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1. Introduction

A module is said to be extending, if every closed (i.e. complement) sub-
module is a direct summand. This property is usually denoted by (C,). It
is, obviously, equivalent to the requirement that every submodule is essential in
a direct summand; this is the origin of the name “extending”. (C,) is one of
the defining conditions of continuous and quasi-continuous modules, which in
turn are generalizations of injective modules. Continuous and quasi-continuous
modules have been studied in great detail by many people (c.f. Y. Utumi [13],
L. Jeremy [5], B.J. Muller and S. Rizvi [8], [9], and K. Oshiro [11], [12]). Al-
though extending modules are far from injective, they behave in some ways
very similar to injective modules. For instance, M. Okado [10] proved that,
over a right noetherian ring, an extending module is a direct sum of uniform
submodules. The aim of this paper is to determine, conversely, when direct
sums of uniform modules are extending.

In §2 we study when direct sums of uniform modules over an arbitrary
ring are extending. We prove, in this general setting, some preliminary results
which are used later in the paper. We also show that a module over a right
noetherian ring is extending if and only if it has (1—C),) and every local direct
summand is a direct summand. Consequently a direct sum of uniform modules
with local endomorphism rings, over a right noetherian ring, is extending if
and only if it is locally semi-T-nilpotent and each pair is extending.

Then we turn to extending modules over commutative noetherian rings.
§3 is a reduction to the case of modules with only one associated prime. In
§4 we give a full characterization of extending modules which are direct sums
of uniform modules with the same associated prime, and with local endomor-
phism rings. Finally we describe the structure of extending torsion modules
over Dedekind domains.

DeriNiTIONS and NoOTATIONS: A family of submodules of a module M,
whose sum in M is direct, is called a local direct summand if every finite sub-
sum is a direct summand of M. A decomposition l@ M; of modules is called
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locally semi-T-nilpotent, if for every sequence f,: M; —M; (n€N) of non-
isomorphisms, with all 7, distinct, and every x&M;, there exists m&N with
JnTm-17+fo(%)=0.

A submodule N of a module M is called closed in M, if it has no proper
essential extensions in M. XcC'M and YC®M signify that X is an essential
submodule, and Y is a direct summand, of M. The injective hull of a module
M will be denoted by E(M). The set of all associated primes of a module M
will be denoted by ass(M).

A module M is called quasi-continuous if it is extending and has the following
property (C,): for all X, YC®M with XN Y=0, one has XY C®M. The
property (n—C)) is the special case of (C)), which requires that every closed
submodule of uniform dimension less than or equal #z is a direct summand.

2. Direct sums of uniform modules

Lemma 1. If M is an extending module [has (n—C,)] then every direct
summand of M is extending [has (n—C),)].

Lemma 2 ([10], Theorem 4). A ring R is right noetherian if and only if
every extending .ight R-module is a direct sum of uniform submodules.

Proposition 3. Let M= EBI M, where the M; are uniform. If M has (1—C),),
HS

then every closed submodule of the form q”a A;, with all A; uniform, is a direct sum-
mand of M. =

Proof. By induction on n. Assume that the claim holds true for #, and let
A= éAi be a closed submodule of M, with all A4; uniform. By induction,
i=0
A'=: P A, is a direct summand. Write M=A4'PX.
i=1

Now let 7z be the projection of M onto X. Then wA4,=<A, is uniform, and
hence, by (1—C)) for X, z4,c’'BC®X. It follows that A'@A,Cx' BCA'PB.
Since B is uniform, we obtain A=A'PA,C'A'PB. Since A is closed, we have
A=A'@BC®M.

Lemma4. Let ¢: E(M)—E(N) be an arbitrary homomorphism, and let X—
{xeM: p(x)N}. If there exists a homomorphism «p: Y—N, XC YC M, such
that r(x)=p(x) for all x€ X, then X=7Y. Moreover the submodule B= {x+ ¢(x):
x=X} of M®N is closed.

