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Introduction

Let [ be the set of link isotopy types and X: L—C a C-valued invariant
of links. For any positive integer 7, one can define the r-parallel version X :

L—C of X by putting
X"(K)=X(K"), Ke_r,

where K@ is the r-parallel link of K obtained by applying the operation ¢
(see Figure 1) to each crossing point of K.

Figure 1

Recently, Morton-Short [24] and Yamada [34] independently noticed the ex-
istence of a pair of knots which is indistinguishable by the Jones polynomial
[14], but is distinguishable by its 2-parallel version. Moreover there exist
mutant knots distinguishable by the 3-parallel version of the two-variable Jones
polynomial P® ([25] and Section 6.2 of this paper). Thus it seems to be
worth while studying the r-parallel version of a link invariant from a general
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view-point.

Throughout this paper we assume that all the invariants of links are of
‘trace’ type. A link invariant X is called of trace type iff X satisfies the fol-
lowing conditions: (i) Let 4~ be the closure of an #n-braid 5. Then X(5") can
be written as a linear combination of characters of representations of the braid
group B,. (ii) The characters in (i) satisfy some compatibility conditions with
respect to the natural inclusion B,— B,,, (n=1, 2, --+) (see Definition 1.1.4).
For example, the (two-variable) Jones polynomial [7], [14], [29] and the Kauff-
man polynomial [17], [22] fulfill this assumption. (See also [2], [10], [15], [26].)
The purpose of this paper is to give an efficient method to calculate the r-parallel
version X of the invariant X. A direct calculation of X ®(K) is, in principle,
possible, but the degrees of the characters of the representations involved soon
become enormous even for relatively small ». We show that the characters can
be reduced to a sum of those of much smaller degrees, and we have only to deal
with representation matrices of much smaller sizes. See Table 1.

Table 1 The maximal degree of characters needed to get the r-parallel version of the
Jones polynomial of the closures of n-braids.

index r

braid 1] 2 3 4 5 6 7 8 9
, Jdirect | o) 9| 48| 207| 2002 | 13260 | 90440 653752 | 4601610
method | 2| 3 4 5 6 7 8 9 10
Jirect | 3128 | 297 | 3640 | 48450 | 653752 | 7020405 | 124062000 | 1739969550
* method| 3] 6] 10| 14 18 2 27 32 38

One of the main results of this paper is the following, which is an immediate
consequence of Thoerems 1.4.9, 1.5.1, 4.4.1, Corollary 4.2.3 and (4.1.10).

Theorem. Let V be the one-variable Jones polynomial, r a positive integer
and b a 3-braid whose closure is a knot. Then we have the following.

N [r/2] [3¢r-7>/2]
Vo ) = 1_2=05r.;'( .zzg as,-,{( V) Trace (wy, - j, (),
where

= r—ri{—ll—l (r}i—l) ’

tk/z+1/2—i__ t—k/z—1/2+i
ari(V) = (— =1

b

and n,, ;'s, are representations of B, given in Theorem 4.4.1.

The degree of the representation 73, ; is equal to i+1 if 0<7<r and
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3r—2i+1 if otherwise. Applications of the above theorem are given in (4.4.4)-
(4.4.10).

In the last section of this paper, we shall give a necessary condition for the
existence of mutant knots distinguishable by the r-parallel version X of the
link invariant X (Theorem 6.2.4). We construct mutant knots K,, K,, K;, K,
for which the 3-parallel version P®(K;) (1<i<4) of the two-variable Jones
polynomial are all distinct (Section 6.2).

We shall give a formula for an invariant of cable links. Let X be a link
invariant of trace type. Then we shall construct several link invariants X ¢,
X2 ... by ‘decomposing’ the r-parallel version X® of X (Theorems 1.5.1
and 2.2.1). Let K be a knot, L a link in the solid torus and K the satellite
link [4] coming from K and L. Let X, be a knot invariant denfied by X,;(K)=
X(K;). Then X, can be written as a linear combinations of invariants X *V,
X@B ... if L is a ‘cable’ (Definition 1.6.3), or if X is the Jones polynomial or
the Kauffman polynomial (Theorem 1.6.4, 2.2.1, 4.3.2, 5.3.1).

We prove, in Sections 1-2, fundamental formulas for X and show some
related results of general nature. In Sections 3-5 we apply the results of Sec-
tions 1-2 to the r-parallel version of the (two-avriable) Jones polynomial and
the Kauffman polynomial, and investigate them more closely. It is discussed
in Section 6 how X works at mutant knots.

As a conclusion of this paper, the r-parallel version of link invariants
seems to be quite promising in attacking the classification problem of link

types.
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1. The parallel version of link invariants, I (the case of knots).
We shall discuss in this and next sections general properties of a ‘parallel ver-
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sion’ of a link invariant of ‘trace’ type. In this section we first state and prove
the results in the case of knots, and, in Section 2, generalize them to the case
of links.

1.1. Link invariants of trace type. Let B, be Artin’s braid group on
n-strings with standard generators o, o, ***, o7,_, as in Figure 2,

\

i ] ] ﬂ

7 i—1 7 i+14i+2 n

g

Figure 2
ie.

B, =<0y, 03 s 04 yl0i0i0i00m00 (1<i<n—2),
0;0; = 0;0; (1Si<]-1£n—2)>.

Let £": B,— B,,, be the group homomorphism defined by &{(c;)=0; for
n,reN={1,2,} and 1<i<n—1. We regard B, as a subgroup of B,,, with
respect to the inclusion £Y°. Let B={(b, n)|bE B, for n=1, 2, --}. A closure
of a braid (b, n), written (b,n)" or simply 4", is the link formed by joining
the 7 points at the top of (b, 7) to those at the bottom without further crossings.
Two links K, K, are called equivalent if K, is ambient isotopic to K, in R? ([3],
Chapt. 1, B).

Theorem 1.1.1 (Alexander [1] p. 42). Ewvery link is equivalent to the closure
of a braid.

DerFINITION 1.1.2 (Markov class). Let ~ be the equivalence relation on B
generated by the following:

(i) (bb’, n)~(b'b, n) for b, b'EB,,

(i) (b, n)~(abi?, n+1) for bEB,.
The equivalence classes of B by the above relation are called Markov classes.

Theorem 1.1.3 (Markov [1] p. 51). The closures of two braids b,, b, are
equivalent if and only if b, and b, are contained in the same Markov class.

DeriNiTION 1.1.4 (link invariant). A mapping X from B to a set S is
called a link invariant if X is constant on each Markov class of B.
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Let C be the field of complex numbers and B, the set of equivalence
classes of finite dimensional irreducible representations of B, over C. Let f
be a C-valued function on B. We assume that f can be written as a finite
linear combination of characters of the braid group, i.e. for b€ B,,

(1.1.5) fb, m) = 25 au(f)Xu(b)

where, for each p&B;, X. is the corresponding character and au(f) is an
element of C independent of . Let (pu, V) be the representation of B, corres-
ponding to wEB;,, ie. Vi is the representation space and p, is the group
homomorphism of B, to GL(V.). Then p. is extended uniquely to a C-algebra
homomorphism of the group ring CB, to End(V,) and so its character X, is
extended to a linear function on CB,, which are also denoted by p. and X.
respectively. Hence the function f is extended to a function on CB={(b, ) |be
CB, for neN} by (1.1.5), which is also denoted by f.

DEerFINITION 1.1.6 (associated algebra). Let A,(f)"={u € By |au(f)=*9}
forneNand 4,(f)= @ pu(CB,). We call 4,(f) (n=1, 2, ---) the associated
"

Edpy(IN

algebra of f. Let p,: CB,— A,(f) be the algebra homomorphism defined by
D=

heain
DerINITION 1.1.7 (trace type). A C-valued function f on B is called of
trace type if f satisfies the following conditions:
(i) The function f can be written as a linear combination of characters
of B, as in (1.1.5) for euch nEN.
(i) Let A(f), A)(f), -+ be the associated algebras of f. Then there
are algebra homomorphisms ¢,: 4,(f)—A4,4.(f) for which p, 0=

EnOPn‘

ReMarx 1.1.8. Both the one (two)-variable Jones polynomial and the
Kauffman polynomial are of trace type for the generic values of their parameter(s).

To specify the notations, we review the definitions of the polynomial invar-
iants of links mentioned in Remark 1.1.8. We also recall the definitions of the
regular isotopy invariants of unoriented link diagrams called the bracket poly-
nomial and the L-polynomial [16], [17] which will be needed in Sections 4 and 5.

DEFINITION 1.1.9 (writhe). The writhe of a link diagram K is the sum of
the signatures of all crossing points of K (Figure 3) and is denoted by %(K).

DeFiNITION 1.1.10. Let ¢ be a non-zero complex number. The bracket
polynomial -»>={->(t) with values in C is uniquely defined for regular isotopy
classes of the unoriented link diagrams by the following formulas:
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A X

positive crossing negative crossing
signature=1 signature=—1
Figure 3

KK,> =t K+t K., 0> =1 for the unknot O,

where the K, are identical except within a ball where they are as in Figure 4.

XD S
L

Figure 4

Let a and x be non-zero complex numbers. The D-polynomial D(-)=
D(+)(a, x) with values in C is uniquely defined for regular isotopy classes of
the unoriented link diagrams by the following formulas:

D(K,)—D(K.) = &(D(K)—D(K.),
D(K,;+) = aD(K,), D(K;-)=a'D(K,), DO)=1,
where the K are identical except within a ball where they are as in Figure 4.
In the following, we define isotopy invariants of oriented links. Let ¢ be a

non-zero complex number. The one-variable Jones polynomial V(-)=V(-)(t)
with values in C is defined by

(1L.111)  W(K,)—tV(K.) = (2—t)V(K,), V(O0)=1,

where the K, are identical except within a ball where they are as in Figure 5.
To specify the parameter ¢, we also denote V(K) by V(K)(¢) for a link K. Let
K be a link diagram and | K | its unoriented diagram. Then it is known [16] that

(1.1.12) V(K)(@) = (=149 K[ X() -
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K, K_ K,
Figure 5

Let ! and m be non-zreo complex numbers. The two-variable Jones poly-
nomial P(-)=P(+)(l, m) with values in C is defined by

I"'P(K,)+IP(K)+mP(K) =0, PO)=1,

where we use the notation in (1.1.11).

Let a and x be non-zero complex numbers and K be a link diagram.
The Kauffman polynomial F(-)= F(-)(a, x) with values in C is defined by
F(K)=a*®D(|K]).

1.2. Parallel versions. Fix a positive integer . Let ¢{: B,— B,, be
the group homomorphism defined by Figure 1, or, equivalently, by

(1.2.1) ¢ o;) = o(ri—r+1, ri—1)""o(re, rit+r—1)a(ri—1, rit+7r—2) -
a(ri—r-+1, ri) (I<i<n—1),
where o (i, j)=0;0i4,*0;. Let $®: B—B be the map defined by ¢((d, n))=
(¢5(8), ).
Theorem 1.2.2. Let (b, n) and (b, n,) be two braids. Then the links

((By), rn,)"~ and ($)(b,), rn,)" are equivalent if (b, n,)" and (byyn,)" are equiva-
lent.

The following lemma and Theorem 1.1.3 yield the above theorem.

Lemma 1.2.3. Let ~ denote the Markov equivalence relation (Definition
1.1.2). Then we have the following :

(8) For by, b,&B,, (4B, rm)~($ (B, ),

(b) For beB,, (¢47°(b), rn) ~(¢p4(bay?), rn+-r).

Proof. The part (a) holds since ¢¢’ is a group homomorphism. The
following Lemma 1.2.4 shows the part (b). [

Lemma 1.2.4. For bB, (n>r),
(1.2.5) (b, n) ~ (bs'], n+r7),
(1.2.6) (b, n) ~ (5(c$)7?, n+r).
where o'=a(n—r+1, n—1)"a(n, n+r—1)a(n—1, n+r—2) --- a(n—r-+1, ri).



8 J. Murakami

Proof. We first prove (1.2.5) by induction on r. For r=1, (1.2.5) is
identical to Definition 1.1.2 (ii). Suppose that (1.2.5) is true for r=k—1. By
Definition 1.1.2 (i) and (ii) we have

(1.2.7)  (ba$®, n+-k)
~(o(n—1, n+k—2) -+ o(n—k+1, n)bo(n—k+1, n—1)7*
X a(n, nt+-k—2)o 41, n+k)
~(o(n—1, n+k—2) -+ o(n—k+1, n)bo(n—k+1, n—1)7*
X o(n, n+k—2), n+k—1)
~(bo(n—k+1, n—1)*o(n, n+-k—2)o(n—1, n+k—2) -
o(n—k+1, n), n+k—1).
By using the relation of the braid group, we have oo (%, j)~'=a(7, §) ' o'¥+1, and
so we get
(1.2.8) o(n—k+1, n—1)"*+
‘- = o(n—k+2, n—1)" o5l c(n—k+1, n—1)**
= o(n—k+2, n—1)"'o(n—k+1, n—1)"#25.1,
= o(n—k+2, n—1)*c; 41 0(n—k+1, n—1)"*3a.1,
= o(n—k+2, n—1)2o(n—k+1, n—1)"* 351,52,
= =gm—k+2, n—1)"* 6t 1 ai e s ot
By using the relation of the braid group, we have o (i j)o(i—1,j)=
o(i—1, j)o(i—1, j—1)=0;_,0(s, j)o(i—1, j—1). Hence we get

(1.2.9) o(n, n+k—2)a(n—1, n+k—2)o(n—2, n+k—3) --- o(n—k-+1, n)
= o4-y0(n, n4+-k—2)o(n—1, n+k—3)a(n—2, n+k—3) -
o(n—k+1, n)
= 0p-104—20(n, n+k—=2) .- o(n—2, n-+k—4)o(n—3, n+k—4) ---
o(n—k+1, n)

= =0y 0y Oy oM, n+R—2) - a(n—k+1, n—1).
By substituting (1.2.8) and (1.2.9) into (1.2.7), we obtain

(ba, n+k)
~ (bo(n—k+1, n—1)"*o(n, n+k—2)a(n—1, n+k—2) -
o(n—k+1, n), n+k—1)
= (bo(n—k+1, n—1)'a(n—k+2, n—1)" g 1 107 tpsz oo
Ori1Op1Opg *** Oyoprr (M mtR—2) oo

o(n—k+2, n—1)o(n—k+1, n—2), n+k—1)
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= (bo(n—k+1, n—1)"'o(n—k+2, n—1)"*g(n, n+-k—2) -
oc(n—k+2, n—1)o(n—k+1, n—1), n+k—1)
= (bo(n—k+1, n—1)"6¢ Vo(n—k+1, n—1), n+k—1).

