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Let W be the symmetric group on the set of n letters {1, 2, •••, w},
Si (1 ̂ i^n— 1) the transposition (i, ί+1) in ίF, and *5>= -fo, $2, •••, ̂ .J. Then
every element w of Wean be expressed as w=silsi2 sil (l^iΛ^n— 1). We
denote the minimal length of such an expression by l(w)y i.e., l(w)=min{/}.
Let K=C(q) be the field of rational functions in one variable q over the
complex number field C. The Hecke algebra H=H(q) of W is defined as
follows: H has a basis {/*(«>)} a,̂  which is parametrized by the elements of W.
The multiplication is characterized by the rules

(A(f)+l)(AW-ί) = 0, if

h(w)h(wr) = h(ww'), if

Notice that H is a j-analogue of the group algebra CW of W in the sense that
when q is specialized to 1, H is specialized to CW. It should also be men-
tioned that the Hecke algebra can be defined for a general Coxeter system
(W, S) (see [2; Chap. 4, §2, Ex. 23]).

As is well-known, a complete set of mutually orthogonal primitive idempo-
tents of CW is constructed by A. Young (see, for example, [6], [9]). Our main
theorems are (3.10) and (4.5). In these theorems, we give a complete family of
mutually orthogonal primitive idempotents of H, which is specialized to the one
constructed by Young, when q is specialized to 1.

The present work was motivated by a question posed by Dr. M. Jimbo in
connection with his investigation [7] of the Yang-Baxter equation in mathemati-
cal physics. The author would like to express his thanks to Dr. M. Jimbo.

1. Let (W, S) be a Coxeter system, w an element of W and w=sls2 ••• sn

(Si^S) a reduced decomposition of w. See [2; Chap. IV] for the fundamental
concepts concerning Coxeter systems. It is known and easily proved by using
[2; Chap. IV, n° 1.5, Lemma 4] that the set
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of Education, Science and Culture.



842 A. GYOJA

is uniquely determined by w and does not depend on the choice of a reduced
decomposition of w. If an element x of W is contained in this set, we write
x<^w. The partial order defined in this way is called the Bruhat order.

Assume, from now on, that W is finite. It is known that every representa-

tion of the Hecke algebra H=H(q) can be afforded by a PF-graph [5]. The
precise definition of a J/P-graph is irrelevant here. What we need is that, for

every finite dimensional representation ρq of H, by an appropriate choice of

a basis of the representation space, the elements h(w)(w^W) are represented by

matrices over C[q]. Hence we can obtain a representation ρ± of W by the
specialization q->l. This fact is used, for example, in the following way.

Let X^trace pqy X^trace p1 and %9— Σ m^.q the irreducible decomposi-
tion of %q. By [3], we have

where ditq is the generic degree of %/>9 [1 Definition (2.4)] which is known
to be a polynomial in q, and ditl=(ditq)q^ly which is equal to the degree (i.e.,

the dimension of the representation space) of the representation affording %ί)(Γ

By the specialization q-*ly we get

Σ X1(^)%1(^-1)/card W = Σ nfi
«>eW i

Hence ρq is irreducible if and only if ρλ is irreducible.
We will use this kind of * 'specialization argument' ' very often without

mentioning the details.
From now on, we assume that W is the n-ih symmetric group acting on

{1, 2, •••, n} and S={slys2y •••, s«_i}, where Si=(i, i+l). See [6] for the funda-
mental concepts concerning symmetric groups.

For each partition λ of n, we can define two standard tableaux T+=T+(\)

and Γ_=Γ_(λ), e.g., if λ=(5 42 1),

τ
+
(\) =
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We omit the exact definition of Γ±(λ). Let 7+=/+(λ) (resp. 7_=/_(λ)) be the
set of Si's which preserve each row (resp. column) of T+(λ) (resp. Γ_(λ)) as a set.
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For example, if λ=(5 42 1), then

•* + == V l> ^2> ^3> ^4> •%> ^7> ^8) ^10) ^11> $12)

and

•*- == VI) ^2> ^3) ^5) ^6> ^8) ^9> -^11) ^12J

Let PF+^PFi^) be the parabolic subgroups of W generated by /+, and

H±=*Σw<=w± Kh(w). Then H are subalgebras of H±. Let

(1.1) *+ = *+(λ) = Σ.OF+ Λ(«0

and

(1.2)

Since, for each

we have

h(s)e+ = qe+ .

Hence

h(w)e+ = ql™e+ (w e PF+)

In the same way, we can show that

h(w)e+ = e+h(w) = qlwe+

and

h(w)e. = e-h(w)=(-l)l™e,

From these equalities, we get

4 = P±e± ,

where

The left //"-modules ίί?± are isomorphic to the induced representations H®ε+,
where G± are the one-dimensional j£f±-modules denfied by ±

and

h(w)v = (— iy™v
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By the classical result of A. Young and by the specialization argument, we have

dim^ HomH(He+, He+) = 1 .