Proof. If (p—+) Y0, then (p—+) YNN=0. Hence n=(¢—4) (y) for
some 0=nEN,y€EY. Then ¢(y)=n+(y)EN, and hence yX. Therefore
(p—) (»)=0, which is a contradiction.

Now assume BC'B*C M@PN. Since BNN=0, we have B¥NN=0. Let
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7, ' be the projections of M@N onto M and N respectively; it follows that z | B*
is a monomorphism. Let f:=z'#""|B*: z(B*)—N. Note that X=nBCnB¥*,
and that for each x€ X, f(x)=r" z"(x)=7="(x+ ¢(x))=¢p(x). Hence by the first
part of the lemma, X==B*. Now let b*B* be arbitrary; we have b*=zb*+
7' b*=nb* ' w7t m(b*)=nb*+f(xb*)=nb*+p(zb*)=B. Hence B=B*.

Lemma 5 ([9], Lemma 5). Let M= @I M; with all M; uniform. Suppose

XCM with XN @ M;=0, for some JC1. Then there exists JCKCI with XP
e Mc'm

iIER

Proposition 6. Let M= G?_ M; with all M; uniform. If M has (1—C,),
then every non-zero closed submodule of M contains a uniform summand of M.

Proof. Let M have (C)), and let A be a closed submodule of M. By
Lemma 5, we have 4@ @ M,;C'M for some JCI. Let K=I\], and let zg, z;

ieT

be the projections onto El% M; and @J M; respectively. 'Then 7z, is a monomo-
ie je
rphism. Let ¢p:=n;zxia. It is easy to see that A= {b+p(d): b€ zx(A)} and
that ¢ : zx(4)— @ M; is not extendable (i.e. if yr: Y— G?rMi, rx(d)cYC @ M;
jer jE IEK

extends ¢, then zx(A)=7Y).

Now let ¢: E(PM;)—E(DM;) be an extension of ¢, it follows that zx(A4)=
K J

{x€®M;: (x)e ®M;}. Foreach acKkK,let X,=:{xcM,: H(x,) GJBM,-} and
4 J
A,={x+d(x): x€X,}. By Lemma 4, 4, is closed in M, P D M;. It is clear
J

that X,=4,, and hence 4, is a uniform submodule of 4. By (1—C,), 4,C®M,
and therefore 4,C®A4.

Corollary 7. Let M= @ M,, with all M; uniform. If M has (1—C,), then
i€l
M has (n—Cy,).

Proof: Propositions 6 and 3.

Theorem 8. Let M be a module over a right noetherian ring R. Then M
is an extending module if and only if M is a direct sum of uniform submodules, has
(1—C,), and every local direct summand of M is a direct summand.

Proof. Let M be extending. Obviously M has (1—C)). Now let U= @

jer

U; be a local direct summand of M. By (C,), UC®M holds once we show that

Uisclosedin M. Tothisendlet UC'NCM,and let 0=x&N. Consider I,=:

{reR:xreU}. As I, is finitely generated, there exists a finite subset F of |

such that xI,C GBF U;:=V. Since @ U; is a local direct summand, we have
i€ jier

Vc®M, hence V is closed in M. Consider now any 0==xr-+|v, where r&R and
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veV. Certainly there exists s& R such that 0= (x7+v) s=u= U. Consequently
we have xrs=u—ovs€U. We conclude O==(xr+2)s€V. This shows that
xR+V’'DV, and hence x€xR+V=VcU. Therefore U=N.

Conversely, let M= .@ M, with all M; uniform, have (1—C,), and let every

local direct summand be a direct summand. Let 4 be a closed submodule of

M. By Zorn’s Lemma, we can find a maximal member @ 4, of the family of
aEK

submodules of A4 of the form @ N, such that all N, are uniform and that @ N,
asL

acsL

is a local direct summand of M. By assumption P 4,C®M, and hence A= D
aEK

aEK

A,DA'. If A’ is not zero, then, by Proposition 6, A’ contains a uniform direct

summand, which contradicts the maximality of @ A,. Therefore A= P

A c ® M aEK oER
. .