Moreover, Lemma 1.2.3 (a) and the induction hypothesis imply that
(bo(n—k+1, n—1)"'¢¢ Va(n—k+1, n—1), n4+k—1) ~(b, n).
Hence (1.2.5) is proved. An analogous argument yields (1.2.6). [

DEerINITION 1.2.10 (r-parallel version). Let K be a link and (b, )& B the
braid whose closure is equivalent to K. The link (¢$(d), )" is called the 7-
parallel version of K and denoted by K. The r-parallel version f) of a func-
tion f on B is defined by f“(b,n)=f(¢$(b), rn).

The r-parallel version of a link is well-defined by Theorem 1.2.2. Hence
the parallel version X of a link invariant X is again a link invariant.

1.3. Wreath products. We review representation theory of wreath pro-
ducts. The references are [19] and [6]. Throughout this paper, a semigroup has
a unit, a semigroup homomorphism preserves the unit and a linear representa-
tion of a group or a semigroup sends the unit to the identity transformation.
Let O={1,2,--,n} and H a semigroup with a semigroup homomorphism
0: H— S,, where S, denotes the symmetric group of degree » actnig on Q
naturally. For A€ H, let {d(k)> denote the subgroup of S, generated by 6(%).
Fix a group G and an element 4, of H.

(13.1)  H(h) = {h€ H |for every {O(ho)p-otbit O of Q, 6(k)-O = O} ,

which is a subsemigroup of H. The semigroup H(A,) acts on G" by the fol-
lowing. For he H(h) and &=(8v &» "’:gn)EGﬁ’ hgz(gO(h)"(l)) "5 &otw~1m))-

DeriniTION 1.3.2. The set G" X H(k,) together with the composition law
(g, h)(g's h')=(g(*g"), k") is a semigroup called the wreath product G")}XH(h,)
of G with Hi(h,).

For a group G let G” denote the set of equivalence classes of finite
dimensional irreducible representations of G over C, and for v G”, (p,, V)
denotes the corresponding representation. For v =(y,, -+, »,) (v; €G"), let
py=p»Q "+ ®@p,,, which is an element of (G")". In the following, we assume
that v;=vp; if {O(h)>-i=<0(hy)>-j. We define an action of the semi-group
G"X(H(hy) on V, by the following: For (g, k) € G"XH(h,) and (v,, -+, v,)
S V’v1®"' & Vv,,y

(g7 k)(vli Tt ‘Z),,) = Pv(g)(”o(h)‘lu): M) 'vo(h)"l(n)) .
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We denote by p,~ the representation of the semigroup G"XH(h,) given by the
above action on V. If p,(2)=(py,(81)a,8,"**Pv,(&n)a,e,) 1<y, B <dim 7, , -+, 1
<a,, B,<dim V, ) is a matrix representing g=(g, -+, £,) € G", then we get
for he H(h,):

(1.3.3) pv (g B) = (Pvl(g)lulﬂo(h)—l(l) Pv,.(gn)a,.ﬂo(,,)—l(h)) .

Let = be a representation of the semigroup H(k,). By composing the
canonical projection G*XH(h,)— H(h,), = is naturally extended to a represen-
tation of the semigroup G"XH(k,), which will also be denoted by 7.

Proposition 1.3.4. Let (p, V) be a finite dimensional linear representation
of the semigroup G"X|H(h,) such that the restriction p|gn is a completely reducible
group representation. We assume that the irreducible components of p|gn are all
equivalent to p,. Then there is a representation x of the semigroup H(h,) such
that p is equivalent to p,” Qr.

This is a version of a standard result found, e.g., in [6], Theorem 5.1.7.
Although G" may not be a finite group or H(h,) may not be a group, an argu-
ment analogous to the proof of [loc. cit.] works because of our assumptions, i.e.
the finite dimensionality of 7" and the complete reducibility of p| .

1.4. The characters associated with the parallel version. Fix a
C-valued function f on B of trace type and r a positive integer. The r-parallel
version f® of f is also of trace type since we have the following from (1.1.5).
(14.1) fOGn)) =, 3 au(f)Xu($i(P)) -

EA’”(f)/\
We decompose the characters Xuop? (uE4,,(f)") into sums of characters of B,
of smaller degrees. We need some preparations. Let ¢;: CB,—~CB,, (1<j<n)
be the homomorphism defined by

(142) Lj(a'i) = Citrj-r (lSlSr—l)

and :: CB®*—CB,, the homomorphism defined by «(8,Q+:-®b,)=1¢,(8;)*** t,,(b,)
for b;&CB,, where CB#" denotes the z-fold tensor product CB,®---QCB, of
CB,. We regard CB®" as a subalgebra of CB,, by the inclusion ¢. Let 8 be
the group homomorphism from B, to the symmetric group .S, of degree z defined
by 0(p;)=(¢ i+1) (the transposition of 7 and i+1). We define an action of B,
on Q={1, -+, n} by b(z)=0(b)(z) for i Q. Then we have the following.

Lemma 14.3. For beB, and b'EB,,
PO)ud) = 4B ()  (1<k<n).

Proof. The following formulas imply the statement of the lemma.
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(14.4.2) ¢S(a)ulo)) = (o) (a:) (1<i<n—1,1<j<r—1, ki, i+1),
(1.44.D) ¢ (0)eiri(o;) = (o)) (ey)  (1<i<n—1, 1<j<r—1),
(144.¢) ¢9(o)e(o;) = tir(o))p(as) (1<i<n—1,1<j<r—1).
The formula (1.4.4a) is a consequence of (1.2.1) and the relations o0 ;=0 ;0;
(li—j|=2). We prove (1.4.4b). Leto'(s, j)=00;-,**0; (1=j). Then
¢ (a;) = a(ri—r+1, ri—1)7"a'(ri, ri—r+1)o'(ri+1, ri—r+2) .-
o'(ri+r—1, 7).

Since the relations of the braid group imply ¢'(%, j)oy=04-,0'(, j) (>k>]), we
have
IR CATIN i)
= o(ri—r+1, ri—1)""¢'(ri, ri—r+1)a'(ri+1, ri—r+2) ---
o'(ritr—1, ri)o,;;
= o(ri—r+1, ri—1)"0,;_,. ;o' (ri, ri—r+1)o'(ri+1, ri—r+2) ---
a'(ri+r—1, ).

We also know ([1], p. 28, Corollary 1.8.4) that the element o(ri—r-+1,ri—1)7"
is contained in the center of the subgroup <o,;_ 41, Gyi—yia, ***» 0,i-> Of B,,.
Hence we have

PA(0)in(0)) = Grimpr; 3 (00) = 1l ;)3 () -
This proves (1.4.4.b). The formula (1.4.4.c) is proved analogously by using
¢ (o) = a(ri—r+1, ri—1)""a(ri, rit+r—1)a(ri—1, ri4-r—2) -+ a(ri—r+1, ri)
and the relations o(7, j)o,=044,0(, j) (<k<j). O

Lemma 1.4.3 implies that the subgroup ¢(B?)¢$’(B,) of B,, is isomorphic to
the wreath product B}X|B, with respect to 8,: B—S,,.

DEFINITION 1.4.5 (isotypic subspace). Let 4 be a semisimple algebra over
C, U an A-module and p an irreducible representation of 4. An A-submodule
W of U is called the p-isotypic subspace if W is the maximal subspace on which
the action of 4 is isomorphic to pP-:-@Pp (n-times) for some n=0, 1, 2, .-,

For p(1), ---, v(n) € A,(f)" and u€A4,,(f)", let Vi y@,...vsy be the pyy@ -+
® pym-isotypic subspace of V as a Bj-module and Y=V,;,®:--Q V). Then
Vi@, vmy= Y B @Y =Y QCIHYD:¥m) - where d(u, v(1), -+, v(n)) denote
the multiplicity of py @ ®pyy In pulpr. For bEB,, (b1, -+, by) =B} and
,Q R0, QUWEV,() @+ @ Vy(ny @CH*¥D V) — Ve, v, We have
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(1.4.6) Pu(e(bI® - ®b3)$i(8))(v,® +++ @, @w)
= pu($% (8)e(bi1)® *+* R b)) (0, R -+ R v, Qw)
= pl-"(¢$'r )(b))(p\l(l)(bg(l))vl® o ®Py(,,)(b£(,,))‘0,,®70) y

from (1.4.3). The above formula implies the following:

Lemma 1.4.7. For beB,, the subspace pu(d$ D))V v, vty 15 equal to
the py-1) @ @ pro-1tan-iSotypic subspace Vi vo-103),-,v6- 1y Of Ve

In particular, V,, .., is invariant relative to the actiono of «(B})pi(B,).
Let pu,, be the representation of «(B})¢{ (B,) obtained by restricting p. on
Vuy,..,y and X , its character. Then we have the following.

Proposition 1.4.8. For b'€B, and b B, such that b" is a knot, we have
Xu(s 0NN =5 XonluB)B) .

Proof. Recall that f is of trace type. The condition (ii) of Definition 1.1.7
implies that there are algb algebra homomorphisms ¢;~: 4,(f)—4,.(f) (1<i<n)
such that ¢;" o p,=p,,0¢;. Hence the action of B} on V, is factored by p%: B:—
A,(f)". Since A,(f) is the associated algebra of f, 4,(f) is completey reducible
and so we have Vu=®,e(1,(nm Vi,v,v» Lemma 1.4.7 implies that

pP'(l'l(b')¢£l’)(b))Vl“,’v(l),-",v(n) = Pﬂ-(‘x(b’))Vﬂ,v(b‘l(l)),---,v(b‘l(n))
= Vi 1), b6~ 1m)) +

Hence if Vi vy, vt € Viv6-1(0), - v6-1), then the diagonal part of the matrix
4, (b")p$ () corresponding to the subspace Vi yq,...m is equal to 0. Thus
Xu(ty(b")p$(b)) is equal to the sum of the diagonal elements of pu(¢,(5")$S (b))
corresponding to the subspaces Vi y(p) ... vty WIth Vi vty s vty = Vi, v =100, -, v(6 = 1n))-
Since the closure of b is a knot, () is an n-cycle. Thus »(?)=v»(b71(?)) (1<i<n)
imply »(1)=---=p(n). But the sum of diagonals of p.(;,(b")py (b)) on V..,
is equal to X ,(¢,(0")ps (8)). This proves the proposition. []

Since ¢(By)¢$’(B,) is isomorphic to B*XB,, we see, from Proposition
1.3.4, that ther is a representation =, , of B, such that

(1.4.9) e (p0")” @,y

where (p®")~ is the representation of ¢(B})$S (B,) coming from the representa-
tion p®" of B} as in Proposition 1.3.4. Let Xv~, v, be the characters of (p®")",
7w,y Tespectively. Now we can state our main theorem.

Theorem 1.4.10. Let b be an n-braid whose closure is a knot. Then we
have the following.
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0 Xu$OO) =53 XDors(b),
(@) fOBm=_5 (3 alflonsb):

red, (N ve4 (O™

Proof. Proposition 1.4.8 and (1.4.9) yield that
X @B =53 KXo $0) = 3 X (0w s(b) -

ved (Hn

Hence the first formula is an immediate consequence of the following lemma
with 8'=1. The second one is obtained from (i) and (1.4.1). [

Lemma 1.4.11. For b'EB, and bE B, such that b” is a knot, we have
X (0(b)5(B)) = X, (2") -

Proof. By using 1.3.3, we have

X" (0(b")57())
== 2 8:1151 ot Sw"ﬂ,.(PV(bl)dlﬁb—l(l)p“(l)ﬁzﬂb—l(z) - pv(l)m"ﬂb‘l(ﬂ))

@1,B1y s @B

- 2 Swlﬂl Sanﬂﬁ(pv(bl)ulﬂb—lcl) 8«'25,,—1(2) Bw,ﬂb-l(ﬂ)) .

oy, By,

Since b is a knot and so #(b) is an n-cycle, each term of the above summen-
tion is 0 except when a, = By-1)) =Qp-1(j) = *** = Ap-n+1y = By, 1.€. Ay, ***, Ay
By, +++, B, are all equal. Hence we have

%" ((8)$i(0)) = 35 Pulb Yoy, = X(B) -
This completes the proof. []

1.5. A decomposition of X" into invariants. For a C-valued function
f on B of trace type, let

f("v)(b’ ”) = 3 a#(f) wl-b,y(b) .

ped, (I

The r-parallel version X® of a link invariant X of trace type is a sum of
invariants X ") parametrized by 4,(X)":

Theorem 1.5.1. For a C-valued function f on B of trace type and bE B,,
we have the following
(1) f"Y is a link invariant if f is a link invariant.

(@) fOK)= 3 Lf"K) for a knot K.

Proof. (ii) is an immediate consequence of the definition of f™* and
Theorem 1.4.10 (ii). To show (i), we check the invariance of f"" relative to
the relations (i), (ii) of Definition 1.1.2. Let b and b’ be elements of B,. Since
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wp (00" )=wu (b'D), we have frM(bb', n)=f""(b'b, n). It remains to show
that

(1.5.2) FO(b, n) = FO(bodt, nt-1) .

Let f,: CB,—C be a C-linear function defined by f,(6)=f(b, ) for b&B,. For
veA(f), let n, be an element of CB, such that p,(»,)=id and p,/(»,)=0 for
v+v'€A4,(f)". Then p,(5,)is contained in the center of 4,(f), p,(m)'=2,(nv)s
and p,(n,)p,(nv)=0 if v==v'. Since pu(ey(my)ex(y) - tu (1)) is 2 projection from Vy
to the p®*-isotypic subspace V.., of Vi, we have pu(e(m)e(ny) <+ ta(ny) 3(D))
=pu,($5°(8)). Hence by (1.4.9) and Lemma 1.4.11, we get

(1.5.3) op,(8) = Xo(1) " Xu(ea () () ++* ea(0) $57(8))
for p€4,,(f)" and ve 4, (f)".

This formula implies that

FO(bat, nt-1)
= xv(l)_‘ m+r(‘1(’7v) ‘n(’?'t')‘nﬂ("h)‘i’y-z1(b0'$1)) .

But we know, from Lemma 1.4.3, that ¢,.,(,)$% (bo ) =¢521(ba7F")e,(ny) and so
we have

FeO(bot, nt1)
= X)) frnsr(a(ms) -+ €u(m3) P51 (00" )ea(1))
= X(1) Frnar(talm)ta(ms) -+ a(03)P521(b0i"))
= Xu(1) Frmsrlta(ms) -+ tums(m3)ea(ms) P521(B3Y)) -
= Xu(1) Yrurr(es(s) - ‘n—l(’lv)‘n(ﬂv)d’g)(b"';t])) .

