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1. Introduction

A module is extending (or has the property (C))) if every complement
submodule is a direct summand. We prove that a module over a commuta-
tive domain has this property, if and only if it is either torsion with (C;), or
the direct sum of a torsion free reduced module with (C}) and an arbitrary in-
jective module. The torsion case is dealt with in [6], where we also give some
background and references. Here we show that a torsion free reduced module
is extending if and only if it is a finite direct sum of uniform submodules, each
pair of which is extending. As an application we obtain a description of all
extending modules over Dedekind domains. In a subsequent paper [7] we
shall discuss the extending property for direct sums of pairs of uniform modules
in general.

Throughout this paper R will be a commutative domain with quotient field
K. Xc’M and YC®M denote that X is an essential submodule, and Y is a
direct summand, of M.

A submodule N of a module M has no proper essential extension in M, if
and only if there is another submodule N’ such that /N is maximal with respect
to NNN'=0. Such submodules N are called closed, or complements.

2. Reduction to Torsionfree Reduced Modules

Theorem 1. Let M be a right module over an arkitrary ring R, and let
Z(M) denote its second singular submodule. Then M is extending if and only if
M=Z,(M)®N, where Z,(M) and N are extending and Z,(M) is N-injective.

Proof. Since Z,(M) is closed in M, by (C,), we have M=Z,(M)@N, where
N is non-singular. Since (C)) is inherited by direct summands, Z,(M) and N
have (C)).

To show that Z,(M) is N-injective, let ¢: X—Z,(M) be a homomorphism
from a submodule X of N. Consider X':={x—¢(x): x&X}. By (C)), there
exists X'C'X*C®M. Write M=X*@®Y. Since X'NZ,(M)=0 and since
X'C’X*, it follows that X* is non-singular and that Z,(M)=Z,Y). Hence, by
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(G)) for Y, Z,(M)C®Y, say Y=Y'@PZ,(M). Letz: X*PY ' DZ,(M)—Z,(M)
be the projection. It is easy to see that z| N extends ¢.

Conversely, let M=Z,(M)®N, where Z,(M) and N have (C)), and Z,(M) is
N-injective. Let 4 be a closed submodule of M. By a straightforward calcu-
lation one can show that Z,(4) has no proper essential extensions in Z,(M). By
() for Z,(M), we have Z,(A)C®Z,(M), and hence Z,(4)C®A. Write A=
Z,(A)®B, where B is a non-singular submodule of 4. Since BN Z,(M)=0 and
Z,(M) is N-injective, there exists a homomorphism +r: N—>Z,(M) such that
7y p=1y) 5, Where zy, 7, are the projections of M onto Z,(M) and N respectively.
Consider N*:={n++(n): n&N}. If follows that B is contained in N*, and
hence B is closed in N*. Since N*=N has (C)), we have BC®N*, It is clear
that M=_Z,(M)@N*; therefore AC®M.

Corollary 2. Let R be a commutative integral domain, and let M be an R-
module which is not torsion. Then M is extending, if and only if its torsion sub-
module t(M) is injective and the factor module M/[t(M) is extending.

Proposition 3. Let M be a torsion free R-module, and let D(M) be its largest
divisible (injective) submodule. Then M has (C,) if and only if M|D(M) has (C).

Proof. Let M have (C,), and write M=D(M)@C, where C is reduced.
Hence M/D(M)==C has (C)).

Conversely, let C=M/D(M) have (C,). Let A be a closed submodule of
M. Let D(A) be the largest injective submodule of 4, and write A=D(A4)HB
with B reduced. It is clear that BN D(M)=0.

Now let 7z, =’ be the projections of M onto C and D(M) respectively.
There exists a homomorphism ¢: C—D(M) such that ¢z(b)=='(d) for all b= B.
Let C*:={¢(c)+c: ceC}. Then C*=C has (C,), and M=C*PD(M). Since
B is closed in C*, we have BC®C*. Since D(A)C®D(M), we conclude AC®M.