Lemma 9. Let M= @ M; with all M; uniform. Then a submodule A of

iel
M is uniform and closed in M if and only if A={>] ¢(b): be BCM,} for some
i€l
kel, where (¢p;: B—>M,);c; are homomorphisms such that ¢,(b)=b for all bEB,
and the ¢; are not simultaneously extendable (i.e. if \r;: B;— M, extends ¢;,, BC B;C
M,, for each i, then B= ﬂI B)).
HS

Proof. Let A be a uniform closed submodule of M. Let 7; be the projec-
tion onto M;;i€ 1. Since A4 is uniform, we have A Nkerz,=0 for some k<1,
and hence 7,4 is a monomorphism. For each i€, we have that 7;(7,,) " is a
well defined homomorphism from 7z,(4) into M;; we denote it by ¢;. Observe
that ¢,(x)=x for all xEx,(4). Itis easy to see that A= { E i(x): xEmy(A)}-

Now let +Jr;: B;—M; extend ¢; for each i€ I, where BC B;CM,. It follows
that AC’{'EI vi(y):yE ﬂI B;} CM. Since A is closed, we obtain 7z,(A)=
n B’._ = H=S

iel

Conversely, let X={ Elfi(b): be BC M.}, where the (f;: B—M,);c; are not

S

simultaneously extendable, and f,(b)=>5 for all b&B. It is clear that X=2B, and
hence X is uniform. To show that X is closed in M, let XC'X*c M. It is
clear that X Nkerz,=0, and thus X* Nkerz,=0. Hence B=7,(X)Cx(X*)C
M, and 7; 7" | 7i(x*) extends f; for each i€l. Then B=7,(X*) and therefore
X=X*,

Lemma 10. Let M= @ M; with all M; uniform and with end(M,) local.
i€l

Suppose that M;DM; has (C)) for all i=jl. Let E(M;)~>E(M,) be given,
i+jel, andlet X=M;Nf'(M;). Then X=DM,,or f| X: X—M; is an isomorphism
(and thus f~Y(M;)C M;).

Proof. Let X*=: {x—f(x); x€X}. By Lemma 4, X* is closed in M;®
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M;. By (C)) and since end(M,) is local for all k, X* has either M; or M; as
complementary summand in M;PM;.

Now if M;pM;=X*PM,, then n(x)=f(x) for all x& X, where n: X*PM;
—M; is the projection. Hence, by Lemma 4, M;=X. On the other hand if
M, EM;=X*PM,;, then f| X: X—M; is an isomorphism, and hence f~(M;)=
XcM,.

Lemma 11. Let M= @ M; with all M; uniform and with end(M;) local.
il
Then M has (1—C,) if and only if M; DM, has (C,) for all ijel.

Proof. Let M;@®M; have (C,) for all i3=j. Let A be a uniform and closed
submodule of M. By Lemma 9, A= {3] ¢;(x): x& XC M,} for some k< I, where
i€l

(¢pi: X—=>M,);e; are homomorphisms with ¢,(x)=x for all x&X, and (¢;);e; are
not simultaneously extendable. Observe that all but a finite number of ¢, are
non-monomorphisms (due to X==0 and ¢;(x)=0 for all but a finite number of
‘indices, for any 0x X).

Let ¢,: E(M,)—E(M;) be extensions of ¢;, icl. Let X;=: {m&M,: $;(m)
€M}, it follows that X= N X;. Then X= ﬂ X; where F={i: X; & M,}.

i€l

By Lemma 10, the ¢; are isomorphisms for all zeF \ and hence F is finite. Again

by Lemma 10 (taking f=d; $7?), it follows that X;(=¢7'(M,)) and X,;(=¢7'(M;))

are comparable for all /&=j&F. Hence {X;};cr forms a finite chain. For the

smallest element X, of this chain, one obtains X=X, and hence A 65 M;=M.
The converse is obvious.