In the last step of the above calculation, we use p,(5,)*=p,(n,). Since ¢{(c3")=
(6$7)*", Lemma 1.24 implies that the last term of the above is equal to

Xu1)Sonsr((03) *+* a-1(03) ta(0v)$37(B)), Which is equal to (b, m) by (1.5.3).
Hence we have (1.5.2). []

1.6. Invariants of cable links. Let ¢;: B,— B,, (1<7<n) be the group
homomorphism defined in Section 1.4.

Proposition 1.6.1. Let b’ B, and ~ denote the Markov equivalence rela-
tion (Definition 1.1.2). Then we have the following :
(a) For b,, b,= B, such that the closure of b.b, is a knot, (¢,(b')p$(b,by), rn) ~
(o8 (Boby), ),
(b) For beB,, (¢,(b")p$(8), rn) ~ (,(b") P21 (bas?), rnt-r).

Proof. Lemma 1.2.4 shows the part (b). By using Definition 1.1.2 (ii)
and Lemma 1.4.3, we have
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((B")p(biby), Tm) ~ (p5(Byby)(B"), 1)
= (418,00 (0") 95 (Byby), ) ~ -
~(‘(b,bzﬂ’(l)(bl)d’gﬁ’)(blbz)r r”) (k =1, 2, )
~(Lbz(blbz)"(l)(bI)¢Sir)(62bl)’ ).

Since the closure of b4, is a knot, we have {(b,)*(1)|k=0, 1, --,n—1}=
{1,---,n} and so there is & with (£b,)¥(1)=47'(1). Hence we have
(e, 0 (B) 93 (B201), 77)=(1a(8") 5 (B,0,), ). This proves the part (2). [

The above proposition and Theorem 1.1.3 yield the following.

Corollary 1.6.2. Let b’ B, and (b, n,), (b,, n,) be two braids such that the
closures of b, and b, are knots. Then the closures of (u,(b")¢3(by), rn,) and
(e(D") P (b,), 71my) are equivalent if (b,, n,)" and (b, n,)" are equivalent.

DErFINITION 1.6.3 (cable links). For a braid (b, #) and b'€B,, we call
(,(8")$S(B), rm)” the (r-strand) cable link of (b, n)” associated with b’. For a
function f on B, let f§2(b, n)=f(¢,(6")p$ (D), rn).

The r-strand cable links is well-defined by Corollary 1.6.2, and so X{? is
an invariant of link isotopy types for a link invariant X and b'€CB,.

Theorem 1.6.4. Let b’=CB,. For a braid b€ B, whose closure is a knot
and a C-valued function f on B of trace type, f$§) satisfies

[l m) =3 X )b, n).

Proof. Since f§7(b, )= 37 Xu(y,(b")p$ (b)), we get the stateent of the
BEdpu(OIN
theorem by (1.4.9) and Lemma 1.4.11. []

2. The parallel version of link invariants, II (the case of general
links). In this section, we give a generalization of Theorems 1.4.10 and 1.6.4
for braids whose closures are links.

2.1. The characters associated with the parallel version. Fix a
C-valued function f on B of trace type and fix an element b,€B,. Let
B,(b)={beB,| every <f(b)>-orbit of Q is contained in a single <@(b,)>-orbit
of Q}, where Q={1, ---,n}. We use the notations in Sections 1.3 and 1.4.
Lemma 1.4.3 implies that the subgroup ¢«(B7)¢< (B, (b,)) of B,, is isomorphic to
the wreath product ByXB,(b,) with respect to §: B,—.S,. For v=_(v;, ***, v,)
(v:€4,(f)), let p,=p,,®-+-®p,, be the representation of B;. For pE4,,(f)",
let V., be the p,-isotypic subspace of V. as a CB,,-module Let &(j)=
min<{f(b,)>+j for jE€Q. If v;=vy;, for 1<j<n, then by Lemma 1.4.3, V, , is
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invariant relative to the action of B}>X{B,(4,). In this case, let p., denote the
representation of ¢(B,,)¢$ (B,(d,)) obtained by restricting pu on Vi , and X, its
character. Then we have the following.

Proposition 2.1.1. Let k be the number of <6(b,)>-orbits of Q and
{8()1jeQr=1{m,, -, m}. Then we have

BN = T T Ky (B).

Proof. 'The proof of Proposition 1.4.8 shows that X.(¢$ (b,)) is equal to
the sum of the diagonal elements of pu(¢$’(d,)) corresponding to the subspaces
VM,(vl,'--,v,,) such that V#,(vl,-u,v,,): V“"("ocbo)-lcl)-“"“o(bo)'1(::))' If V#,(v,,---,vn)
V,L_(y“bo)_ iy Yoy~ 1ny)? then we have »;=w,(;, and the sum of diagonal elements
of pu(¢3’(by)) corresponding to the subspace V..., Iis equal to

X,L’(,,8(1)_.,,,,,s(ﬂ)@ﬁ,')((bo)). Hence we get conclusion. []

Let v=(vy, ***, v,) E(A,(f)")" with v;=wy(;. Since ¢(Br)$S(B,(d,)) is iso-
morphic to B;XIB,(b,), we see, from Proposition 1.3.4, that there is a representa-
tion 74, of B, such that

(2.1.2) Puv=p,” Qmy y

where p,~ is the representation of ¢(B})¢<(B,(b,)) coming from the representa-
tion p, of By as in Proposition 1.3.4. Let X,”, wu,, be the characters of p,~,
7w,y respectively. Now we can state a generalized version of Theorem 1.4.10.

Theorem 2.1.3. (i) For ucA4,,(f)",

Xl'-(qbg')(bo)) = ;U)A Y, EA Leon (;II Xom (1))“"‘-<“s<1)-"'-"s(,,)(bo) .
(if)
FO(by) = 5 3 @D X, (D) B0 -

P'EA aCOA Ym e4,(H* mGEA (6]

Proof. Proposition 2.1.1 and (2.1.2) yield that
xu(ﬁby)(bo)) =, 23 e 3] x“»(”acl)-"""su))(b“)

mlEA,(f) A "thA HA

= (X" (¢5(bo))) s, gy "6(..)( bo) -

EA (f)" Vm €4, (f)

Hence the first formula is an immediate consequence of following Lemma 2.1.4.
The second one is obtained from (i) and (1.4.1). [

Lemma 2.1.4. We have
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k
X, (by) = jl;[l x,,,,,j(l) .
Proof. By using (1.3.3), we have
Xy~ i((80))

—“rﬂ:-g%ﬂn Saspy """ Oup,(P "1(1)“0(50)—10) P ”2(1)‘23000)-1(2) P "n(l)“aﬂmo)-lm) )
Let | S| denote the cardinarity of a set S. Each term of the above summen-
tion is zero unless

Ay, = :30(1;0)‘1(»:;) = g(sg) " Hmy) =*** = “,(bo)—l‘ll“mm(mj) = lemj (1<5<k).

But the above equalities implies that a@;=@B;=a;=p; for 7 and j such that
<0(by)>+1=<0(b/)sy>+j. Hence we have

2,700 = 1L oDy i) = I X, (1)

This proves Lemma 2.1.4. []

2.2. Further generalizations. In this section, we state a generalized
version of Theorem 1.6.4 for cable links of multi-component links. We omit
proofs of the results in this section, which are anologous to those of correspond-
ing facts in Section 1.

Let K be a k-component link. A bijection ¥ from the set of connected
components of K to {1, 2, .-+, k} is called a marking of K and the pair (K, ¥)
is called a (k-component) marked link. The connected component C of K with
W(C)=1 is called the i-th component of K. Let R=(r,, 1,, -+, r,)EN* Let
(K, ¥)® denote the link diagram obtained by replacing each crossing point of
a link diagram of K as in Figure 6. The link type of (K, ¥)® is not depend
on the choice of link diagrams of K. We call (K, ¥)® the R-parallel version
of (K, ¥). For alink invariant X, let X®(K, ¥)=X((K, ¥)®). Then X©®
is an invariant of k-component marked links and is called the R-parallel version
of X. We can show a generalized version of Theorem 2.1.3 (ii) for X®, We
omit the details.

Let (K, ¥) be a k-component marked link, R=(r,, 7,, -:*,7,)EN* and b=
(by, by, +++, b)EB, X+ X B,,. Let (K, ¥), denote the link obtained by inserting
the braid 4; (1< <k) to the bunch of the components of (K, ¥)® corresponding
to the component of K sent to 7 by ¥ as in Figure 7. We call (K, ¥), the
cable link of (K, W) associated with 5. For a link invariant X, let X,(K, ¥)=
X((K, ¥);). Then X, is an invariant of k-component marked links. Then we
have:

Theorem 2.2.1. Let X be a link invariant of trace type, R=(r,, 1,, -**, 1,) E
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7 contained in the

7; :
TR T j-th component

contained in the
i-th component

VY%

contained in the
i-th component

contained in the
Jj-th component

Figure 6

@

Figure 7

N* and b=(b,, by, -+, b)EB, X +-- X Bs. Then there are invariants X®" of k-
component marked links parametrized by v=(v,, vy, +++,v,) EA, (X ) X+ x 4,(X)"
which satisfy the following. For a k-component marked link (K, ¥),

k
XK, ¥) = %, (b)) X EV(K, ).
b( ) (Vla"’,Vk)EA,I(AXE)AX ...xArh(X) A( j];! Vt( )) ( )

This theorem is a generalization of Theorems 1.5.1 and 1.6.4.
3. The r-parallel version of the two-variable Jones polynomial.

In this section we review representation theory of Iwahori algebras and the
two-varaible Jones polynomial. At the end of this section, we shall construct
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representations of B, assoiated with the two-parallel version of the two-variable
Jones polynomial. Fix non-zero complex numbers ¢ and s such that s is not
equal to any root of unity. Let ¢g"?=s* for an integer k.

DerinNiTION 3.1 ([3], p. 55, ex. 23; [18]). Let H,(¢q) be a C-algebra with
a unit defined by the following relations:

(2) H(q)=<Ty, T), -, T, | Ti+(1—q)T;—¢=0  (1<i<n—1),
TTinTi=TiyT: Ty, (1<i<n-2),
T;T;=T;T; (I<i<j—1<n—-2)>.

We call H,(q) the Iwahori’s Hecke algebra of type A,_,. For simplicity, we
denote H,(¢q) by H, if there is no fear of confusion.

It is known that H, is semisimple (see, e.g. [11]) and isomorphic to the
group algebra CS, of the symmetric group S, of degree n.

DeFINITION 3.3. Let A(n) be the set of partitions of #, i.e.
A(”) = {()"1, gy )IE)\% =n, EN U {0}, A =Ny (iEN)}’ .

For A=A\, Ay, +*)EA(n), let AF=max {j|X;>7} if i<\, and AF=0 if i>,.
We call A*=(\F, M}, -++) the dual partition of \.

As is well-known, the irreducible representations of S, are a parametrized
by A(n). Hence A(n) parametrizes the irreducible representations of H,, too.
Let (py, V) be the representation of H, parametrized by a partition A& A(z) and
X, its character. For each A& A(#n), we know [12] the representation matrices
of p(T;) (1<i<n—1) with respect to a basis parametrized by the standard
tableaus corresponding to the partition A.

ReMaARk 3.4. Fix A€A(n), and let S, be the set of standard tableaus
corresponding to the partition A. For S&&,, S* denote the transpose of
S, which is a standard tableau corresponding to A*. Let {es|S&S,} and
{es+| S =8,} be the basis of V, and V,« given in [12] respectively. Let »: V,—
Vs be the linear isomorphism defined by n(es)=es+ (S €S,). Then there isa
diagonal matrix D with respect to the basis {es|S €S,} such that

ATi)(9) = D™ 0™ (—gpx(Ti) (gD -

By the defining relations of B, and H,, there is an algebra homomorphism
p”: CB,—~H, defined by p{"(a;))=aT;.

Theorem 3.5 ([7]). Let I=(—q)"*a, m=(—1)"*(q"2—¢"?) and P(-)(I, m)
be the two-variable Jones polynomial. Then, for b B,, we have
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N — (®
PE) =, 31 aPIL("0)
where the coefficients a\(P)eC (A& A(n)) are given in [10] or [15].
The coefficients a,(P) (A € A(n)) satisfies

(3.6) a(P)(@, 9) = a(P)(—aq, ¢7) .

Let K be a link. For a positive integer » and v A(r), let PV be the
invariant parametrized by (7, p,) as in Section 1.5. Then Remark 3.4 and
(3.6) implies the following.

(3.7) PO K )(a, q) = PO(K)(—ag, ¢77) -

Let I be a subset of {1, -..,n—1}, H, the subalgebra of H, generated by
{T:|i€ I}, and S; the subgroup of S, generated by {(i+1)|iI}. Let p{ be
the representation of S, parametrized by AEA(n). Let {A, M4y o, N+
Aot AN =11, 2, -+, m}\I and A;=A\)XAN)X -+ XA(X,). Then the
irreducible representations of H; and S, are parametrized by A;. The restriction
pal m,and pf| s, are sums of irreducible representations of H, and S; respectively,
e.g. palu,= “g?\ my uwpp and pl |5, = ‘Lg% mj upi, Where p, and pj. are representa-

I I

tion of H; and S; parametrized by p€A,;.

Proposition 3.8. Let u,EA; such that the corresponding representation
pio of Sy is trivial.  Then the above multiplicities m, . and mj . are equal.

Proof. The construction of each irreducible representations of H, and H;
in [12] satisfies the following: The entries of the matrices of the generators T;
are all rational functions of the parameter g with poles at roots of unity. On
the other hand, the above proposition is proved for infinitely many integer
values of ¢ by using [5] Theorem 7.2. But we know that C'S; and H; are semi-
simple if ¢ is not equal to any roots of unity. Hence m, ., and m{ ., are equal
if ¢ is not equal to any roots of unity. [

ReEmMARK 3.9. Because of the above proposition, we can calculate m, . by
the Littlewood-Richardson rule ([13], 2.8.13).