Take (non-zero) intertwining operators

He+, He±) .

The images of f± do not depend on the choice of /±. Thus we have the

following result.

Proposition 1.3. Let V±=V±(\) be the images of f±. Then V± are
irreducible H-modules and

Every irruducible representation of H can be realized uniquely as V+ (or as V~).

REMARK. It is known that every irreducible representation of H is ab-

solutely irreducible [1].

2. The purpose of this section is to construct a g-analogue of the Young
symmetrizer. The main result of this section is (2.2.1).

2.1. First, let us determine /+ explicitly. For this purpose, it suffices to

determine /+(£_)* Since

and

e.h(x)h(w}h(y}e+ = (-l)'(*Yω*-%>K

f+(e) is of the form

(2.1.1) Σ.« <V-A(«0*+ (0.&K),

where

X= {weW\sw>w for every ίe/_(λ), and

wt>w for every

Let ϊ\ and T2 be standard tableaux which belong to the partition λ, and

[Γ2, ΓJ the permutation which transforms Γj to Γ2. We write [Γ±] (resp.

[±T], [± T]) for [Γ, T±] (resp. [Γ±) T\[T±, ΓΦ]), e.g., if λ=(5 42 1) and

1 2 4 7 14

3 5 6 8

9 10 11 13

12
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then

_ / l 2 3 4 5 6 7 8 9 10 11 12 13 14 \

V I 2 4 7 14 3 5 6 8 9 10 11 13 12J

and

Ί 2 3 4 5 6 7 8 9 10 11 12 13 14 \
IT— 1 =L J U 3 9 12 2 5 10 4 6 11 7 8 13 14,

If i and z+1 are in the same row of Γ+, then [Γ+](z)<[Γ+](z+l). Hence

(2.1.2)

In the same way, we can show that

(2.1.3)

Note that [Tl9 T2][T2, T3]=[T19 T3] and [H — ]PFL[ — h] consists of permuta-
tions which preserve each column of T+. Hence we can restate [9; Lemma
(4.2.A)] as follows.

Lemma 2.1.4. For z^Wy the following two conditions are equivalent:

(ί)
(ϋ)

In fact (ii)=^(i) is trivial. Consversely, assume (i). Let T be the trans-
form of T+ by #, i.e., z=[TJ

Γ]. If there are two numbers a, b which appear
in the same row of T and the same column of Γ+, then the transposition (a, b)

belongs to zW+z~lf\\m-\ — ]W-[ — h] This contradicts (i). Hence we get (ii)
by [9; Lemma (4.2. A)].

Let [ — h]* (Φ[ — h]) be an element of X. By (2.1.2) and (2.1.3), [ — f-J
is also an element of X. Hence

by [2; Chap 4, §l,Ex. 3]. By (2.1.4),

*W+χ-lt\ [+-]

i.e., we can find elements x±^W± such that

([-+]*)*+ = *-([-+

By the equality
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we conclude that

(2.1.5) «J<[-+]*)*+

Hence (2.1.1) is of the form

Since /+ΦO, #ΦO. Note that the above argument shows also that

with some b^K. By the specialization #->!, b specializes to 1. Hence δΦO.
Thus we may assume that

By the same argument as above, we can also show that

(up to scalar multiple).

2.2 Now let us construct a ^-analogue of the Young symmetrizer. Since
/+(OeΓ+,

/+/-/+(«-) = cf+(e_) (c = c(q)^K) ,

i.e.,

e_hl1h+e+h+1h_e_hl1h+e+ — ceJι~I^h+e+ ,

where h±=h([T+]). Hence

(2.2.1) (h.e_h-^h+e+h^1)2 = c(h-e.h~^h+e+h^) .

By the specialization q->l, (h-e-h-^h+e+h'ϊ1) specializes to the Young symme-
trizer (corresponding to the standard tableau Γ). Hence c=

2.3. For a standard tableau T which belongs to a partition λ, let

E(T) = C(Γ)-1(/Z([Γ-])e_(λ)A([Γ-])

Let us consider when

= o

for two different standard tableaux.
If TV and T2 belong to different partitions, E(T1)E(T2)=0. In fact, if

%? is an irreducible character of H such that %q(E(T^) = m (ΦO, eZ), then

1))q^1=m. By (3.9) below, which will be proved without using the results
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of (2.3), the specialization E(T^q^ is well defined and equal to the Young

symmetrizer. Hence m=l. In the same way we can show that Xq(E(T2))=Q.
Hence E(T ̂  and E(T2) are (primitive) idempotents which belong to different
irreducible representation of H. Hence E( T^E( T2) = 0.