Theorem 12. Let M= @ M; be a module over a right noetherian ring R,
el

where the M; are uniform with local endomorphism rings. Then M is extending
if and only if the decomposition EB M, is locally semi-T-nilpotent and M,PM; is
extending for all i+j<1.

Proof: By Theorem 8 ([3], page 172) and Lemma 11.

Lemma 13. Let M=M, DM, be a module with M; uniform and with
end(M,) local. If M has (C,) and M; cannot be embedded in M; for some i==j, then
M; is M ;~injective.

Proof. Let M have (C,), and let M, not be embeddable in M, Let ¢:
X—M, be an arbitrary homomorphism, XM, Consider X'=: {x—¢p(x):
x€ X}, and let X* be a maximal essential extension of X’ in M. Then X* N M,
=0, and hence 7,| X* is a monomorphism, where 7, is the projection of I}/ onto

M,. By (C)) and since end(];) is local, we have M=X*P M, (if M=X*DM,,

T . . R
then M, = X*>—> M, which contradicts the assumption that M, cannot be embed-
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ded in M,). Therefore z|,, extends ¢, where z: X*@M,—M, is the projection.

Corollary 14. Let M=M,PM, be a module with M; uniform and with
end(M;) local. Let E(M,)=<E(M,). If M has (C,), then M; can be embedded in
M; for some i=j.

Proof. If M, cannot be embedded in M,, then M, is M,-injective, and
hence for any isomorphism ¢&homy(E(M,), E(M,)), ¢|M, is an embedding of
M, into M,.

3. Extending modules over commutative noetherian rings

Lemma 15. Let M, and M, be uniform modules over a commutative noe-
therian R. Let ass(M;)=P;. If P, P;, then homg(E(M;), E(M,))=0.

Proof. By [7], Theorem 3.4.

Lemma 16. Let M=M,PM,, with M; uniform, be a module over a com-
mutative noetherian ring R. Let ass(M;)=P;, where P,%=P,. Then M has (C))
if and only if M; is M-injective, i=j(=1, 2).

Proof. Let M have (C,). If P,¢ P, then homg(E(M,), E(M,)=0 and
hence M, is M, -injective.

Now let P,< P, and let ¢ €homy(E(M,), E(M,)) be arbitrary. By Lemma
4, the submodule B:={x+¢(x): x&X} of M is closed, where X={x&M,:
o(x)eM,}. By (C), M=B@N. Since B~XC M,, it follows that ass(B)=P,
and ass(N)=P,. Since homy(E(N), E(M,))=0, we have z,(N)=0, and hence
N=M,, where =, is the projection of M,@PM, onto M,. Let z: BOM,—M, be
the projection, it follows that z(x)=g¢(x) for all x&X. By Lemma 4, we have
X=M,, and hence ¢(M,)C M, for all p =homg(E(M,), E(M,)). Therefore M,
is M,-injective.

Conversely, let M; be M;-injective. Since every uniform module is quasi-
continuous, it follows by [8] Theorem 12, that M is quasi-continuous hence
has (C)).

Lemma 17. Let M=X@®Y be a module over an arbitrary ring, where Y
is X-injective. Let N be a submodule of M with NN'Y=0. Then there exists a
homomorphism f: X—Y such that NCX*: ={x+f(x):x€X}=X, and that
M=X*]PY.

Proof. Let zy, zy be the projections onto X and Y respectively. Since Y
is X-injective and 7y is a monomorphism on N, there exists f: X—7Y such that
frx(n)=ny(n) for allneN. Let X*=: {x+f(x): x=X}. Tt is clear that X=
X*, and that M=X*PY. Now NCzyx(N)+ny(N)=nx(N)+frx(N)CX*.
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Theorem 18. A module M vver a commutative noetherian ring R is extend-
ing if and only if M= EPBM(P) (unique up to isomorphism) where M(P) has associat-

ed prime P, is extending, and is M(Q)-injective for all P%=Q.
Proof. Let M be extending. By Lemma 2, M= @ M; with all M; uni-

iel
form. Let M(P)=@{M;: ass(M;)=P}. By Lemma 1, we have that M(P) is
extending for all P. By Lemma 15 and since M;@PM; has (C,), we have that
M; is M -injective whenever ass(/M;)=ass(M;). Since R is noetherian, by [2]
Theorem 2.5, it follows that M(F) is M(Q)-injective for all P==Q; furthermore
M(P) isQ% M(Q)-injective.