Let p, be the representation of H,, parametrized by A& A(rn) and p, that
of H, parametrized by v A(r). Let =,, be the representation of B,, para-
metrized by p, and p, as in Section 1.4. In Table 2, the representation matrices
of =, , are given in the case of n=3, r=2 and »=(2). By using Theorems 1.4.10,
1.5.1, 3.5 and (3.7), we may calculate P®® p®AD and P® for knots equivalent
to the closures of 3-braids. To obtain these matrices, we use the representation
matrices of the generators of Hg given by W-graphs introduced in [18]. The
W-graphs correspond,ng to the irreducible representations of Hg are actually
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Table 2
vo=(2)

A= (6) ”Av“o(al) = ”A,Vo(az) = a2q2 ’

1=(51) (0)—a2( -1 0) (02)= 2(“1 q)
= 7L’A,vo 1) = B qz y ”)""0 2) = 0 qz N

1/q 0 0 ¢ /g 1
A=(42) m.vo(vx)=a2<—1/\/? -1 0), M.vo(ﬂz)=az(0 -1 —1/\/7),

1 e ¢ 0 0 1/q
1=(411) 7’.').,\40(01):7:;‘.‘,0(02): _az’
2=(33) 75&,\00(01) 27”‘»'“0(02) =—a?,
lg 0 -1 —1VT
1O o) = ,,z( ~1v7 1 > () =az( 0 1/g )
1=(222) A v(01) =7A,v,(02) =a?/q,
A=(3111), (2211), (21111), (111111) dim V', =0.
n=6

A=(51) 0 A=(411)
A =(6)
o @ @ 6y

e (13) @'@

Figure 8

constructed by Naruse and Gyoja (Figure 8).

4. The r-parallel version of the one-variable jones polynomial.
In this section we discuss the r-parallel version V') of the one-variable Jones
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polynomial ¥ in detail. We give a formula for the one-variable Jones poly-
nomials of satellite links (Theorem 4.3.2). Let V™" denote the invariant
associated with » € 4,(V)". The representation matrices of =, , & B;"
(ne 4, (V)", ve A,(V)") associated with V¥ are gives given explicitly
(Theorem 4.4.1). By using these matrices we can easily compute V(") for a
knot b~ which is the closure of a 3-braid . The cases r=2 and r=3 are
discussed closely in (4.4.3)~(4.4.10).

4.1. The jones algebra. In this section we review the definition of the
Jones algebra J,, which is the associated algebra 4,(V") (Definition 1.1.6) of the
one-variable Jones polynomial 7. We also review the construction of the
irreducible representations of J, [15] in terms of rectangular diagrams for our
later convenience. Fix a non-zero complex number s which is not equal to any
root of unity. Let #*/=s* for an integer k.

DeriNITION 4.1.1.  'The Jones algebra J,=J,(t) is a C-albebra with 1 defined
by the following.

Ju(t) =<ey, € -+, 51| €;6; = —(24H1VF)g; (I<i<n—1),
€;€iv16; = €5 €;416i€i4) = €iyy (1<i<n-2),
€; 1<i<j—1n—1)>.

e,' e i =€
For simplicity, we denote J,(t) by J, if there is no fear of confusion.
Since — (£2+t"2)"t¢; (1<i<n—1) is an idempotent of J,, we have

Proposition 4.1.2. For x€ J, e,x=cx (c€C\{0}) iff x<e;J,. In this
case, c is always equal to —(£*+1711?),

DerFiNiTION 4.1.3. Let s be a positive real number and R=[0, s]x [0, 1].
Let n be a positive integer, RS a;=(0, ¢/(n+1)), B;=(s, i/(n+1)) (1<i<n) and
Y1 ***» Vs curves contained in R.  Then (R, {v,, -+, 7,}) is called an (unoriented)
rectangular diagram of degree n if it satisfies the following.

(i)  Any of the points a, *+, &, By, **, B, is one of the end points of the
CULVES 7y}, =+, .

(ii) There is no triple crossing point of the curves.

(iii) Every curve has a marking at the each crossing point indicating
whether the curve under consideration is the over path or the under
path at the crossing.

(iv) The intersection of the curves #,, -+, 7y, and the boundary of R is
equal to {al’ ey Oy, 1817 ) ﬁn}'

A diagram (R, {v,, -+, v,}) is called a rectangualr diagram without crossing points
of degree # if the curves 7, +++, 7y, do not intersect themselves. If orientations
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are given to all the curves in R, then R is called an oriented rectangular diagram
of degree n.

We call a, +++, a,, (respectively By, -+, B,) the points at the zop (respectively
bottom) of R. Two rectangular diagrams ([0, s]x[0, 1], {¥, ***, ¥.}) and
([0, s'1<[0, 1], {71, «*-, v2}) of degree n are called equivalent if there is a homeo-
morphism f: [0, s] X [0, 1]—[0, s']1 X[0, 1] such that f((0, 2))= (0, 2), f((s, t))=
(', 2) (t€[0, 11) and fiy)—vi(1<i <n).

We define algebras D, (neN) over C. Let E; denote the set of the
equivalence classes of rectangular diagrams aithout crossing points of degree
n. With the convention $E¢=1, the number #E/ of elements of E; (nEN)

satisfy the recursive relations #E ,’,=”i‘: #$EL4E,_,_,. Hence $E; is equal to the
k=0
Catalan number (2”>/(n+1) ([20], § 2.3.4.4). As a C-vector space, we put
n

D,= ® Ce; in particular,

CEE:.

(4.1.4) dimg D, = (2:1")/(114—1) .

To define the multiplication in D,, it is enough to define the product ab for two
equivalence classes a and b of rectangular diagrams ([0, s[x [0, 1], {v,, =+, 7,})
and ([0, s’} X [0, 1], {1, -*-, ¥s}). This is done similarly as in the case of
braids by the following rule.
(a) Let R=[0, s+s']1x[0, 1]. Let g: [0, s]x[0, 1] R and g': [0, s'] X
[0, 1]— R be the mappings defined by g((x, y))=(x, y) and g'((x, y))
=(x-}s, y) respectively.

(b) Let (.L:Jl‘o‘,-)u(gj1 v#’) be the decomposition of (.Lleg(fy,-))U(_ngg'('Yf))

into connected components, where §; (1<7<m) are closed curves and
i (1<i<mn) are curves with end points.
(c) Let d be the equivalence class of the rectangular diagram (R, {y{’, ---,
vi’}). Then ab=(—t/2—t V3" 4.
Let e} (1<i<n—1) denote the rectangular diagrams given in Figure 9. Then
we have

e;
a, Qi OO Ay O,

U
A

161 ﬁi—l ﬁiﬁi—uﬁi-n ﬁn
Figure 9
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52 == —-tllz—t_uz / 1 ] —1 .
(4.1.5) e = ) (1<:<n—1)
eieive =ei, eineiein =el, (1<i<n—2),

Hence there is a homomorphism 5 from J, to D, sending e; to e/. But, by [15]

and (4.1.4), we have

dimg J, = (Zn”)/(n+1) — dimg D, .

Hence % is an siomorphism. Let E,=»"%E;). Then E, is a basis of J,. The
definition of the multiplication in D, implies that, for e} and x€E}, e/x is a non-
zero scalar multiple of an element of E;. Hence e, ], is spanned by a subset of
E,. Combining this observation with Proposition 4.1.2, we get the following:

Proposition 4.1.6. The subspace e; ], of J, is spanned by E’={4Y(x)|
xEE}, the i-th and (i+1)-th points at the top of x are connected by a curve of x}.

For yeEj, let Tp(y) denote the number of strings of y connecting two
points at the top of y. For example,

(4.1.7) To(n(eres -+ €;-1)) = .

Let E, ;={n"'(y)|y€E;, Tp(y)=i} and J,  the two-sided ideal of J, generated
by the elements of E, ;. Since Tp(yy')=max (Tp(y), Tp(y")) for y, y'€E,, Ju.
is equal to the C-linear span of £, ; in J,. For x& J,, we have

(41.8)  eaweir - awx€ Jan  ((G)<i(j+1)—1for 1< <k).

Let J,;=J5.i/J#i+i. Since J, is known to be semisimple, the canonical projec-
tion J; ;— J,.; splits. Hence J, ; can be regarded as a two-sided ideal of J,.

Proposition 4.1.9 The two-sided ideals ], ; (0<i<[n/2]) of ], are simple
[n/21
algebras and J,== @%],,,,-.

Proof. Let e(1,2i—1)=e¢,¢; -+ ey, (0<7i<[n/2]). Since e(1, 2i—1)& J,;
and e(1, 2i—1)€ J,.is1, Jo, i {0} for 0<i<[n/2]. We also know ([15], § 11)
that J, is a direct sum of [#/2]41 two-sided ideals which are simple algebras.
Hence, by using Jordan-Holder’s Theorem, we conclude that the two-sided
ideals [, ; (0<7<[n/2]) are non-trivial simple algebras. [J

Since J, is a semisimple algebra over C, the two-sided ideals J,; of J, (0<
1 <[n/2]) are isomorphic to the full matrix algebras over C. Let p, ;: J,— J,;
denote the associated irreducible representations of J,, and X, ; their charactews.
Let p,, pn: CB,— J,(t) be the algebra homomorphisms defined by o;—
—t"2—te; and o; >t Y44t A¢,; respectively. Then the Jones polynomial ¥ and
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the bracket polynomial <-> for the closure of an n-braid b are written as linear
combinations of these characters, z.e.

VO7) = 3 a0 (Ve d 22(B)
(4.1.10) Lo /4]
B> = S0, (V00 -

The coefficients a, ;(V) are given by
(4.1.11) a”.i(V) = (“‘1)"+l(t"lz+m_i—t’“”'”““)(t-——t"l) ’
(see [10], [15], [16]).

Note that none of the coefficients a, (V') are equal to zero because ¢ is not a root
of unity.

REMARK 4.1.12.  Let @,: H,(t)— J,(¢) be the algebra homomorphism defined
by @.(T;)=—1—t"%¢;. The compositions p, ;op, for 0<i< [r/2] give irreducible
representations of H,(¢) parametrized by the partitions (%2;‘211 e 1).

i-time (n— 27)-time

DeFINITION 4.1.13. Let G, denote the free semigriup generated by 1, f;,
o, o7t (1£i<n—1), G={(g, n)| g=G,} and for (g, n)EG, let d(g, n) denote
the rectangular diagram (Definition 4.1.3) of (g, n) defined as in Figure 10.

1 fi d (g.m)
a @ ;. o, a Uiy X Qi Qi A =W W,. W,
U W.e{l, 0,97\ f,|1<i<n—1}
]| T 1 T T
ﬂ d(W,)
L1 1 L1 |
B B, Bu-1Bn B _;Bi—ne.':@iﬂﬂin B. | 1 d(W,) l 1
g a;
Ay Q0 OOy, O a, Q04,0 Q, ! ; 1' ! ! !

ViV SRR
\ / llld(W,,)lI'

By BB BinBis Be B BioBiBinBiss B ! | L

Figure 10

By the analogy with braids we use the term closure of a rectangular diagram
d(g, n), written (g, n)", to mean the link formed by joining the # points at the top
of d(g,n) to those at the bottom without further crossings. Let ¥,: CG,— ],
denote the algebra homomorphism defined by
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‘I’n(fi) =€, ‘I’,,(a';) = t_m+tmei ’ ‘I'n(a'i-l) = t1/4+t—1/4e,, .
By using the original definition of - in [16], we can show that

~ [r/2]
(4.1.14) (& 1) = 23 ai(V)X, (¥4(8)) »
where the coefficients a, ;(V') are given by (4.1.11).

4.2. Relations among the invariants associated with the decom-
position (1.5.1) of V. Let p, be the homomorphism from CB, to J, defined
just before (4.1.10). Let V™" denote the invariant associated with the irre-
ducible representation p, ;o p, of B, (see Sections 1.4 and 4.1). In this section,
we give relations among V9. In the following we use the conventions that
VOK)=VONK)=<|K |)?=L|K |YONK)=(—t""2—¢/) for any link
diagram K.

Theorem 4.2.1. Let K be a knot. Then we have
V©i(K) = Vo-2i-bB(K) for r>0, 0<i<[r/2], 0<k<i.

ReEMARK 4.2.2. The same is also true in the case when K is a general link.
We restrict our attention to the present case for simplicity.

Corollary 4.2.3. Let K be a knot. Then we have
[r/21

i) VOE)= 3%, (HVCSNEK) for r20,
i=0

() VOONK) is a linear combination of V)(K) (s=r, r—2, ---,r—2[r[2])
with integer coefficients.
(i) (242)V (K is a Laurent polynomial in the parameter 2.

Proof. The formula (i) is an immediate consequence of Theorems 1.4.10
and 4.2.1. Solving the formula (i) with respect to V' ®9(K), we get
VeUAK)= X ¢, /OK)  (,€0).
r=s,5—2,
Since X, o(1)=1, the coefficients ¢, , (r=s, s—2, --+) are all integers and so we get
(i)). By (4.1.11), the coefficients (#/*+¢'?)a,, (V) are Laurent polynomials in

#2,  'We also know [12] that the characters X,, ;(9,,(0)) (rEN, 0<7< [rn/2),
be B,,) are Laurent polynomials in #2.  Hence (ii) follows from (iii). []

To prove Theorem 4.2.1, we need the bracket polynomial <-)> defined on
G (see the last paragraph of Section 4.1). By (4.1.10), the bracket polynomial
is of trace type. Applying Theorem 1.6.4 to {->, we get the following.

Proposition 4.2.4. For b'CB, and a braid (b, n) we have

<6, ny A7 =[§]xr,,~<pz<b'»<<b, w>D  for r>0.
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Let fi=CB,, such that p;,(fi)=e; (1<i<rn—1). Then we have the
following :

Proposition 4.2.5. For be B,, we have

P O e G o N (e

Proof. For g€G,,, we put {g>=<d(g, n)">=C. By Definition 1.1.10 of
the bracket polynomial, the mapping <->: G,,— C is factored by the projection
v,,: G,,— ], (see the last paragraph of Section 4.1). Since p;,(f1f%, =+, f4j-1)=

\I,m(flf3 i féj'—l)! we have
KO DRyy. gy, = <Fi S5 a6 B), )
=(fifa+ Fyma $(0), 7>

The following lemma shows that the link diagram (ffs+- f,;-, $5°(b), rn)" is
regular isotopic to

(4=(b), (r—2j)n)” U(U( fioeT¢", 2y (disjoint union) .

For a link diagram K which is a disjoint union of two link diagrams K, and
K,, it is known that {KD>=(—#/—t""<K><K,>. It is also known ([16],
Proposition 2.5) that {(f,a72*¢"), 2)>=(—¥)"»¢")_ Hence we have

LSy fog-a )(B), T0)™>
= <$7AB), r=2pm)"U(_U (fioT™D, 2))

() ), )
as required. [

Lemma 4.2.6. For b€B,, the link diagram (f\f; - fo;—1 $(b), rn)" is
regular isotopic to the disjoint union of the link diagrams (¢S ~7(b), (r—2j)n)" and
copies § of (fyoT™®", 27).

