,
then (M, 7) has the data

[181+BZ+1» *, *, Pl‘l‘Pz_"'; gl) 82, o 8my €1, Coy “')cn]
Note that H\(M; Z)=H,(M,; Zz)®H(M,; Z)DZ.

4. Constructions.

Proof of Theorem 3. Let E,, E,, -+, E,, be the components of E. Con-
sider a handlebody ¥V, such that 0V,=E,. Let V,, V,, -+, V, be murtually
disjoint handlebodies contained in V, such that the natural homomorphism

H((V;; Zy—>H(V,; Z) is trivial. Let M,=V,— QJI’,-. Then the double of
M,, DM,, has an orientation reversing involtuion 7: _interchanging the copies of
M, with Fix(r, DMI):.QV"' Note that H(DM,; Z) is a free abelian group of
rank -+ 33 g(B)— 1. :
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By (2) and (3), we can see that rankG-—(m—l—i_Zml‘, g(E;)—1) is a nonnegative
even integer. Hence by (1), we can consider that H(DM,; Z) is a direct sum-
mand of G with G/H,(DM,; Z)==B@® B for some abelian group B. Let M, be
a closed orientable manifold with H,(M,; Z)==B. Put M= M,% DM#(—M,)
by using Operation 1. Then we can see that M is the required manifold. This
completes the proof.

Lemma 7. Let t,s,7,p,m, n, g, g2, ***, &m> €1 C3» ***, C, De momnmegative
integers satisfying the following conditoins:
(1) s<m, g>0(=1,2,:,m),c;>1(j=1,2,:,n)

(2) S, P, Cotrs Conas *+» Cn AT €VEM, ANd ¢y Cy, ++, C; are 0dd.

3) m+n+§:, g,.+p+j"g1 ¢; <2s-+4r+-2t4-2.
() mtn—3g+(p+3c)2=1-1.
() mtn—3lgt(p—3 c)2<1+2.

(6) m—|—n—§l} g+(p—Si¢c)2=1+t (mod 2).
Then there exists (M, T) which has a data [¢t, s,7, p; g1, 82, ***» &m> €1 Ca» ***5 Cul-

Proof. We consider the following six cases (where 5_,‘gg~=_§‘__.m1 g and
ch=i2=lc,-):
Case 1) 233g,4+30¢;<s+2r.
Case 2) 23 g4+ ¢;>s+2r and r>n.
Case 3) n>r>s/2 and p=>2.
Case 4) s/2>r and p=>2.
Case 5) n>r, p=0and r+1>s/2.
Case 6) n>r, p=0 and r+1<s/2.
Case 1) 230 g+ ¢;<s+2r.
We prepare |1—n+ 33 g:4+ (2 ¢;—p)/2| copies of A,, s copies of A4,,
(X ¢j—s)/2 copies of A; and Ag(g,), As(g,), -+, As(gm). Now we have the
following data
4, :[0,0,0, 2 ; ; ] (11—n+4+33 gi+(X ¢;—p)/2]| times),
4, :[0,1,0, 1 ; 5 ] (s times),
4; :[0,0,1, 2 ; ;2] (X3 ¢;—s)/2 times),
4s(g:): [1, 0, &, 2g:+2 & 1 (@=12-m).

We denote by X—> Y the result of Operatlon i on the manifolds with

involutions X and Y, and by X(—— vy, x-Lv->t vty (n copies of
Y). Then we apply Operation 3 as indicated in Figure 4 and obtain B (j=1,
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B{=A5(_3_ Ag)eiviz-1 3 4, (G=1,2,-,5)
{:As(_?’_ gyl (j=s+1, s+2, -, m)
Figure 4

2, «++, m) with data [0, 0, (c;—1)/2,¢;; ;¢;] or [0, 0, ¢;/2, ¢;; ;¢;] according to
whether j <s or j >s41.
Applying Operation 2 as indicated in Figure 5, we obtain B, with data

BBl 2 g2 g2

11— 1— O] — **°

o 2 B iAG(gl)—%—As(gz) 2 .. iAe(g,,,)

Figure 5

[m, 5, Sgi+(S 6—9/2, T e+ 33 (281+2)—2(m-+n—1);
815 825 * 5 8ms C1s €25 **°» Cn] ’