Uniqueness: Let @M(P)z@N(P). It is clear that N(P)N P§QM(Q)=O.
Since M(P) is 69 M(Q)-injective, by Lemma 17, we have N(P)C M*(P)=M(P).
By the modular law and since M*(P)N GB N(Q) 0, we get N(P)=M*(P)=
M(P) for all P.

Conversely, let M= EBM(P) where M(P) is extending and is M(Q)-injective
for all P4=Qeass(M).

First we show that M has (1—C;). Let N be a uniform and closed sub-
module of M. Let ass(N)=P; it is clear that NN ?P M(Q)=0. By Lemma 17,

Q

there exists a submodule M*(P) of M such that NC M*(P)=M(P) and M=
M*(P)@Q%M(Q). By (C,) for M*(P), we have NCO®M*(P)C®M.

Secondly we show that every direct sum of uniform submodules, which is a
local direct summand, is a direct summand. Let U=@U; with all U; uniform
J

be a local direct summand of M. Let U(P)=: @{U;:ass(U;)=P}. Then
UP)N %M(Q)zo, and hence by Lemma 17, U(P)C M*(P)={x+fp(x): x&
)

M(P)} =< M(P) for each P, where fp: M(P)_)Q%» M(Q). By (C,) for M*(P) and

since U(P) is a local direct summand of M*(P), by Theorem 8, we have U(P)C
®M*(P) for all P. We show that 2 M*(P) is direct. Suppose xF+xF+ -+

xf=0 with OzFaF=ux;+fp,(x; )EM*(P) x;€M(P;). Let P; be a minimal
member of {P;}7.,. It follows that —x;=fp, (x;)+ § (e 4-fp, () EM(P;) N Sg
i%j Q%P

M(Q)=0 hence x¥=0, which is a contradiction. Therefore U=@PU(P)C®P
M*(P)C M. g g
We claim that M= ?M *(P). Let P=ass(M), and define inductively P,=

ﬁU Lg, and _L, the set of maximal members of P\P,, for all ordinals @. Then
<o
Ppii=P, UL, and P,= U P, for limit ordinals A. By transfinite induction

we show @ M(P)c & M *(P). 'The case of a limit ordinal is obvious. For
PEQ"‘, PeP,
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a non-limit ordinal a+-1, if Q€ _L,=2P,,\P, and x& M(Q), then fQ(x)e EB
M(P)C EB M*(P), and therefore x=uxfo(x)—fo(x) =M *(Q)@ 63 M *(P)C

D M *(P)
PePyyy
Now let 4 be a non-zero closed submodule of M. By Zorn’s Lemma, we

can find a maximal submodule @ A4, of 4 with the property that EB A, 1is a

aEK
local direct summand in M and that 4, are uniform. By the second part of the

proof, EB A,c®M hence A= P A,PA’. If A’'=+0, then, by Proposition 6, and

aER
since M has (1—C,), A’ contains a uniform summand U of A’. By Proposition
3, ® 4,8 U is a local direct summand in M, which contradicts the maximality
asK

of ® A,. Therefore A= P A,C®M.

avEK aER

ReMaRks. 1) In order to test the relative injectivity between M(P) and
M(Q), in Theorem 18, it suffices to check that M(P) is M(Q)-injective whenever
P& Q. The latter can be done by checking that M; is M;-injective for the
uniform direct summands of M(P)=@M,; and M(Q)=@M; (cf. Lemma 15 and
[2], Theorem 2.5).

2) If M(P) is uniform for all P, then, by [8], Theorem 12, GBM(P) is
extending if and only if it is quasi-continuous.