Proof. Let ,B—s‘f((ll)” (7620 .. ‘;‘,,",)) where 3<i(j)<r—1, —1<6<(j) <1
(1< j <k), s$=fips $ih=0:j and sSh=oii- Let B*=s{{2, 582 -+ {2,
Then Figure 11 demonstrates that the link diagram (f,B¢%(b), rn)” is regular
isotopic to the disjoint union of the link diagrams (8*¢Y =2 (d), (r—2)n)" and
(fi o7%®", 2)Y". Hence an induction on j proves the statement of the lemma.

O

Lemma 4.2.7. Let e(j)=ee5+ ¢, J, 1<j<[r/2]). Let X,; be the
character of the representation p, ; of J,, defined in Section 4.1. We have
(a) %,,i(e(7)=0 iy i<j,



Figure 11

(b) X, (e(M=(—tL—t1Y%, ;1) i 0<j<i,
where we used the convention that X, ,(1)=1.

Proof. Since Tp(e(5))=j by (4.1.7), p,,:(e(5))=0 if j<7 and so we get the
first formula of the above lemma. We regard J,_, as a subalgebra of J, by the
inclusion homomorphism sending ¢; € J,_, to ¢, ], (1<i<r—2). For an
element x< J, contained in the subalgebra J,_,, we know [15] that

X, o(%) = X,_1,0(%)
(4.2.8) X, (8) = Xy @) F Xrsa(®) i O<i<r[2,
xzr,r(x) = xzr—l,r—l(x) .

Using (4.2.8) and Lemma 4.2.9 below, we get the part (b) by induction on 7.
The details are omitted. []

Lemma 4.2.9. X, (e(r))=(—t/2—12).
Proof. By Lemma 4.2.7 (a) and (4.2.8), it is enough to show:
(4210) xzr.r(e(r)) = (_tuz—t_m)xzr—l,r—l (e(r_l)) .

Let ()’ be an element of CB,, with p,(e(z)")=e(i) (1<i<r). By Lemma 4.2.7
(@), X,.,i(e(r))=0 if i<r and X,,_, ;(e(r—1))=0 if i<r—1. Hence we have

VZr(e(r) I) = Ay, r( V) xz",r(e(r))
and
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Var-s(e(r—1)") = aypoy,pi(V) Xpo1,(e(r—1)) -
Since V is a link invariant, we have

Vel bar(aor-1)e(r—1)") = Var(pa(ozr-1)e(r—1)") = Vy-(e(r—1))
(Definition 1.1.2 (ii)).

Hence, by using
e; = AR —t7 )7 p, (o) —t7VH(EE— 1) py (071
we have

ay, (V) Xy ,(e(r)) = V(e(r)', 2r)
= V(X —172)7 py(o,- 1) —t (B2 —175)7 o (0341)) e(r—1)', 2r)
= V(e(r_l),’ 27—1) = aZI—l,r—l(V) XZf—-l,r—l(e(r—l)) .

This and (4.1.11) imply (4.2.10). [
Proof of Theorem 4.2.1.  From Proposition 4.2.4 and Lemma 4.2.7 we have
()
G i fises
. [r/2] . .
= (=t (33X, i (Kb, mDD) (07, 0<j<[r]2]).
By interchanging » with r+4-2j and 7 with i-j, we get
(r+2j)
(b, n)> L Fie Fhiea
Lr 2]
— (e (33, (KB, WY 44) (07, 0<j<[r/2)).
Hence Proposition 4.2.5 implies that
[7/2] PR
By WY = () (53, (1)K, W49
i=0

By using (1.1.12), we get V)b, n)=(—4)yv®"X(b, n)>" and V9 (b, n)=
(— 84y (b, m)>). Therefore we have

[r/2] L
VOB, n) = 33 %, (1) V249 (b, 7).
i=o

But the left hand side of the above formula does not depend on j, and so we obtain
inductively that

VO(b, n) = VOOb, n) = VED(b,n) = «-+ =V (b, n) = -,

Vb, n) = VEOb, n) = VEI(b, n) = oo =V IHD(h, 1) = -,
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L/
VOB, m)— 33X,,(1) Vi (b, m)
=
— V(r,O)(b’ n) — V(""z'l)(b, n) e — V(r+2}.i)(b, n) = .,

These are the equalities we wanted to show. []

4.3. The Jones polynomial of satellite links. We give a satellite link
version of Theorem 1.6.4 for the one-variable Jones polynomial V.

DerFINITION 4.3.1. Let K and L be diagrams of links in the 3-sphere and
the solid torus respectively. Let N(K) the tubular neighborhood of K. 'Then
there is a bijection f, called the faithful embedding, from the solid torus to
N(K). This mapping is determined canonically up to ambient isotopy. Let
K,=f(L). Then K, is a link in the 3-sphere and is called the satellite link of
K with respect to L. For a link invariant X, put X;(K)=X(K;). Then X, is
a link invariant.

For a link diagram L, let |L| denote the unoriented link diagram obtained
by forgetting the orientation of L. For (g, n)€G (Definition 4.1.13), let (g, #)”
be the unoriented link diagram in the annulus obtained by joining the points
at the top of d(g, ) and those at the bottom without further crossings as in Figure
12. Conversely, for any link diagram L in the annulus, there is an element
(g, n)€G such that |L| is regular isotopic to (g, #)” in the annulus. Let ¥,:
G,— ], be the projection defined in Section 4.1.

Figure 12

Theorem 4.3.2. Let K be a knot, L an oriented link diagram in the annulus,
w(L) the writhe of L, and (g,r) an element of G whose closure is regular isotopic
to |L| in the annulus. Then we have
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[r/2] .
Vi(K) = (=819 5%, (¥,() V"K) .

Proof. Let (b, n)EB be a braid whose closure is equivalent to K. Then
K, is equivalent to (g¢{’(b), rn)". We regard G, as a subsemigroup of G,,
by the inclusion homomorphism sending g&G, to the isotopy class of g’ in G,,

as in Figure 13.

>
=
@
[~
0
3
(=
=S

rm
Figure 13
By applying the results of Section 1.3 to the wreath product G,X|G,, we get

{(gi(b), rm)> =[:/§j)]x,.,-(\1’,(g))<(b, D

The proof of this formula is analogous to that of Theorem 1.6.4. We know
that V0(b, m)=(—£/)**"X (b, n)>"? and w((g¢i’(b), rn)")=w((g, 7)")+rw(b").
By using these formulas, the above statement can be proved. [
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Theorem 4.3.2 can be extended for marked links as Theorem 2.5.4.

ExampLE 4.3.3. (doubled knot [33]). Let L, be the link diagram in the
annulus as in Figure 14. Then L, is regular isotopic to (g,,4)~, where g,=
fifofsod. For a knot K, we have V, (K)=t"%((1—#)V®(K)—(t"'+1)V**(K))
since X,,o(Wy(£0)) =0, X, (¥y(go))=1—1 and X, (¥(g))= —(t""+1). But we
know that V&9(K)=V®(K)+(t"¥241/2)~! from Corollary 4.2.3 and so we have
Vi (K)=t""(1—t)V®(K)+t2.

4.4. Representations associated with V. Let p,, denote the ir-
reducible representation of J, defined in (4.1.9)—(4.1.10). In this section, z;, ;
(0<7<[37/2]) denote the representations of B,, parametrized by two irreducible
representations p,, ; of J,, and p, , of J, defined as in Section 1.4. Let c,, ; denote
the character of 7, ;. Let K be a knot equivalent to the closure of a 3-braid
beB;. Then, by using the following theorem, (4.1.11) and Theorem 1.4.10 (ii),
we can calculate V"9(K) explicitly. Moreover, by using Corollary 4.2.3 (i), we
may calculate V(K) explicitly.

Theorem 4.4.1. A set of representation matrices of my, i(o;) (0<i<[3r/2],
Jj=1, 2) is given by the following.

7’3:.:‘(0'1) = (ai,j.k(t))OSj,de(f,i) ,
ﬂsf.i(o'z) = (ai.d(r.i)—j.d(r,i)—k(t))OSj,de(r,i) ’

where d(r, i)=deg(r,, ;) —1=1 (if 0Ki<r) or 3r—2i (if r<i<[3r/2]) and

a; ju(t) = (=100 pnickd) g(i—k j—Fk, t) (k<Lj, 0<ir),

a;,; i) =0 (j<k,0<LiLyr),
at; j)(8) = (—1)0 predrmikd) o(i—k, j—k, 1) (R<j, r<i<[3r/2]),
a;,ji(t) =0 (j<k,r<i<[3r/2]),

where (7, p, R, j)=r+k+2rk—k*+(r—p+j—Fk) (j—k))/2 and g(p,q,t) is the
Gauss’ polynomial, i.e.

( t) _ fI tP-H'—l_l
8pgt)=11 1
The polynomial g(p, g, t) satisfy the following recursive relations:
g(P) 0) t) = 1) g(P)P) t) =1 ’
(4.4.2)
g(?» 9, t) = t@"’)g(p—l, q_l’ t)+g(P—1’ % t) .

Before proving the above theorem, we give examples and applications.
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Table 3
r=2:

7ce,0,¢2,0(01) =1,

t 0
7(e,10,C2,0(01) = 2 _p)

t 0 0
Te,20(0)=|3/2(1+¢t) —2 0|,
13 —t7/2 34

e, ,C2,0(01) = — 13,
r=3:

Co,00,(3,00(01) = —13/2,

—13/2 0
ﬂcv.;).(s.o)(01)=< s o /2) »

_t3/2 o 0
o, 2,03,00(01) = (‘—tsl 2(14-1) 18/2 0 ) ,

—13 /2 _413/2
—t3/2 0 0 0
—2(1+t+12?) t%/2 0 0
7eo,0,¢3,0(01) = —tU2(1 112 (A1) —e0/2 o I’
—18 $13/2 —17 $15/2

19/2 0
7¢9,00,¢3,0(01) =( )

p11/2 __s18/2

ExampLE 4.4.3. 'The representation matrices of o, B, for the case r=2
and r=3 are given in Table 3. The matrices of o, are obtained as follows.

0 A
73,,i(0;) = K 7y, i(0,) K, where K=

Let C'={ceC|c*0, c"+1 for any me N}.

Proposition 4.4.4. Let (b, b") be a pair of 3-braids such that w(b")=w(b"")
and V(") (s)=V(b'") (s) for all s€C". Then, for teC", VOIF") (t)=V I}
(2) Hff w5,2(b) () =5,5(b") (2)-

Proof. Recall that a, (V) (£)=0 for 0<i<[n/2] by (4.1.11). From (4.1.10)
and Theorem 1.4.10, it is enough to show that

(4.4.5) 5,4(b) () =aw5 () ()  for i=0,1,3.

We have wg,i(b) (2)=ws,(b") (£) for i=1, 3 and X;(b) (£)=%X,,4(]") (¢) since they
are linear characters of B; and w(b”)=w(b'"). The assumptions w(b")=w(b'")
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and V(8")(s)=V(b'")(s) for all s&C" yields X; ,(b)(s)=X;,(b')(s) since V(+)(s)=
as o(V) (8) X3,0(*) (5)4a5,,(V) (5) X5.1(+) (s) for 3-braids. But we know that wg,
(8) (#)=(—1)*®") X3 ,(b) (¥*), and so we have w () (£)=wy,(8") (£). Hence (4.4.5)
is proved. [

From the above Proposition and Corollary 4.2.3, we have the following.

Corollary 4.4.6. Let (b,b’) be a pair of 3-braids such that w(b”)=w(b"")
and V(b7) (s)=V(b"") (s) for all s€C". Then, for tC", VA(}") (£)=VA("") (t)
Hf w,(0) () =uw5,5(b") (2)- ’

Let P=P(+) (a, q) denote the two-variable Jones polynomial with non-zero
complex parameters o and g where ¢ is not equal to any roots of unity. Then
we have the following.

Corollary 4.4.7. Let (b,b’) be a pair of 3-braids such that w(b")=w(b""),
V() (s)=V(b"") (s) and VOOb™) (s)=V (") (s) for all s€C'. Then we have

(@) POOF') (@9 =PEOb") (@, q),

(b) P®URT) (o, )=P* (") (e, 9),

() POR") (e, )=PO(") (e, 9)-

Proof. The representations 7, ,(A €A(6), v=(2)A(2)) of B; associated
with P® are given in Table 3. With these representation matrices, an analogous
argument of the proof of Proposition 4.4.4 shows the part (a). The part (a)
and (3.6) implies the part (b). The part (c) follows from the parts (a), (b) and
Theorem 1.5.1. [

Proposition 4.4.8. Let (b,b') be a pair of 3-braids whose closures are knot
with w(b")=w(b"") and F(b™) (a, x)=F(b'") (a, x) for all a, x&C*, where F denotes
the Kauffman polynomial. Then, for tC’, V") (£)=VEO(b'") (t) ff wes
(5) (B)=0y,4(B") (2)-

Proof. Because ag4(V) (£)=0, it is enough to show that g :(b) (£)=uws;
(0")(2) fori=0,1,2,4. We have V(5")(s)=V(b"")(s)(s€C") from F(b")=F(b"")
[22]. Thus, as the proof of Proposition 4.4.4, we have w, ;(b) (t)=w,, (b") (¢) for
i=0,1,4. Let X be the character of the representation p of B, defined by the
following.

ple)=10 0—-1{, plo)={1 x 0].

all0 x 0 —1 O
0 1 x 0 ax a")

From Theorem 12.2 of [26] we have X(b) (a, x)=X(d") (a, x) if the values of a and
x are generic. This yields X (?) (a, x)=X(d") (a, x) for all a, x&C* since X(R)
(@, x) are Laurent polynomials of the parameters @ and x for all B€B;. Let X’
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be the character obtained from X by substituting x=—¢"3%4#7 and a=t""/~
Then wa(+) (t)=# X(+) (1) and 50 we have g (b) ()=as (b) (t). This proves
the proposition. []

From the above proposition and Corollary 4.2.3, we have the following.

Corollary 4.4.9. Let (b, b’) be a pair of 3-braids whose closures are knot with
w(b)=w(d"") and F(b") (a, x)=F(b"") (a,x) for all a, x&C*, where F denotes the
Kauffman polynomial. Then, for t€C", V(b)) (£)=V®(b") () iff ws5(b) ()= 3
®) @)

Proposition 4.4.10. The invariant V® is independent from V, V@, and
the Kauffman polynomial F.