If 1—n+3) g+ (X ¢;—p)/2>0, then we apply Operation 5 as indictaed in
Figure 6 and obtain B; with data

B3=Bz(—k; Ay)# 1 g+ =30
b { + i n-1-3ga+H(p—X¢)/2)20
50 n=1-Fgt+((p—X¢)2)<0

Figure 6

[1+m—nt3 g+ (2 ¢;—p)[2, s, D g+ (X ¢;—9)[2, p;
81 82 5 8m> €15 €25 *°°» C,,] .
By 4), 14+m—n+3g;+ (X ¢;—p)/2<t. By (6), t—(14+m—n+>] g;+
(c;j—p)/2) is even. By Assumption of Case 1), 33 g;4+ (22 ¢;—s)/2<r. Hence we

can obtain a manifold with involution with the required data by Operation 1.
If 1—n+3> g:4-(2 ¢;—p)/2<0, then we apply Operation 4 as indicated in

Figure 6 and obtain a manifold with data
[—1+mtn—33gi+(p—3¢))/2, 5, D &iH(X ¢;—9)/2, p:
81> 82> °** 5 8m> €15 €25 °°*, Cn] .

By (5) and (6), t—(—14+-m+n—3] g;4+(p—>2 ¢;)/2) is a nonnegative even integer.
By Assumption of Case 1), 33 g;+(X ¢;—s)/2<r. Hence by Operation 1, we
can obtain a manifold with the required data.

Case 2) 23] gi+33¢;>s+2r and r>n.
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There exist integers m', gi, g5, -+, &m, Ci, €3, +++, ¢y satisfying the following
conditions;
1. 0<m'<m,
2. 0<gli<g (=1,2,.-,m").
3, 1<c,<c and ¢j=c¢; (mod 2) (j=1, 2, ---, n), and
4, 2 Zg —}—2 ci=s+2r.
(Note that 1f m'=0, ¢;=3 (j=1, 2, -+, 5) and ¢;=2 (j=s+1, s+2, :++, n), then
g ¢j=3s+2(n—s)=s+2n<s+2r.)

We prepare the basic manifolds and apply Operations as indicated in Figure
7. Then we obtain B; with the following data

[m+3 g+ (33 ¢;—s—2r)[2, s, 7, 2—2n—+5-+2r;

815 825 ***5 8ms €1y Ca5 **°, Cn] .

Bi=dy(gh(>- A)esi  (i=1,2, -, m)

=A5(i As)(c}-l)ﬂ-l(i Aa)(v,--c;-)ﬂ._z’_ A4, (j=1, 2, -+, )

I= Ay (3 Ay 3 ageepr (s+1<j<m)

BG__BI 2 B2 2 e 2 B;"/———~Bl 2 Bz 2 ..

2 5, 4
A BS . A7(gm'+1) - A?(gm'+2) - i A7(gm)

(if m'=n=0, Be=4, * A,g) * ayg)* - % 4g)
Figure 7

If 2—2n+s5+2r—p>0, then we apply Operation 5 as indicated in Figure
8 and obtain B, with data

[1+m—n+2g3+(2 Cj‘—p)/zx S 7, P; 815 825 ***58m> C15 €25 **°» C,,] .

B7=BG(__.k,~ AI)I(P—S)/2+n—r—1|
Y { & i (p—9)2+n—r—120
U5 i (p—9)2+n—r—1<0
Figure 8

By (4) and (6), t—(14+m—n+->] g;+(X ¢;—p)/2) is a nonnegative even integer.
Hence by Operation 1, we can obtain a manifold with the required data.
If 2—2n+s5+2r—p<0, then we apply Operation 4 as indicated in Figure
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8 and obtain B, aith data
[—-(l—i—s—[—Zr)-{—m-}—n—l—Z &‘HP**‘E Cj)/z: 7, P 815 82 ***s8m> €15 €25 **°» C,,] .
By (3) and (6), t—(—(1+s+2r)+m-+n+3 g;+(p+ 2 ¢;)/2) is a nonnegative

even integer. Hence by Operation 1, we can obtain a manifold with the required
data.