3) In contrast to quasi-continuous modules, if a module M= @ M;, with
iel

all M; uniform, is extending, then the decomposition € M; need not be unique
iel

up to isomorphism. For example, let R=Z[p], p=+/—5. For any two ideals
I and J of R with I4-J=R one can show that /@ J=R®PIN J (see [1] Exercise 4).
Now let [=:<3,24p> and J=:<3,2—p>. I and J are not principal, but
INJ=3R=R. Hence RPR=IP]J. As R is Dedekind, RPR is extending, by
[6]. (This can also be verified directly).

4. Direct sums of uniform modules with local endomorphism
rings and with the same associated prime, over commutative
noetherian rings

Lemma 19 [7]. Let R be a commutative noetherian ring, and E=E(R|P)
be an indecomposable injective R-module. Then E is an Rp-as well as an R,-
module, where R, is the completion of Rp. Furthermore ﬁpzendR(E).

In the situation of Corollary 14 and Lemma 19, we introduce now some
notations: We can assume, without loss of generality, that M,C M,C E(R/P),
where P is the associated prime of M;, and that endy(E)=R,

If it happens that M;PR,C M,(i=j=1, 2), then we write A={xERp: xM,C
M,} /PR, and B={x&Rp: xM,C M} /PR, and S={x&Rp:xM;CM;}|PR,.
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In this case 4 and B are S-submodules of R,/PR,=: K (the quotient field of
R/P).

For any S-submodule L of K, we denote {x&K:xLcL} by O(L) and
{xeK:xLc S} by (S:L). O(L) is an overring of S and (S:L) is an S-
submodule of K. If L==0, then O(L)=<endg(L).

Theorem 20. Let M=M,PM, with end(M;) local, be a module over a
commutative noetherian ring R. Let M,CM,CE(R/P). Then the following are
equivalent:

1) M is an extending module,
2) M,PR,cM,, O(A)=0(B)=: O is a valuation ring with maximal ideal WC

AB. If A=B=W, then O is discrete. [The condition WC AB means AB=

W or AB=0; the latter holds precisely if M,=M,.]

Proof. 1)=>2): By Lemma 10, MZPszlllszPCMI and xM,, M, are
comparable for all xEkP/PIép, and hence x4 or x'& B for all xe]@P/P p=
R;/PR,=K.

If B=0O, then A=K and 2) follows. Now assume B+0. We show that
O(A4) and O(B) are valuations rings. Let yeK, yeA4; then y~'&B and hence
y'ACS (due to ABCS); hence ACyS. This shows that A is comparable
with all S-submodules of K, and thus O(4) is a valuation ring. Similarly we
can show that O(B) is a valuation ring. We prove the rest of condition 2) in
all the different cases which can occur.

Case 1. AB=S. Since AB is an ideal of O(4) and O(B), it follows that
O(4)=S=O0(B). Since A, B are invertible, as fractional ideals of the valuation
ring S, they are principal. Hence if A=B=W, then S is discrete.

Case 2. AB&SS. Claim: AS(S: B) if and only if B is principal. If x&
(S: B)\4, then x"*B and hence B=x"'S. Conversely, if B is principal, then
B(S: B)=.S, and hence A% (S: B). (Similarly we can show BS(S: 4) if and
only if 4 is principal).

Subcase 2a. A or B is principal as S-module. Let B be principal. Then
O(B)=S is a valuation ring. By the claim, A& (S: B). It is clear that (S: B)=
S for any ye(S: B)\4, and hence (S: B)/4 is a simple S-module. Since 4B
C W and B is principal, we have ACW(S: B)<(S: B). Therefore A=W(S: B)
and thus AB=W.

To verify condition 2) in this subcase, it remains to show that O(4)C O(B)
(since O(B)=ScO(A)). If A is also principal, then O(4)=S=O0(B). On the
other hand if 4 is not principal as S-module, then B=(S: 4). Now let x&0O(4)
be arbitrary. We have xbACbACS for all b&B. Hence xBC(S: A)=B,
ie. x€O(B). Therefore O(4)c O(B).