Proof. We give a pair of braids (b, b’) such that V(5™)=V(b""), V@)=
Vo), FEN)=F(") but VOB )+ VO®™). Let

— 2 -2 _ 2 -2 m 2 -2 -1 2 -2 n»
b(m,n) = oioi’c,0s 016 oioz’ a1 0012 0%,

for odd integers m,n. Then T. Kanenobu noted that the knots b(m, n)” and
b(n, m)” have the same Kauffman polynomial. Therefore they have the same
Jones polynomial [22] and the same 2-parallel version of the Jones polynomial
[35]. But T. Kanenobu conjectured that b(m, n)” and b(n, m)” are not equivalent
except a finite number of pairs (m, n). From a calculation with a computer we
have wg 5(b(3, 1))z w, 5(b(1, 3)) by substituting 4 to the parameter . Thus we
have V&(b(1, 3)")V®(5(3, 1)") from Corollary 44.9. [

From now on, we prepare some notations which is needed in the proof of
Theorem 4.1.1. We use the notations in Section 4.1. Fix an integer ¢ with
0<i<[3r/2]). Let

Vari = Jar,i €163 €3y (Jar,i €1 €505, N J a0,i11) -

From Proposition 4.1.9, V5, ; is an irreducible left J,,-module and the left action
of J,, on V,, ; are equivalent to p, ;. By Proposition 4.1.6, there is a subset Gj, ;
of E, such that {x mod Jj ;.,|*€G,, ;} is a basis of V,, ;. More precisely,
Gsi=E, ;N ] €, 65065, Let

G,,.iy = {*€G,, ;| there is 30 (mod r) such that the j-th point at the
top of 7(x) is connected to the (j+1)-th point at the
top of n(x)} ,
and V7, ;, the subspace of V,, ; spanned by the image of G, ;. For 0<j,, 7, /<

[7/2], let Vs, ; ;1,055 D€ the p, ; ®p,, ;,®p,, j,-isotypic subspace with respect to J&*
naturally embedded in J,,. Let I={k|1<k<3r—1, k+0modr} and J; the
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subalgebra of J;, generated by e(kI). Let A, denote the one-dimensional

representation of J; defined by A(e,)=0 (k= I). For a J;-module U, let

U.,.=.z; e, U. Then U, is a J;~submodule of U. Let U, denote the A,-isotypic
(=

subspace of U. Since —(#/*+tV%)'e(kesI) is a projection and U,=

‘ﬁl(l—i-(t"’-}—t""")‘1 e;) U, we have the following.

Proposition 4.4.11. The composition of natural homomorphisms U,—U—>
U/U, is a J,-module isomorphism.

From Proposition 4.1.8, we have V,, ; .= 3¢, V,, ;. Since J, is isomorphic
to J&, we get the followi et
) J73, we get the following.

Corollary 4.4.12. The J$*-submodule Vs ;4,0 of V,,; is isomorphic to V,, i/
Vi as a J&-module.

Let V. :0=Vs,i/Vs.ia- Then the above corollary implies that the repre-
sentation 7, ; of B;in Theorem 4.4.1 is equivalent to the action of Byon V5, ;¢
induced by restricting the representation p,, ;09§ . We give a basis of V3, ; o and
representation matrices of 7, ; with respect to the above basis. For 0<k, m<j,
let

e(d)(j_k) ]+k,j'_m’]+m) =
{e(j—k,j+k)e(f—k—1,j+k+1)---e<f—m,j+m) if m>k,
e(j—k, j+k) e(j—k+1, j+k—1)e(j—m, j+m) i m<k,

and
eP(j—k, j+m,j—m, j+k) = e(j—k, j+m) e(j—k—1, j+-m—1)-—-e(j—m, j+k) .

Let H, ;={h,; ;|0<j<i if i<r and i—r<j<2r—i if r<i}, where the elements
h,;,; are given as follows. In the case of 0<i<r, let

by ;0 = eOr,r,r—j+1,r+5j—1),
b, i ;@ = e@(2r, 2r, 2r—i+j+1, 2r+i—j—1),
h, ;@ = eW(2r—i+tyj, 2r4+i—j—2, r4+j+1,r—j+2i—1),
h, ;O = eP(r+j, r—j+2i—2,1, 21—2j—1),
hr.r', i= hr,i. ,'(1) hr.-‘. j(z) hr,i.j(a) hr,i, ,'“) ’
for 0<j<i. In the case of r<i<[3r/2], let
h,; ;0 = eD(r,r,r—j+1,r+j—1),
h, . ;® = e (2r, 2r,r+j+1, 3r—j—1),
h, ;@ = eDr—j, 3r—j, 2r—i—j+1, 2r+i—j—1),
h, ;O = eM(2r—i—j, 2r+i—j—2, 1, 2i—1),
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hm’.! = hr.i.i(l) k.. hr.i.i(s) hr.:’.i“) .

7:8,3
for i—r<j<2r—i. The rectangular diagrams of %(4, ; ;)€ D,, are given as in
Figure 15.

.. . e Zr—i—j r—i+j
r=j j J r—ii—ji—jr—i+j i-r j j r—jr—ji-r
11}

ki (<7) by (1)

Figure 15

Let W,,,; denote the inverse image of V5, ;, with respect to the canonical pro-
jection

Jor € €50y Jar €, 351 [(Jarii1 N Jor €1 €50000254) -

Proposition 4.4.13. The set H, ={h mod W, ;|h€H, } is a basis of
V3r.l',0'

Proof. For heH, ;, we know that ke E,, ;, hE [, e, e5---ey_y, hR&EE,, 4, and
he&E,, ;,. Hence H,; is linearly independent since W, ; is a subspace of J; ;
spanned by (E, ;4,N Js €, €5°++€5;) UE, ;,. Since the dimension of the represen-
tation p®3 of J®? is equal to one, the dimension of the p$3-isotypic subspace of
V,,: with respec to J# is equal to the multiplicity of p®}3 in ps, ;|83 From
Remarks 4.1.12 and 3.8, we may use the Littlewood-Richardson rule (Remark 3.8)
for computing dimg Vy, ;4. The result is

dimg Vs, ;0 =141 if 0<i<r and 2r—i+1 if r<i<[3r/2],
which is equal to $H, ;. This shows that Hy, ;" is a basis of V;,;,. [

Let p,,: B;,— J;, be the algebra homomorphism introduced in Section 4.1.
We use the following formulas in the proof of Theorem 4.4.1, which can be
proved immediately from the definitions of J;,, p,, and W,, ;. For vE J, ¢, €5
ey, and 1<k<3r—1 with k%0 (mod 7), we have

(4.4.14) Pu(c)v=—1t"v (mod W, ;).
For 1<k<3r—1, we have
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(4.4.15) Du(0:) & = € pa(a;) = t¥%e; .

For 1<k<3r—2, we have

(44.16) py(a) €y & = P Po(0in)) Vs ParlTiny) € €y = B o) €1y s
Do) vy €6 =t po(iny) s Da(Tisr) " € €isy = 17V Po(0) €4y

P3(0:) €141 Par(0) ™ = Par(0i41) 7' € ParlTinn) »
Par(a' -‘)-l €ty Par("' -‘) = Psr("'iﬂ) €; Par(o' :‘—1)_1 .

We also need following formulas, which can be proved by using above formulas.
For p, g N with p<gq, let

”(P’ Q) = Op0p41°°t0yg 0'—(1’: q) = ‘7;1 0';:1"‘0';1 ’
c'(q,p) = 0,040, and o' (¢,p) =07 oire0pt.
For 0<k<m<j, let
o(jL£k,j+m, j—m, jFk) = o(jL£k, j+m)o(jL£k—1, j+m—1)---a(j—m,jFEk).
and
o (jk, j+m, j—m,j k) = o~ (jLk, j+m)
o~ (j+k—1,j+m—1)--c"(j—m,j £ k).
For j, k, m, n& N with j>m—k+n, we have
(4.4.17) o(j—k+m,j+m+n—1,j—k+1,j+n) o(j—k, j—k—n+1,j—1, j—n)
e9(j, j, j—n+1, j+n—1)
= o~ (j—k, j—k+1, j+k+m—1, j—k—n-+m)
a'(]—k+m,j+m—l,j—k—n—l—l,]—n)
eD(j+m, j+m, j+m—n+1, j+m+n—1)
eM(j+m—n, j+m+n—2,j—n+1, j+n—1)

For j, ke N, we have
(4.4.18)  oF'e(i+2,i42k) e(i+1, i+2k—1) e(3, i+2k—2)

= e(i+2, i+2k) e(i+1, i+-2k—1) e(i, i+2k—2) oFl o .
Formula (4.4.17) with m=1, (4.4.15), (4.4.16) and (4.4.18) implies that

44.19)  o(j,j+E—1) o'(j—1, j—k+1) 9], j, j—k+1, j+k—1)
= {2 pUD o= (1, j—k+1) o' (j—1, j—k+1)"
e(‘)(j;j) j—"k+1:]+k'—1) .

An induction on m and (4.4.19) shows that
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(4.4.20) o(j,j—m+1,j+m—1,7) &9, 5, j—m+1,j+m—1)
= (7" ¢'"(j—1,j—m+1) ¢'(j—1, j—m+1)™
o' (j—2,j—m+1) ¢'(j—2,j—m-+1)!
veeg'(j—m, j—m) &' (j—m, j—m)~ D], j, j—m+1, j4+m—1).

Proof of Theorem 4.4.1. We calculate the representation matrices of s, ;
(o;) (=1, 2) with respect to the basis H,, ;. This can be done by writing
down p,,(¢§(c)) A, ;. mod W, (j=1, 2) as C-linear combinations of elements
of H, /. Steps 1-7 can be proved by using formulas (4.4.14)—(4.4.20).

STEP 1. po(P8(a ;) By,i &
= (—By" D o(r,2r—1,1,7) k, ; , (mod W,,),).
STEP 2. o(r,2r—1,1,7)h,;,
= (8P o(r, 2r—1, k+1,7+k) a(k, r—1, 1, 7—k)
o'~ (r—1,r—k+1) ¢'(r—1, r—k+1)"! o'~ (r—2, r—k+2)
o'(r—2, r—k+2) o'~ (r—k+1, r—k+1)
o'(r—k+1,r—k-+1)" b, ; , (mod W,,,).

STEP 3. o(r, 2r—1, k1, r+k) o(k, r—1, 1, r—F)
o'~ (r—1, r—k+1) o'(r—1, r—k+1)" '~ (r—2, r—k+2)
o'(r—2, r—k+2) Yoo’ (r—k+1, r—k+1)
o' (r—k+1,r—k+1)"h,,,
= (— £ o(p, 2r—1, k+1, 7-+E) (b, 7—1, 1, r—R) b, ;,
(mod W,,,).

Step 4. o(r,2r—1,k+1,7+R) o(k,v—1,1,r—k) b, ; , @
= P}l o=(k,r—1,1,r—k) o(r, 2r—k—1, r—k-+1, 2r—2k)
o(r—k,2r—2k—1,1,r—k)
eD(2er—k, 2r—k, 2r—2k+1, 2r—1)
eM(2r—2k, 2r—2,r—k+1, r+k—1).

Ster 5. o~(k,r—1, 1,r—k) o(r, 2r—k—1, 1,7—k)
eD(2r—k, 2r—k, 2r—2k+1, 2r—1)
eM(2r—2k, 2r—2,r—k+1, r+k—1)
eD(2r, 2r, 2r—i+k+1, 2r+i—k—1)
eM2r—i+k, 2r+i—k—2,r+k+1, r—k+2i—1)
eM(r—k, r—k+2i—2,1, 2i—1)
= (—t 2} o(r—k, 2r—2k—1,1,r—k)
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e (2r—k, 2r—k, 2r—i—k+1, 2r+i—k—1)
eM(2r—i—k, 2r+i—k—2,1,2i—1) (mod W, ;).

STEP 6. o(r—k,2r—2k—1,1,r—k)
eD(2r—k, 2r—k, 2r—i—k+1, 2r+i—k—1)
eM(2r—i—k, 2r+i—k—2,1,2i—1)
= =D pRYe-DO-DReB) o~(2p, p4 -1, 2r+i—h—1, r+i)
€O(r, 7, r—i+1, r+i—1) eD(r—i, r+i—2, 1,2i—1)
(mod W,, ).

SteP 7. For non-negative integers i, k and m such that k<t and m<i—k,
we have

eD(2r, 2r, 2r+m—2, 2r—m--2)
e (2r—m+1, 2r4+m—1, r+-k+1, r+k+2m—1)
o~ 2r+m, r+k+2m-+1, 2r+i—k—1, r+i+m)
eDr,ryr—k+1,r+k—1)
eNr—k, r+k+2m, r—i+m+1, r+i+m—1)
eEM(r—itm, r+i+m—2, 1, 2i—1)
= (—t~\R)r-s-tmbich (@) 2y, 2r, 2r4+-m—2, ,2r—m-+-2)
e (2r—m+1, 2r+m—1, r+k+2, r+k+2m)
o~ (2r+m, r+k+2m+2, 2r+i—k—2, r+i+m)
eNr,r,r—k,r+k)
eNr—k—1, r+k+2m+1, r—i+m+1, r+i+m—1)
eM(r—itm, r+i+m—2, 1, 2i—1)
A (—tt)o-h=2mti=D) @) 2, 2r, 2r+m—1, 2r—m-+-1)
eM(2r—m, 2r+m, r+k+1, r+k+2m+1)
o~ 2r+m+-1,r+k+2m+-3, 2r+i—k—1, r+i4+m+-1)
eDr,r,r—k+1,7r+k—1)
eDr—k, r+k+2m+2, r—i+m+2, r+i+m)
eM(r—i+m—+1, r+i+m—1,1,2{—1) (mod W, ).

Step 7 implies the following.
Step 8. €9(2r, 27, 2r+m—2, 2r—m--2)
eD(2r—m—+1, 2t+m—1, r+k+1, r+k+2m—1)

o~ (2r4+m, r+k+2m+1, 2r+i—k—1, r+i+m)
eDr,r,r—k+1,r+k—1)
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eD(r—k, r+k+2m, r—i+m+1, r+i+m—1)
eW(r—i+m, r+i+m—2, 1, 2i—1)

= E Bim,;i b
where By, (0<m<i—R), satisfy the following relations.

(44.21) Buipe=1(0<k<i), Buiis;=0(0<j<i,j+k),
Bk,m,i — (_t-—llz)(r—zlt—2in+i—l) BH_LMJ_*_(_t—l)(r—2k—2m+i—l) Bk,m-ﬂ,i
(0<m<i—Fk).