Case 3) n>r>s/2 and p=>2.
First, consider the numbers g, g5, ***, §m» €1y €2» *** Coszs Cot1s ***5 Craase).  1NOtE

s/ r+(s/
that 22 ¢+ 22) ¢;=>(s/2)+2Zr and s/2+(r+s/2—s)<r. Hence, by the same
i=1 j=s+1
way as in Case 2), we have B{ with data
s/2 r+(s/2)
[m+33 g4 ¢;+ ‘21 ¢;—s[2—21)[2, 52, 7, 2-4(s/2);
j=1 j=s+
81> 825 *** 5 8ms €15 €15 ***5 Cofas Cst1s Cotzy s cf+(sl2)]

Applying Operations to B§ and the basic manifolds as indicated in Figure
9, we have B, with data
i 3 (c;~1)/2-1 3 .
i=A(— 4)% — 4, (5/2+1<j<9)
= A3 Ay (r+2+1< j <n)
B9:B§+s/2—'r1 _ﬂ‘_ Bg+s/2+2 _4_ Vi i B;(—4— Al)(p—?.)/z S B{;

Bg/2+1 B§/2+2 iee Bg
P LI S (C S AR ARLAELIS &
if Y,
. Yﬂ
Figure 9
[~(1+S+2")+m+”+zg;+(P+2 cj)/z’ S, 7, P35 815 825 5 8ms €1y Cay *°» C”]
By (3) and (6), t—(—(1+s+2r)+m—+n+3> g;+(p+ > ¢;)/2) is a nonnegative

even integer. By Operation 1, we can obtain a manifold with the required data.

Case 4) s/2>r and p>2.

First, consider the numbers g, g, **, &m> €1 2 ***5 Capy Csi1s Cstzs ***» Cpe
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Note that 2r+(n—s)>r=2r[2. By the same way as in Case 3), we have B with
data

[—(1—|—2r—|—2r)—|—m+(ZH—n—s)—%—Z}g,~—§—(p—i—:§'1 cf+,§16f)/2’ 2r, 1, p;
815 825 **5 8m> €15 €25 ***5 Copy Csp1y Cs42s <2 C,,] .

Applying Operations to Bj and the basic manifolds as indicated in Figure
10, we obtain B,, with data

[—(1+5+27’)+m+”+2g,+(1>+2 cj)/ZJ $ 7, P, 815 825 * "5 8ms C1> €25 %> L',,] .

Bio=A (3 A)earrur1 3 40 2 43 gyey e
(1<i<s/2—7)
4 o 4y 4

/ 1 2 2—
By,=B;{ —— Bi, — Bl — -+ Bif*™”

Figure 10

By (4) and (7), t—(—(1+s+2r)+m+n+> gi+(p+ 2 ¢;)/2) is a nonnegative
even integer. By Operation 1, we can obtain a manifold with the required data.
Case 5) n>r, p=0and r+1>s/2.
Apply Operations to the basic manifolds as indicated in Figure 11. (In
Figure 11, By, is created by applying Operation 3’ to Bi;, B, -+, Bif, Bi3!
Bi3?, ..., Bi'**/* and Ay(r).) We obtain B,, with data

[—(Ats+2r)+mAn+3gi+30¢;/2, 5,7, 05 81, €25+, &m5 €15 25 =5 € -

{22/12(3_ A)ei~dn2 =12, -, s/2)

= Ay Y (j=s/241, 5242, -, 5)

o= A3 AYerDrt (=51, 542, o, 1+ 145/2)

= A (- Ay (G=r+14s5/241, r+ 145242, -+, n)
By=Ay(r) > {Bly, Bh, -, BIF, Bit', Bit?, -, B
Bu=B, -4 piyirzt 4 prvep 44 po
2 4

_ Ag) 2 ae) b A(g,)

—~—
~

—
Bi**' Bif*** ... Bi,
Figure 11
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By (3) and (6), t—(—(14-s+2r)+m+n+3>] g;+> ¢;/2) is a nonnegative even
integer. By Operation 1, we can obtain the required manifold.

Case 6) n>r, p=0 and r41<s/2.