3. Decomposition into Uniform Submodules
Lemma 4. Let M= @ M;, with all M; being R-submodules of the quotient
il
field K of R. Then A is a closed submodule of M if and only if A=[ @ a;K]N M,
jieT

for some K-linearly independent subset {a;};c; of ® K. In particular A is a uniform
I

and closed submodule of M if and only if A={(¢;x)ie;: xEK, g;xE M, for all i} for
some 0=E(q;);er € EPK'

Theorem 5. Let M be a torsion free reduced module over a commutative
integral domain R. If M is extending, then M is a finite direct sum of uniform
submodules.

Proof. By (C)), if M=0, then M=M DU, with M, uniform. Again by
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(G for U,, if U,=+0, we have U,=M,@P U, with M, uniform, and hence M=M
@M, pU,. Continuing in this manner we get M= éMi@ U, as long as U,

is non-zero. If M is finite dimensional, then U,=0 for some z» and M= & M;,
. i=0
as claimed.

If M is infinite dimensional, we shall derive a contradiction. In this case U,
is infinite dimensional for all #, and hence M> éé M;. We first show that é.é M;
is closed in M (and hence is a direct summanci_of M). Let ’ééo M,c'M *EM ;
then M*= ,@1 M;®(U,NM¥*). By a straightforward calculation one can show
that U, N M* is essential over é M;. Since, in the case of torsion free modules,
injective hulls are unique, an(i—c’i;;ect sums of injective modules are injective, we
have E(M*)= é%)E(M,) Now let 7;: 'EEOE(M,)-»E(M,) be the projections. For
each n=0 we have =,(M*)=M,+=,(U,NM*). Sinceiz?”M,- c'U,NM*, it
follows that 7z,(U, N M*)=0, and hence M*=i§% M,.

Since the quotient field K of R is divisible hence injective, we have E(M;)=<
K for all {. Since M;Dy;R=R for 0%y,&M;, without loss of generality, we

may assume RC M;CK for all 7, and therefore GBRCM = GB M;C GBK

Now let 0=7<R be an arbitrary element. Let a,:=¢, —e r (n> 1), where
€,==(04)7=0 E iEEK. It is easy to see that {a,} ., is a linearly independent subset
of GBK By Lemma 4, 4:= éBa,, KN M is a closed submodule of M. By (),
M= —AGBB Let f be the restriction to M of the homomorphism: EBK 2(k)7-0
— .20 i ~eK. Tt follows that ker f=24, hence f embeds B into K. Slnc\. e,&EA,

B is non zero and thus uniform. As B is a direct summand and hence closed in

M, B=bKNM for some 0b=(b,)7.0E GBK by Lemma 4. Since e, &M for

all m>0, we have e, = E a,k,,+bk,— 2 (e,—eu") Rym+ 2 e;b; k,. where k,,,
k,=K and E a k,,,,,EA bk, € B. Comparmg components, and using the ab-
breviation D 2 =t we deduce Dk, *"=1 for all m>0. Since b, k,, &M, for all

i=o 7
i, m, we obtain, for m=:i-1, that b——b ki, eM;. 1t follows that l——————z
Drit r rDi=o
b S 2 M;. Since 0=r was arbitrary in R, we get K= E M,.
7 i=0 - - i=0
Now let g: @ M;=(m,)7=o— > m;=K. It is easy to see that ker g is closed
i=0 i=0

in M. Thus, by (C)), M=ker gX. Therefore K=~XC M, which contradicts
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the fact that M is reduced.

4. Reduction to Pairs

Proposition 6. A torsion free reduced module, over a commutative domain
R, has (C,) tf and only if it has (1—C,) and is finite dimensional.