STEP 9. For 0<k<j and 0<m<i—j, we have
ﬁk,m,j

= (— 1) itDGmbom) (IR =i+ DG-RA A -UomCimmg (1)

Especially, we have

Bk,o,;‘ — (_1)(r—i+l)(i-k) (t—1/2)(r—.‘+i—ln)(i—la)+2(r+j—-2):)(i—j) gi-h,i—k(t) .

Proof. Since

(__1)(r—i+1)(i—k-m) (t-—lﬂ)(f—H-}—b)(l-k)+2(r+]—2k—a)(n‘—]—m) gi_k_m'j_k(t)

satisfy the relation (4.4.21), these are identical to 8, ,, ;. [

Step 10. Combining the results of Steps 1-9, we gét the statement of
Theorem 4.4.1 for the case 0<i<7. An analogous argument proves the state-
ment of the theorem for the case << <[3r/2].

5. The parallel version of the Kauffman polynomial. The associat-
ed algebras C,, C,, -+ of the Kauffman polynomial F (Definition 1.1.10) are
obtained in [2] and [26]. The invariant F is known to be of trace type if the
values of the parameters @ and x are generic. Therefore we can apply our theory
in Section 1 to F with generic parameters. We give a formula for the Kauffman
polynomials of satellite links (Theorem 5.3.1).

5.1. The associated algebra C,. Let a, B=C\ {0} such that 8 is not
equal to any root of unity. Let x=8—1/8. The associated algebra C, of the
Kauffman polynomial is defined as a C-algebra with 1 by the following.

(5.1.1) C,=
Lo 77 & (IKi<n—1) |7 74y Ti = Tiaa Ti Tina»
i€inéi=¢&, i€y =&y,

+1 ¥ +1 — ¥l
Ti Einé&i=1in &, Tiv16; 84y = 77 Eina
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Ei&inTH =& 7T, & &itRh =&t (1<i<n-2),
TiT; = TjTi, E,'Tj=‘l'j6,', E,‘Gi —E,-G,- (13131—1$n—2),
ri—7i =x(1-&), ;& =& =a7'&, T =TT =1

(1<i<n—1)>.

This definition is equivalent to the one in [2]. Let C,;=C,e ¢+ ey, C,.
Then C,; is a two sided ideal and satisfies C,=C, (DC, D+ DC, . Let
D, ;=C, ;|C, ;+,(0<i<[n/2]—1) and D, (,;y=C, tya. Note that

(5.1.2) D, =<H,((—1)""* B) (the Iwahori’s Hecke algebra of type 4,_,).

Let cm:( Z)(’Z2>...<”'22i)/(i!). For p€A(n), let d(u) denote the degree of

the character X, of H, parametrized by the partition x. Then we have ([2],
Theorem 3.7)
(5.1.3) D,;= & Myu.,,(C) (0<iL[n/2]).

l‘-EA( -2

Hence the irreducible representations of D, ; are parametrized by A(n—2:) and
)

(5.14) C," = {G, w)|0<i<[n2], nEA(n—20)} .

Let p; 4 denote the corresponding irreducible representation of (Z, ) and X u its
character. Let p;: CG,—C, be the homomorphism defined by p(a;)=7;, pi(c7?)
=77, pu(f;)=¢&;, and p,: CB,—C, the homomorphism defined by p,(c;)=a ;
and p,(o7")=a"' 77! for 1<i<n—1. Then the main result of [2] can be refor-
mulated as follows.

Theorem 5.1.5. For an n-braid b, there are a; .(F)C (OSz <[?2], peA
(n—24)) such that

F(bn)) =, =  auF)Xu(2sb))-

The coefficients a; u(F) are given explicitly in [28].

5.2. Relations among the invariants associated with the decom-
position of F, Let F®@") denote the invariant associated with the de-
composition of the r-parallel version F® of the Kauffman polynomial F
parametrized by (7, p)=C,” (5.1.4) as in Section 1.3. In this section we show
that some of the above invariants are the same one. In the following we use
the conventions that F®(K)=F®® 4’))(K) (—1+(a+a7Y)/x)"* for any link
diagram K.

Theorem 5.2.1. Let K be a knot. Then we have
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Fr.G)(RK)=F0¢-#G-k)(K) for 0<r,0<i<[r/2], 0<k<:{.
Corollary 5.2.2. Let K be a knot. Then we have

PO (K) =[r2/z] SV X, (1) Fo-20m (K)

i=0 HFEA(r-2i)

The above results may be generalized to the case of marked links.

We may prove Theorem 5.2.1 by an anologous argument used in the proof
of Theorem 4.2.1. We use the D-polynomial instead of the bracket polynomial.
In this case, the following lemma takes the role of Lemma 4.2.7 in the proof of
Theorem 4.2.1.

Lemma 5.2.3. Let e(j)=e, e5:-,;,=C,(1<j<[r/2]). For the character
X; u of the representation p; . of C,, we have

(@) Xiu(e(y) =0 if 1<j,
(b) Xiu(e(h) = (1—(a—a™)|xy X;_;u (1) if 1<j<i,
where X;_; wEC,_,;” and we use the convention that X, 4(1)=1.

To prove this lemma, we use the folloaing formula in [2]. For p=(u,, 1,
-)EA(n) and p'=(ui, ps, *)EA(m—1), we denote p'<p iff pi<p,; for all
ieN. ForyeC(,_,, 0<i<[r/2] and p& A(r—2i), we have
(5.24) Xiwl¥) =, 2 Xiwl(D)H(, 2 Xioywr(9))-

WeNr-2i-1), wWeNr-2i+1),
[ 9%

The details of proofs of Theorem 5.2.1 and Lemma 5.2.3 are omitted.

5.3. The Kauffman polynomial of satellite links. In the case of the
Kauffman polynomial, we have a formula for srtellite links as in the case of the
one-variable Jones polynomial (discussed in Section 4.3).

Theorem 5.3.1. Let K be a knot, L a link diagram in the annulus, and (g, 7)
an element of G whose closure is regular isotopic to |L|. Let F,(K)=F(K,), where
K, is the satellite link of K with respect to L. Then we have

Fy(K)=a™®( 3 Xiu(pr(8) FO" (K)).

G, Hye0)

The proof is similar to that of Theorem 4.3.2 and we omit it. This theorem
may be generalized to the case of marked links.

ExamMpLE 5.3.2 (doubled knot [33]). Let L, be the link diagram in the an-
nulus as in Figure 14. Then as in Example 4.3.3, | L,| is regular isotopic to
(& 4)~, where go=f,f,f, 3. For a knot K, we have F; (K)=—a"?x(87'+a™")
F&o.@» (K)+a2x(B—a™") FEOOD (K)+a ¥(x(a—a'—x)"'+a?+1) by cal-
culating X; u(g,) for (i, p)C,".
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6. Mutation and the r-parallel version of a link invariant. Let K
and K’ be two distinct mutant links (Definition 6.2.3). We are interested in
comparing the r-parallel versions X®(K) and X® (K’) of a link nivariant X.
In the case of the (two-variable) Jones polynomial V, P and the Kauffman poly-
nomial F, it is already known [23], [25] that none of V', P®, and F® can dis-
tinguish two mutant knots. But it is announced [25] that the Kinoshita-Terasaka
knot and the Conway’s 11—corssing knot, which are mutant, have distinct P®,
We can show that there are four mutant knots having distinct P®,

6.1. Tangles.

DEerFINITION 6.1.1. Let n be a positive integer. An oriented rectangular
diagram T which consists of oriented curves is called a n-tangle if T contains
some or no closed curves, and 7 non-closed curves starting at the top of the rec-
tangle and terminating at the bottom of it (Figure 16). Two n-tangles T and S

)]
SRRS)

the n-closure
of a braid b

Figure 16

are called #sotopic if there is a sequence of Reidemeister moves from T'to S. We
denote R, the set of isotopy classes of n-tangles. A closure of an n-tangle T, writ-
ten 77, is the link diagram formed by joining the 7 points at the top of T to those
at the bottom without further crossings. For an m-braid b (m>n), the n-closure
of b is the n-tangle formed by joinig the z-th poont (rn-1<7<m) at the top of b
to that at the bottom without further crossings (Figure 16).

As in Theorem 1.1.1, we have the following.
Theorem 6.1.2. Every n-tangle is isotopic to the n-closure of a braid.

For two n-tangles T and .S, we define the composite tangle T'S by connecting
the points at the bottom of T to those at the top of S as in Figure 17. The set
R, together with the above composition law is a semigroup called the n-tangle
semigroup. An m-braid is an n-tangle and we regard B, as a subsemigroup of



PARALLEL VERSION OF INVARIANTS OF LINKS 45

a product tangle
Figure 17

R,. Let CR, denote the semigroup algebra of R, called the n-tangle algebra.

DEFINITION 6.1.3.  For a positive integer 7, the r-parallel version T of an
n-tangle T is obtained by rep‘acing each crossings of T as in Figure 1.

Proposition 6.1.4. Let T and S be n-tangles. Their r-parallel versions T
and S are isotopic if T and S are isotopic.

This proposition is proved by an argument analogous to the proof of Theo-
rem 1.2.2. We use the Reidemeister moves instead of the relations in Definition
1.1.2.

Let ¢$°: CR,—CR,, be the algebra homomorphism defined by ¢$(T)=T®.
Let ¢,~: B,—~CB,, be the composition of ¢, defined by (1.4.2) and the natural
inclusion B,,—CR,,. Let §: R,—S, be the mapping such that, for T€R,, the
i-th point at the top of T is joined to the 8(T) (¢)-th point at the bottom by a
curve of T. Then 6 is a semigroup homomorphism.

Lemma 6.1.5. For TER, and be B,,
$(T) 4™ (0) = taenyay™ (") $5(T) (1<k<n).

Proof. Let (b, m)<E B such that the n-closure of b is isotopic to 7. Then
¢YT) is isotopic to the rn-closures of ¢{’(b). Hence the statement of the
lemma follows from Lemma 1.4.3 and the fact that the rn-closures of (¢$%(8) ¢(c))
and (¢(c) $$%(b)) are isotopic for cEB, if n+1<k<m. [

In the following of this section let X be the one-variable Jones polynomial
(two-variable Jones polynomial, the Kauffman polynomial respectively). We
fix the complex parameters of the invariant X so that X is of trace type and the
corresponding coefficients a, ;(V) in (4.1.9) (a,(P) in Theorem 3.4, g; u(F) in
Theorem 5.1.5 respectively) are all non-zero. Let X, be the linear function on
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the associated algebra A,(X) defined by X((b, n)")=X,(p,(b)) for b< B,.
Then from the defining relation of these invariants, we have the following.

Proposition 6.1.6. There is an algebra homomorphism. E,:CR,—A,(X)
such that X(T")=X,(E,(T)) for TER,.

Proof. We prove this in the case when X is the Kauffman polynomial F(-)
(a, x). The proofs for one and two-variable Jones polynomials are similar. Let
C,(meN) be the associated algebras of the Kauffman polynomial (Section 5.1).
Let F,: C,—C be the mapping defined by F,(p,(6))=F(") for b B,. We
first define a linear mapping ®,: C,—C,_,. Let (-, ), be the symmetric
bilinear form on C,, defined by using F,,: C,,—C as follows:

(6.1.7) Vv Yo)m = Fu(3152) for y,5,€C,.

Since (-, +) is non-degenerate by the assumption of the parameters (g, x) of F,
we can uniquely define ®,, so that ®,, satisfies (¥;, @p(V2))m-1=(V1, ¥2)m for all
»€C,-, and y,€C,. By putting y,=1, we have F, (y,)=F,_,(®P.(3.)).- By
using the defining relations (5.1.1) of C,,, any element yC,, can be written as
Y=2,+2, %y, ¥+ 2 Ty, ¥ for some z, -+, 2;€C,_,. By using Definition
1.1.10, we know that ®,(y)=(1—(a—a™)/x) y,+¥,2,+ay, 2. Let A,: C,—
Cyp+, and A7: B,—B,,,, be the algebra homomorphisms defined by A,(€;)=¢&;4,,
AM(rE)=7%1, and M(o7')=0Ti, respectively. Then

(6.1.8) Dpi/(M(D)) = M(Pu(y))  for yEC,,
and
(6.1.9) Putr(M(D)) = N (Pn(b)) for bEB,.

Hence we have
(6.1.10)  @u()132) = Pu(y)y. for y»€C, and y,&C,,,

where p,: CB,—C,, is the projection defined in Section 5.1. Let T be an #n-
angle. Then there is (b, m) =B whose n-closure is isotopic to 7. Let

(6.1.11) En(T) = @pis(* (PP 2m(8)))) ) -

From now on we prove that =,(TS)=E,(T)E,(S) for two n-tangles T and S.
Let (b, m), (b',m")eB whose n-closures are isotopic to T' and S respectively.
Then the product tangle TS is isotopic to the m-closure of (87! \,_,(b) 8b’,
m-+m’'—n) where §=ao(m'—n, 1, m’'—1, n) (see (4.4.17)). By using (6.1.8)-
(6.1.11), for yeC,, we have
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F,(yEA(TS))
= Fo(y @pts( (P’ Pmrmr (87 Awr—n(b) 85%))))++))
= F(y @ots((Pw(87! Pt ** (Pt (Pt ~a(Aiw=n(8))))*+) 8 Pum?(8")))*++))
= Fo(y o+ (P(87 Mt @ta(-+* (Pn(D(8))) ++)) 8Pmr(8)))++))
= Fy(y Poss( (P Prts(++(Pon( £ (8)))*+*) Pwe(87)))++))
= Fy(y Pots(+ (P (Pts(-+ (P 2m(8))) ) Pt -+ (P Bm(87)))*++))
= F(yE.(T) Ex(S)) -
Hence we get E,(TS)=E,(T) E,(S). O

For p€A4,,(X)" (respectively ve 4,(X)"), let (pu, Vi) (respectively (p,, Vy))
be the corresponding representation of 4,,(X) (respectively A4,(X)) and X.
(respectively X,) its character. We regard B? as a subgroup of B,, as in Section
1.4. Then V. can be regarded as a Bi-module. For v=A4,(X)", let Va,,.., be
the (p,op,)®"-isotypic subspace of V. Then V.., is invariant relative to the
action of ¢{(R,). Let (puy, Viy,..,) denote the representation puo=,,d% v, ,
of R,,. From Proposition 1.3.4, we know that there is a representation 7y , of
R, such that p.,==(p®")~®mwu,,, where (p®*)~ is the representation of ByXR,
coming from p®* as in Proposition 1.3.4. Let wu, be the character of 7z .
Then the argument proving Theorem 1.4.10 implies the next one.