A similar argument works if 4 is principal as S-module.

Subcase 2b. A and B are not principal as S-modules. Then A=(S: B) and
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B=(S: 4). By the same argument as in Subcase 2a, we can show that O(4)=
O(B)=":0. Now let W be the maximal ideal of O, and let x& W be arbitrary.
Since x~'€= C, it follows that B&x™'B. Hence x™'beE B=(S: A4) for some b B.
Thus SCx7'bA4 and hence x€xSCbACAB. Therefore WCAB. It is clear
that ABC W, and hence AB=W.

Now if A=B=W, then yA=W for some 0=y K. Since W=A4BCS,
we have ye(S: A)=B, ie. yOCB. On the other hand A=y 'W=y"'4B,
and hence y"'BCO(4)=0. Therefore B=y0 and thus O is discrete.
2)=>1) We first show that g4 or ¢’ B for all g K.

Case 1. AB=S. Then S=O is a valuation ring, and hence A=(S: B).
1t follows that g= A4 or g7’ B for all ge K.

Case 2. ABSS and A4 or B is principal as S-module. If, for instance, B
is principal, we have that S=O is a valuation ring and AB=W is the maximal
ideal of S. Hence W(S: B)=4 is the unique maximal S-submodule of (S: B).
It follows that (S: B)/4 is a simple S-module. Now if ge£ 4 and g (S: B), then
A%q¢Sc(S: B). Thus (S: B)=¢S, and hence ¢"'€B. On the other hand it
is clear that ¢g&(S: B) implies ¢~'€B.

Case 3. AB&SS and both 4 and B are not principal as S-module. We
show that 4 is comparable with all S-submodules of K. Let g 4; then 4 &¢Q.
It follows that g7’ ACW=ABCS and hence ACgqS. Similarly we can show
that B is comparable with all S-submodule of K.

Claim: If A<(S:B), then A=W==B and O is not discrete. Let x&
(S: B)\4, we have xB< S, and hence xBCW. On the other hand A&«xS,
therefore W=ABcCxB. Then W=xB. Certainly x'&(S: A)\B. By the
same argument we can show that x™' A=T.

Now if O is discrete, then B is a principal O-module, and hence xB=W=
AB yields xexOC A, which contradicts the choice of x.

By the claim and condition 2), we have A=(S:B). Therefore g4 or
¢g~'eB for all g K.

These three cases together show that g4 or g7’ B for all g K. Now let
N be a closed uniform submodule of M. Without loss of generality assume that
N={y+0(y): ye YC M} where 8: Y—DM, is a non-extendable homomorphism.
If Y=M,, then M=N@M,. On the other hand if Y& M, then, by Lemma 4
and since P]:’PMI———PRPMICMZ, we obtain éekP\PRP, where 8 is an extension
of 4 to end(E(M,-)):I?P. Hence §=4 or 6-'eB,d=K. Then 9M1CM2 or
éMl:)Mz. Again by Lemma 4 and since Y &M, we have MzcéMl. There-
fore Y=0-Y(M,) N M,=0-Y(M,). Hence §(Y)=06(Y)=DM,, and thus M=NBM,.

Corollary 21. Let M=N@N with end(N) local and with N CE(R/P).
Then M is extending if and only if NPR,CN and S=: {x&ERp: xNC N} /PR,
s a valuation ring.
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Theorem 22. Let M be a direct sum of uniform R-submodules with local
endomorphism rings, and with the same associated prime P, where R is a commuta-
tive noetherian ring. Then the following are equivalent :

1) M is extending,

2) M= é M where the M; are pairwise non-isomorphic, and i) PR, M,C M, C
i=1
M,c--cM,CE(R|P), i) M, is quasi-injective whenever a is infinite, and iii) each
pair in D M is extending [(c.f. Theorem 20), it suffices to check ii1) if both sum-
i=1

mands of the pair are not quasi-injective).