Proof. Let M have (C)). By Theorem 5, M is finite dimensional. Obvi-
ously M has (1—C,). We show the converse by induction over the dimension
of M. Assume that it holds true for dimension <7, and let M be a module with

(1—C)) of dimension #. Then M= @ M; with all M; uniform. Let 4 be a
closed submodule of M with 1<d1m(A)<n It follows that AN GBM +0 is
closed in 69 M,. By induction EB M;=AnN 69 M;pX, where d1m(X)<n —2.
Then M—Aﬂ @ MGBXGBM,,, and hence A [4An 69 M1P[AN (XD M,)].

Since AN(X GBM,,) is closed in XM, again by 1nduct1on AN(XPpM,cCeXD
M,, and therefore AC®M.

From now on we consider each torsion free uniform module over a com-
mutative integral domain R as an R-submodule of K (the quotient field of R)
containing R.

Let M;(i=1, 2, -+-,n) be R-submodules of K. By O(M;) we mean the set
of all x&K such that xM;CM;. If M;=0, then O(M;) is an over ring of R
isomorphic to endg(M;).

Theorem 7. Let M be a torsion free reduced R-module. Then the follow-
ing are equivalent :
1) M is extending
2) M= é M, with all M; uniform, and for all q,, q,, -++, g, K (not all zero) there

exist oy, O, *++, a, €K such that 2”} =1 and a,q; M,Cq,M; for all k, 1.
k=1
Proof. (1)=>(2): Let M have (C,). Then by Theorem 5, M= & M,
i=1

with all M; uniform. Now let ¢,, ¢,, ***, ¢, be arbitrary in K, not all zero. Then,
by Lemma 4, A:={(g;x)?..: x€ K and ¢;x< M; for all ¢} is a uniform and closed
submodule of M. By (C)), M=A®B where B is an (n—1)-dimensional sub-

module with (C}). Hence B= ”G-BlBj where B; are uniform. By Lemma 4,
j=1

B;={(t;jx;)i-1: x;€K and t;;x,€M,; (i=1,2, -+, n)} for some ;&K not all
zero.

Now A@B=M implies that for each c& M, the system of equations 2 t;x;
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+¢;x2,=c 8;,(z=1, 2, ---, n) has a unique solution, with ¢;;x;&M, and g;x,€M,.
Therefore the determinant A of the system is non-zero. Then by Cramer’s Rule,

(—1)"** A,, : . ,
xn=__T__ ¢, where A,, is the (k,7) minor of A. If we write a,=
(—1)¥*g, Ay,/A, we have :V_,‘ a,=1. Moreover since ¢; x, € M;, we obtain a,g;c=

k=1

09 %, €q, M, thus o, q; M, Cq, M,.

2)=>1): The proof will be by induction on 7. Assume that EBL M; is

extending for all proper subsets L of {1, 2, ---, n}. By Proposition 6, it is enough
to show that each uniform closed submodule A of M is a direct summand.
By Lemma 4, A={(g;x)}-1: x€ K and ¢;x& M, for all 7}.

Let F:={i: q;=£0}. If |F|<n, then AC @Mi and hence, by induction,

AC® D M;c®M. If | F|=n,then by condition 2), there exist a;, @y, ***, A, €K
ieF

such i‘, a;=1and a;qi' M;Cq;7' M;. Let A;;:=a;q7"; then Zn} g;A,=1. Itis

i=1
clear that not all A, are zero.
Aj

Without loss of generality assume that A;,=0.
A

Let B: ={A,;, y,-+ 23 A Vis AnYa Vo 0 ¥a): ¥;€EK and A, y,+ 23 AilyjeMl,
= 11 =
Ay, €M, and y,e M;(:>3)}. We have: "
9 —Ay —Ay/Ay —Au/Ay
q; Ay 0 0
0 1 0 "
9, — S An= 1
qn 0 0 0 1

Then, for each k, the following system of equations has a unique solution, for
all m,-EM i