First, consider the numbers g,, g, ***, Zms €1, €25 ***, Catr1)s Cst1s Cstas ** s Cue
Since 2(r+1)+4-(n—s)>r and r41>(2(r+1))/2, by the same way as in case 5)
there exists Bf, with data

2(r+1) n
[+ 26+ )42 mt Qo+ ) =9+ B+ (E o+ 33 62,
2(7‘"' 1), 7, O; 815 825 ***5 8ms €15 €25 ***5 Co(r+1)5 Cs+15 Cs+25 ***y Cn] .

Applying Operations to Bi, and the basic manifolds as indicated in Figure
12, we have B¢ with data

[-(1+s—|—2r)—}—m—l—n+2 g1+2 Cj/2) S, 7, O; 815 825 ***s 8m> €15 €25 ***, Ctl] .

B;5:A4(i A)4(52,«+2+2,-_1"1)/2"1 i A2 _2.. AZ(__§_ A4)(‘2¢+2+2,~’1)/2
(I<i<s2—r—1)

Bs=B1, 4 1 4 2 L Bilz-r-1

Figure 12

By (3) and (6), t—(—(14+s+2r)+m+n4-> g;+>1 ¢;/2) is a nonnegative even
integer. By Operation 1, we can obtain the required manifold.
This completes the proof.

ReEMARK 4. In the proof of Lemma 7, we have constructed (M, 7) with data
stated in Lemma 7 such that Tor H(M; Z )z(éaZz)EB(G'B(ZM@ZM)) for some
i=1

nonzero integers ¢, g, ***, q,. Since (I, 7) is obtained from the basic manifolds
with involutions by the Operations, we see from Remark 3 that any given
nonzero integers can be taken as ¢q;, ¢;, ***, ¢,

Lemma 8. Ewven if the numbers s and p in the assumption of Lemma 7 are
odd, the same assertion of Lemma 7 holds.

Proof. We can check that ¢, s—1, r, p—1, m, n, g, 83, ***, 8m> €1, €25 ***
Coopy €s— 1y C4p1, *++, €, satisfy the assumption of Lemma 7. Hence there exists
(M',+") with data [t,s—1, 7, p—1; g1, 8, ***, 8w} C1s Ca» =, Cs1y €1, oy =+, G4l
Applying Operation 3 to (M’, ') and A, (4, has the data [0, 1,0, 1; ;1]), we
can obtain (M, ) with the data [z, s, 7, p; 81, 82 ,°**, 8w €15 €2 ***5 Cal-

This completes the proof.

Proof of Theorem 5. We may assume that X consists of p points, m closed
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orientable surfaces E,, E,, -+, E,, of genera g,, g,, ***, g,, and 7 closed nonorien-
table surfaces F,, F,, --+, F, of nonorientable genera ¢, ¢,, -*+, ¢, such that g;>0
or =0 according to whether 1<i<m’ or m'<i<m for some m' and ¢; is
odd (=1), even or 1 according to whether 1<j<s, s+1<j<n’orn'+1<j<n
for some s and #’. By conditions (1)-(7), we can see that the given abelian

group G is isomorphic to (& Z,)D(D(Zuy®Zuy)) D(HZ)DBOB, where

r=(B.(G; Z,)—B,(G)—s)/2, B is some abelian group of odd order, and
t, ¢i, ¢, ***, ¢, are some integers. We can check that the numbers t—m-tm’,
S, 1, ptn—n',m', n', g, g, 8w €1y €2y *++, €y satisfy the assmption of Lemma
7 or 8.

Hence by Lemma 7 or 8 and Remark 4 there exists (M, 7,) with data
[t—m~+m', s, v, p+n—n"; g, 8, ***, 8w €1y €, =+, €r] and Tor H (M,; Z) ==

(ESBZZ)GB(_E_'B(ZZ,,‘.GBZM‘.)). Prepare n—n' copies of 4, (with data [0, 1,0, 1; ;1])
and m—m’ copies A,(0) (with data [0, 0, 0, 0; 0; ]). Applying Operation 2
n—n' times and Operation 4 m—m’ times, we have a manifold M, with data

[t) s+n—n’, 7, P; 815 825 ***5 8m> €15 C25 ***, C,,] .

Consider a manifold M; with H,(M;; Z)=B and apply Operation 1 to M,
and M, We denote the resulting manifold with involution by (M, 7). Then
we can see that H(M; Z)=G and Fix(r, M)=X.

This completes the proof.
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