Proof. 1)=2): Let M= @ M, be extending, where the M; are uniform.
i€l
Partition the index set / into /= U I;, where M,==Mp if and only if &, @ belong
ieF
to the same I;. Hence M= @ M(I,) (M(I;)= & M,). We claim that F is finite.
= acl,

Suppose F is infinite. For each ieF pic1'< a representative M;C E(R/P)
from M(I;) and consider G% M;. Since @ M; is extending, by Theorem 12,
i€ ieF

we have that {M;};c, is locally semi-T-nilpotent. Therefore, starting from
any M, (aEF) there exists a finite sequence of monomorphisms M, >—>M, >—>
M,,--->—>M,, such that all indices e, are distinct (¢=ea,) and that }/,, cannot
be embedded into any M;, for je F¥=: F\{a, a;, &, ***, a;}. By Lemma 13,
M,, is M;-injective, and hence M,, DRpM;. Write 8;=a;.

Iterating this procedure we obtain a descending sequence of infinite subsets
F® of F and of indices 8,& F® V\F® such that Mg DR, Mg, D Mg, D-Rp My,
DMg,DRpMy, DMy, DRy Mg ,D-+. Since E(R/P) is an artinian Rp-
module, we have Rp,Mpg =RpMg_ for some n and for all m>n. Therefore
Mg, =My for 21l m>n, which contradicts the choice of Mp,, and establishes our
claim.

Now, using Corollary 14 and Theorem 20, we obtain (up to isomorphism)

M= é M¢?, where a;=|I;| and PR, M,C M,C---CM,CE(R/P). It remains
i=1

to show that M; is quasi-injective whenever «; is infinite. In this case, by (C))

for M;PM; and by Corollary 21, we have that PR, M;C M, and S;=: {xERp:
xM;C M} /PR, is a valuation ring. Now let xR, be arbitrary. If xM;d M;,

-1 -1
then x&R,\PR, and M;SxM;. Therefore M,->x—>M,->—->M,~>——>-~, which
contradicts the locally semi-T-nilpotency of M{*’. Thus R,M;CM,, i.e., M; is
an Rp-module and hence quasi-injective.

2)=1) Let M= @ M with PR,M,CcM,C--CM,CER/P). It is

clear that PR, M;C M; for 2ll 4,5 (=1, 2, .-, n). By Theorem 20, it is easy to
see that M;@M; is automatically extending, whenever one of M; or M; is quasi-
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injective. Hence once (iii) holds whenever neither M; nor M; are quasi-injective,
then every pair in @ M{*? is extending.
i=1
To show that M is extending, by Theorem 12, it suffices to verify that M{*’

is locally-semi-T-nilpotent whenever «; is infinite. Since, by assumption, M; is
quasi-injective, we have that every monomorphism from M; to M; is an iso-

morphism. Now let _M,ﬁ_M,ﬁM,ﬁﬁM,é be a sequence of non-

monomorphisms. It follows that ﬁiEPléP where #£; is an extension of x; to

end(E (]W,-))zﬁp(jzl, 2,--+). Let ye M, be arbitrary. It follows that P"y=0
R

for some 7, and hence o=2;---£,(y)=x,+--x,(y). Therefore M{"? is indeed local-
ly semi-T-nilpotent.

Any torsion module over a Dedekind domain R can be writetn as M=

P
M(P), where P runs over all non-zero prime ideals of R and M(P) is the P-
primary component of M. Moreover any uniform torsion R-module is iso-
morphic to either E(R/P) or R/P" for some prime P, and hence has a local
endomorphism ring. Thus, as an immediate consequence of Theorems 18, 20
and 21, we retrieve the characterization of extending torsion modules over
Dedekind domains obtained by Harada ([4], Theorem 7 (1)):

Corollary 23. Let M be a torsion module over a Dedekind domain R. Then
M is extending if and only if for each non-zero prime ideal P of R, either M(P)
is injective, or M(P) is a direct sum of copies of R/P" or R|P*** for some n=n(P).
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