Theorem 6.1.12. Let T be an n-tangle whose closure is a knot. Then we
have the following.
D) XuEn(@ (DN =,_3  Xu(1) 0u(T),

,(Z)A

i) XXT)=, 3 (2  aX)X(1)ouy(T)).

REA, (XA vad (XA

6.2. Mutation.

In this section, let X be the one-variable Jones polynomial V" (the two-
variable Jones polynomial P, the Kauffman polynomial F respectively).

DerFINITION 6.2.1. For T in the n-tangle algebra R,, we define three non-
trivial involutions #,, v, and #, (see Figure 18). Let «, be the involution defined
by v, T=gTg™" where g=o(1,n) o (1,n—2)---0(1,1) and o (i, j)=0; 0i-y**0;
(<j). Let D, be a rectangular diagram of T and H the half-turn of D, about
the center of D;. Put T'=H(D,). Let v, T be the element of R, which is the
isotopy class of the tangle obtained by inverting the orientations of all the strings
of T". Let ; denote the composition of v, and ,.

The involution ¢y, induces an automorphism of the 2-tangle algebra CR,,
and v, and v, induce anti-automorphisms of CR,. Hence they induce (anti-)
automorphisms of the subalgebra E,,(¢$(CR,)) of 4,,(X), where E,,: CR,,—
A,,(X) is the algebra homomorphism introduced in Proposition 6.1.6.
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"1 Y2 Vi=N1X72
involutions of an n-tangle

Figure 18

Proposition 6.2.2. Let yA4,,(X)" and ve A(X)". If the degree (i.c. the
dimension of the representation space) of the representation my . (introduced at the
end of the last section) is equal to zero or one, then we have

7u(T) = mur(v;T) for TER,, 1<i<3.

Proof. Lemma 6.2.9, which will be gieven at the end of this section, shows
that the actions of «;(1<7<3) induce C-algebra (anti-)automorphisms of 7z,
(CR,). But zu.(CR,) is isomorphic to C or {0} by the assumption. Hence
their actions must be trivial ones. [J

DEFINITION 6.2.3 (see, e.g. [8]). Two links K and K’ are called mutant if
there are two 2-atngles 7, S and an involution v; (7=1, 2 or 3) of S such that
K and K' are equivalent to T'S” and (7'y;S)" respectively.

The following theorem is the main result of this section.

Theorem 6.2.4. Let K and K' be mutant knots. Then, for a positive integer
r and ve A(X)", XT(K)=X""(K') if the degrees of the representations wpu
(n€ A,/(X)) are all equal to zero or one.

Proof. Let T and S be the tangles and ¢ an involution of S such that K
and K’ are equivalent to 7°.S™ and (T'yS)" respectively. Theorem 6.1.9 implies
that

XK = x,,(l)“ 45"2:) a,(X) trace(zu o(T) mu1(S)) ,
E4,,(X)*
XONK) =%(1) S au(X) trace (e o(T) 7 (7S)) -
Bed,x)A
Hence the statement of the theorem follows from Proposition 6.2.2. [
Corollary 6.2.5. Let K and K' be mutant knots. Then we have

) VoK) = VoK),
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(i)  ([23], [25]) VO(K) = V(K'),
(iii) P"E(K) = P""(K') if the partition u of r is equal to (r) or (17),
(iv) ([23]) PA(K) = P®(K"),
v) (23D FO(K) = F®(K").

Proof. Recall that the degree of 7z, , is equal to the multiplicities of p®* in
pu for ue A4,,(X)" and v 4,(X). By Remark 3.8, the above multiplicities may
be calculated by the Littlewood-Richardson rule in the case that X is the Jones
polynomial V' or the two-variable Jones polynomial P. This rule shows that
the degree of the representations 7, , for the case (i)-(iv) are all equal to 1 or 0.
To prove (v), we show that the degree of zy , is equal to 1 or 0 for pE€A,(F)"
and v€A,(F)". This can be checked by using the realizations of irreducible
representations of 4,(F) given in [2]. []

Theorem 6.2.6. Let K and K' be mutant knots, i.e. there are tangles T and
S and an involution <y of S such that K and K' are equivalent to TS™ and (TyS)".
Put 7=(321)€ A(6) and V,=(21)€A(3). Then, with the notations in Theorem
6.1.12 we have P®(K)=+ PO (K') iff a, (P)=*0 and w,, v(T'S)=F wr,,v(TYS).

Proof. From Theorem 1.5.1 and Corollary 6.2.5 we have P®(K)=+P®(K")
iff P@Y(K)=+=P®¥)(K’). But from Littlewood-Richardson rule (Remark 3.8),
the degree of z,,, is equal to 2 and those of =, ,, are equal to 1 or 0 if A ==2n,.
Hence Proposition 6.2.2 implies the statement of the theorem. []

ExampLE 6.2.7. We give four mutant knots K, K,, K; and K, for which
the invariants P®(K;) (1<i<4) are all distinct. Let S, S,, & and o~ be the
tangles as in Figure 19, S;=S, ¢S;, S,=S, S, and K;=(S,; 7:(S,))" (1<i<4,
Figure 19). Let ¢ be an indeterminate and H the Z[g¢"? ¢ ?]-algebra with
unit defined by the relations (3.2). Let @, : H, —H,_;' be the mapping
defined as in the proof of Proposition 6.1.6. Then, from the definition of the
two-variable Jones polynomial, we know that the image ®,(H,’) is contained
in H, '®,Z[a, a™, (ag”?—a'¢¥?)™*]. Hence E,(R,) (n=23,6) are con-
tained in H,' ®;Z[a, a™,(ag'—a™' g% by (6.1.11). On the other hand,
Naruse and Gyoja constructed W-graphs [18] of all the irreducible repre senta-
tions of H; (Figure 8). This means that, for each irreducible representation,
they give a basis of the representation space and representation matrices of
generators of Hg with respect to the basis. The entries of the above representa-
tion matrices of the generators T;& H, (1<7<15) are all contained in Z[¢"?, ¢~ "2].
This implies the following two facts. Let R=Z[¢"? ¢ a,a™’, (ag?—
a™'q )71, The first fact is that the composition of =g and the above re-
presentations of H, define irreducible representations of R; over R. The
second fact is that the py-isotypic subspace V,,, of the representation space
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Vi of pa, is defined over R. Hence we can define the reduction modulo p
of the representation z,,,, of R,. This is defined over F,[¢"% ¢ "% a,a™,
(ag*—a™ ¢"¥*)7"], where F, is the finite field of prime order p. In the
following, we put p=23, =1 and g=2. With these parameters, we know that
aq®—a™ ¢#0 and @, (P)==0 (mod 23) from the explicit formula for a,(P)
given in [10] or [15]. Therefore we may use Theorem 6.2.7. We calculate
the elements E(¢(S)), E¢5(S,), B(¢8(c)) and Ey(¢(c")) of (Hy @
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Fy)y-1,4-» With the aid of computers (Turbo PASCAL on MS-DOS for
PC-9801 (NEC) and AOS/VS PASCAL on Eclipse MV-2000DC (DG)). Their
images under 7,,,, with respect to the explicit basis mentioned above are

9 1 oo |8 19
7z')‘¢)v"‘o(¢g )(Sl)) =[ 7 16j| ) 71':\0:\!0(¢$ )(Sz))=[ 0 5 :| )

0 19 0 21
mo.».,(¢$3’(a))s[19 OJ, mo,vo(¢$3’(a~))5[21 0] (mod 23) .

Hence we have

14 ZOJ

aovo( B8 (S5)) = 7a, o987 (S) & Sz))E,:N 1

TraaDE7(50) = 7o (S Sz))E[fo 165 } ’

6 10
m\o,vo(‘pga)(?ﬁ Sy) = zM,vo(¢§3)(0S1 S a~))E[15 3 :, ’

21 13
Trgso( S5z S)) = Tag oSS, Sl))ELz 1J ’

11 12

B0 5) = #9005, S,0) =] ] (mod 29).

Thus we have w,g,,($57(Ss S0)) =20, w0y, vo($5(Ss ¥, S0)) =5, @ng,uo($E(Ss 72 S0))
=7 and o,y ($5(Ss 73 S,))=18 (mod 23). Hence the invariants P®(K;)
(1<i<4) are all distinct by Theorem 6.2.6 and so any two of the knots K, K,, K;
and K| are not equivalent.

In the rest of this paper, we shall prove the remaining part of the proof of
Proposition 6.2.2.

Lemma 6.2.8. Let (p, U) be an irreducible representation of A,,(X). Then
v:(#=1, 2 or 3) induces an automorphism (respectively anti-automorphism) of End(U)

defined by "i(p(y))=p(7: y) (y € An(X)).

Proof. 1°) The case i=1. For ye4,,(X), we have v, y=p,,(d5(2)) ¥Psu
(¢5(g)) " where g=a (1, n) o(1,n—2)---0(1, 1), 0(i, j) =0 044y 0 (i< j) and p,,
be the projection CB,,—A4,,(X). Hence v, acts on End(U) by "(p(y))=p(Prn
(9(8)) (3) P(Pr(@S(EN) "

2°) The case y=r,. In this case, the statement of the lemma follows from
1°) and 3°) since y,=7,0%s;.

3°) The case y=7;. We know realizations of every irreducible represen-
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tations of 4,,(X) such that p,,(a;) (1<i<rn—1) are represented by symmetric

matrices. When X=V (P, F respectively), such constructions are given in.
[31] ([31], [28] respectively). For a matrix M, let ‘M denote the transposed

matrix of M. We may assume that ‘p(p,,(c;))=p(P,(c;)). Since 7, satisfies

Y Dral0:)) =Pru(0:) (1<i <rn—1) and vy(hh')=y4(h’) v5(h) for h, k'€ 4,,, we

have Yp(h)=?p(k) (h€A4,,(X)). Hence 7, acts on End(U) by the matrix

transposition. [

Lemma 6.2.9. Let (zu,\, Wu,) (n€A4,(X) ", veA(X)") be the represen-
tation of CR, given at tne end of Section 6.1. Then v ,(i=1, 2, 3) induces an (anti-)
autooautomorphism of s (CR;) defined by "z () =724 (7: ) (¥ E Ap(X)).

Proof. 1°) The case y=r,. The statement of the lemma follows from
(7, (9)) =0, (&) 7u,W() 7u,(8) ™" where g=o (1, n—1) o (1,n—2)---a (1, 1) and
a(t))=0; gisy o ((7).

2°) The case y=v,. In this case, the statement of the lemma follows from
1°) and 3°) since ¥,=v,°7;.

3°) The case y=v,; Let (pu, Vi) be the irreducible representation of
A,,(X) parametrized by u. We shall show that 7z, (v; ¥)="(s,(y)) with respect
to a basis of W, ,. In this proof, we use the following fact.

Lemma 6.2.10. Let s be an indeterminate. Let y,(s), y,(s)E M, (K) with
'.()=y,(s) where K is the algebraic closure of C(s). Let U(s) be a subspace of
K™ such that y,(s) U(s)S U(s) and *y,(s) U(s)S U(s). We assume that there is a
open set U of R (the set of real numbers) and a basis {u,(s), -+, u, ()} of K"
such that {u,(s), -+, u,(s)} is a basis of U(s) which satisfy the following conditions.

(1)  The coordinates of u;(s) (1<i<m) have no branch point in U and they

are contained in R for s&€U.

(i)  The vectors u,(s) (1<i<m) are linearly independent for s&U.

(i) The elements of the matrix of y,(s) with respect to the above basis have

no branch point in U.
Then there is a basis of U(s) such that the transpose of the matrix of y,(s)|y) with
respect to this basis is equal to the matrix of y,(s)|y-

Proof. At first, fix s&U. By applying the Schmidt’s method to {x,(s), -,
u,(s)}, we get an orthonormal basis {v,(s), +*-, v,,(s)} of R™ with respect to the
standard bilinear form such that {o,(s), -+, v,(s)} is an orthonormal basis of U(s).
With respect to the basis {v,(s), -*+, v4(s)}, the transpose of the matrix of y,(s)
is equal to y,(s). Now we discuss for general s. From the above argument, we
know that (,(5));;=(¥,($));; (1<4,j<m) for s&€U. But the assumption of the
lemma implies that the elements of the matrix of y,(s) with respect to the basis
{0,(5), -++, v,(s)} are algebraic functions in s. Hence the equalities (y,(s));;=
(¥25))i (1<4,j<m) also hold when we regards as an indeterminate. []
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Now, we return to the proof of Lemma 6.2.9. Let (py ,, Vi ) and ((p®%)",
V") be the representations of B}}|R, given at the end of Section 6.1. From
the definition of ¢$”, we have

(1)51’)(73 0',-) = (o-n'—r-l-l o'n'—r+2"°o-n'—l)—' (o'n'-l-l o'ri+2"'o'ri+r-l)' Y3 ¢$l’)(a.f) .

We also have ¢$(v; y)=c, v; () where c, is a product of some (o,;4; Tpitp*-
Gritr-1) 7 (1<i<n—1). Note that the exponent sum of ¢, is equal to zero. The
elements pu((c,i4; Triva * Trivr-1) ) (1<2<n—1) act on V, , by the same scalar
pyv((oy oy00,-1)7") since (o, oytv0,-,)”" are contained in the center of the
subgroup B,. Since the exponent sum of ¢, is equal to zero, we have p, ,(c,)=1.
Recall that V, , is the p®*-isotypic subspace of V. as a CBj-module and the
representation p, , of R, is given by restricting puoE,,o¢$” to V,,. The con-
structions of the irreducible representations of 4,(X) (k€ N) refered in the proof
of Lemma 6.2.8 imply that Vi V., and pu.(y) (yER,) satisfy the assumption
of Lemma 6.2.10 for s=¢"%. Therefore we have pu (73 ¥)="(pu,(¥)) (1<i<
n—1) with respect to some basis of V., Let §: R,—S, be the mapping
defined just before Lemma 6.1.5. The representation (p$*)~(y) (yER,) gives a
parmutation of a basis of V$". Hence (p®*)~ containes the trivial representation
of R, with positive multiplicities. This implies that p , containes the represent-
ation 7w, with positive multiplicities since pu ,=(p®")"®zu,,. Let Uy, be a
R,-invariant subspace of V, where the representation 7, ,” of R, on U,, is
equivalent to zu,. We identify (zu,’, Uu,) and (7w y, Wi ,). Asin the case of
pu,y, We can show that there is a basis of W, , such that zu ,(v; ¥)="(7u ,(y)) for
y&CR,. This is what we wanted to show. [J
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