Gx—BpY— —(Au/Ay) Yo = Sum,

Gx+ApY,+0+4- 0 = Oy,
¢35+ 0-+y5+0+4--- 0 = Oy
qnx+0+ +O+yn == Sknmn

Let {xs, Vo, ***» Y} be the solution set of the ™ system. Since, by Cramer’s
Rule, x,=Am=qi'a,m,sq:' M;, we have ¢;x,&M; for all k,i. It follows

that A21y2k+ é (Aﬂ/Au) yjkEMl, AllkaEMZ and y,kEM,(iZ?)) fOI‘ all k. Then
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M=A-+B. Since the above determinant is non zero, we have that each meM
has a unique representation m=a-+b with ac 4, b B. Therefore M=ADB.

Corollary 8. If b M; is extending and reduced, then each M; can be em-
i=1
bedded into every M.

Proof. Each pair M;@M;(i=j) is extending and reduced. Therefore, by
Theorem 7, for each 0=g& K, there exists @,, @, K such that o, gM, C M, and
a,M,CqM,. If M, is not embedded into M,, then we obtain a;,=0, hence a,=
1, for every 0#=q= K. Then M,=XK, in contradiction to reduceness.

Lemma 9. Let M;(i=1, 2, 3) be R-submodvles of K. If M;®M; has (C,)
for all i==j, then M,Bq, M, N q, M, has (C,) for all ¢,, =K.

Prooi. Without loss of generality assume ¢,%0, ¢,==0. Let 0k K be
given arbitrarily. Since M,@M, has (C,), by Theorem 7, there exist a,, o€
O(M,) N O(M,) with a,+a,=1 such that a,q, M,Cq, M, and a, g, M,Cq, M,.

Similarly, since M@ M; has (C)), there exist a3, ay; € O(M;) N O(M;) with
a3+ a;=1 such that agkM,C q; M; and a;3q; M; CkM, (=1, 2).

Now let v,=apay+a,as and v,=a,c+ay . It follows that o4,
=1.

We show that v, v,& O(M;) N O(q, My N g, My): 3=ty 3 (Qlps+ Otap) + Oy Olzs
(Qustag)=(0tio+ 0tyy) Qtys Qg gy iy g+l Ol Oy =y Qs+ Oy O3 gy Oy Al Oy

V2 M2 C 0ty3 0ty M+ atyy Oty 0t Mg+ 0ty Oy 05 M3 C My+(1— 0tyy) gz 0t M+ (1—
Q1z) Oty Oy My C Mg+ 0ty, 013 gy Mg+t 0ty 003 My C M+ atyzaty (R g M)+t g
(k™' q My) C Mys+onys R gy M+ aps k™ g, M, C M,

V(@1 My N g, My) C oty 0031(qy M) + 0ty (9 M) € g My N g, M. Since o, +7,=
1, we have v,, v, O(M;) N O(q, M,N g,M,). We show that v, kM,Cq, M; N q,M,
and 7,(q; M, N, M,) ChM;: o, kM C oty 03 (M) + 0ty 05, (RM) C 01, (q, M)+t
(M) g M N g M,.

V(@ M NG M) C e os(91 My N g M,y) + iy a3 (§ My N g, M) C ays( M N
9 M)+ s (91 My N g, M) CR M.

Therefore, by Theorem 7, M,Pq, M, N ¢, M, has (C,).

Corollary 10. Let M,(i=1, 2, -+, n) be R-submodules of K. If M;®M; has
(C)) for all i, then M, n ; M; has (C) for all ¢, gy, -+, gyy K.
Proof. We proceed by induction over n. Since M,H "r:]: M, M,Bq, M,
=M, e&M,_,, n{jz M Dq,_ M, _ = ﬁzq; M,®M,_, all he:x;e (Cy), by assumption
of induction, I':elmma 9 implies that .}1_41,69 ﬁz aM;Ngq,-,M,_, has (C).

Theorem 11. Let M be a torsion free reduced R-module. Then M is ex-
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tending if and only if M= b M;, where the M; are uniform and M;DM; is ex-
tending for all i=Fj. =

Proof. Let M= é M; with M; uniform and with M;@M; extending. By
induction on 7, let gEBL ]‘l/:f,- be extending for all proper subsets L of {1, 2, ---, n}.
Let A be a closed and uniform submodule of @ M;. By Lemma 4, A={(¢;x)i-1;
xeK, g;xe M, foralli}. LetF: ={i: q,.=l=(');. By induction 4 C® .EBFM,C‘BM,
if |F|<n. Now let |F|=mn; it follows that A={(¢;x)?..: xE ﬁlq,-fM,-}. Let
M — :q—all]ll,- be the projection. By Lemma 4, B: ={(q,x, ;;;c, sty uar X, 0):

xe "r_]lqg‘lM,-} is a closed uniform submodule of ’HM,- containing z(4). By in-
i=1 i=1

duction, BC#® 'é—al M;, and hence M,PBC®M. Since B= ”r_]l q:' M;, we have,
i=1 i=1

by Corollary 10, that M,PB is extending. As A is closed in M,HB, AC®M,
@BC®M. Therefore M is extending, by Proposition 6.

5. Dedekind Domains

Lemma 12. Let M=M,PM, be a torsionfree reduced module over a
Dedekind domain R, where the M; are uniform. Then the following are equivalent :
1) M is extending,

2) M, can be imbedded M (i=j),
3) there is a fractional ideal I of R such that M,I—=M,.

Proof. 1)=2) clear by Corollary 8.
2)=>3): Without loss of generality assume that RCM,CcM,CK. Let B:=
{xeK: M,xcM,} and S=0O(M,)NO(M,). By assumption B is a non-zero
ideal of S. Now if M,B&M,, then (M,B),S M, for some prime ideal P of S.
Since Sp is discrete rank one valuation 1ing, it follows that (M,B),C M, Pp=
(M,P)p. For each prime ideal Q of S, Q=P, we have (M, B)qC M,q=(M P),.
Hence M,B=N(M,B)eC Q(MIP)Q=MIP, where Q runs over all prime ideals

of S. It follows that M,BP'CM,, i.e.,, BP~'=B which is a contradiction.
Therefore M,B=M,. Since any overring of R is a localization Ry of R a set of
prime ideals of R, we have S=Ry. It follows that B=1I, for some ideal I of R.
Now M,B=M, I =M,IR,=M,I1S=M,I, and hence M,I=M,.
3)=1): First we show that JN R+ J'NR=R for any fractional ideal J or R.
If Jp, J7' S R, for some prime ideal P of R, then Ry=],J7'C J»S R, which is a
contradiction. It follows that J,NRp=R; or J3' N Rp=Rj, and hence (JNR),
+(J'NR)p=Rp, for all prime ideals P of R. Therefore JNR+J'NR=R.
Now let M;=M,I where I is a fractional ideal of R. Let 0f=g=K be ar-
bitrary, and J:=¢ /7. Since JNR+J 'NR=R, there exist ¢,EJNR, a,E
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J'NR such that @;+a,=1, and that a,qM,C M,, o, M,CqM,. Therefore, by
Theorem 7, M is extending.

Corollary 13. If R is a principal ideal domain and M,, M, are uniform
torsion free reduced R-modules, then M,@DM, is extending if and only if M, is
isomorphic to M,.

Proof. R isa Dedekind domain, and every fractional ideal of R is principal.

The following is an immediate consequence of Corollary 2, Proposition 3,
Theorem 5, and Lemma 12.

Theorem 14. Let M be a module over a Dedekind domain R. Then M is
extending if and only if either:
1) M is torsion and has the structure described in ([6], Corollary 23); or
1) M is non-torsion and M=FQE, where E is injective and F= é NI;, where

N is a proper R-submodule of the quotient field K and the I, are fractional
ideals of R.
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