Assume that 7Ί and T2 belong to the same partition X.

Lemma 2.3.1. // T1*T2 and /([?1

1-])^/([Γ2-]), then E(Tl)E(T2)=0.

Proof. It suffices to prove

(2.3.2) e+(λ)A([Γ1-])-χ[Γ2-])e_(λ) = 0 .

By using the fact

l(w) = card {(/,/) I \^ί<j^n, w(ί)>w(j)}

it is easy to see that

(2-3.3) /([Γ+])+/([Γ-]) = /([+-])

for any standard tableau T. By our assumption,

(2.3.4)

Let

Y=

Then FΠ W+[-i — }W-=Φ by (2.3.4). Since we can express h([T1+])-1h([T2~])
as a linear combination

(a,<=K),

the argument of 2.1 shows (2.3.2).

3. The purpose of this section is to determine the scalar c=c(<?) which
appeared in (2.2.1). Our main result of this section is (3.8).

Let us define a linear functional tr on H by

( g (w=l)
trh(w)= δ

V ' l θ

where

(3.1) g = (j-lXβ8-!) - (2B

It is known [4] that
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and

(3.3)

By specializing q to a prime power r, ίΓ(g) specializes to a C-algebra //(r)
which can be identified with a subalgebra of the group ring CGLn(r) (see [3]).
It is easy to see that the restriction of the character of the regular representation
of C GLn(r) to H(r) equals the specialization trq+r. It is known [3] that every
irreducible character of H(r) can be uniquely obtained by restricting an irreduci-

ble character of GLn(r) (which is extended to a linear functional on C GLn(r)).
Let %(λ) be the character of K±(λ) (see (1.3)) and %(λ) the irreducible character
of GLn(r) corresponding to %(λ)β^r in the above sense. Let d(\ r) be the

multiplicity of %(X) in the regular representation of GLn(r), which is also the
degree of %(λ). Then

'>/

where λ={λ1^X2= λ'»ι = 0} (See [8].) Let d(\, q) be the polynomial such
that d(\ r)=d(\, r) for any prime power r. The above argument shows that

(3.5) <r

where λ runs over the set of partitions of n. We have

(3.6) tr(h.e.h-1'h+e+hτl)

= g-'<π -J> tr(h-e_h([-+])e+h?) (by (2.1.5))

= q -lv-y>tr(h([-+]}e+h-?h.e_) (by (3.3))

])β_) (by (2.1.5)

(by (2.1.2) and (2.1.3))

= ί-'α-+»)(ί»α-+])ί,) (by (3.2) and (2.1.4))

= £•

On the other hand, (2.2.1) implies that E=c~1h-e_h~1'h+e+h+1 is an idempotent
of F+(λ)Aϊ1. By the specialization q->l, E specializes to a primitive idempotent.
Hence the value of the character %(λ) at E specializes to 1. But a character
value at an idempotent must be an integre. Hence E is primitive. Hence

(3.7) tr(c-1h-e_h-1h+e+h^) = d(\, q) .

By (3.6) and (3.7),
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(3.8) c

^ '

By (3.4), c can be also expressed as follows

Π (?-l)(ί'-l)•

Let us restate our results as a theorem.

Theorem 3.10. Let λ be a partition of n and {7\, •••, Tf} the standard
tableaux which belong to λ. Assume that

i-])^l([Tj-]), if i<j.

For each standard tableau T, let

E(T) = c-\h([T-])e

where

q) '

Then l?(Tι), •••, E(Tf) are primitive ίdempotents which belong to X(λ), and

if

(See (1.1) and (1.2) for e±, section 2.1 for [Γ±], (3.1) for g, (3.4) and the sub-
sequent lines for d(\, q).)

4. Orthogonalization of idempotents

The purpose of this section is to give a procedure to construct an orthogonal
family of idempotents from a given family of idempotents. By applying this
procedure to the famliy of idempotents {E(T)} which was obtained in the pre-
ceding section, we get a complete family of mutually orthogonal, primitive
idempotents of H.

4.1. Let X be a partially ordered set of cardinality n. Let /={!, 2, * ,w}
and A be the set of bijections a: I-*X such that α"1 is order preserving. If a
is an element of A and if a(i) and #(/+!) are not comparable, we define a new
element of A by
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If b(€ΞA) can be obtained from a by applying this operation several times, we
say that b is equivalent to a and write a^b. This relation is an equivalence
relation.

Lemma 4.2. Any two elements of A are equivalent to each other.

Proof. Let a, b^A such that

(k<ϊ)

Let a(i)=a0 and b"1(a0)=j. Then j>i and aQ—b(j) is not comparable with
any one of {£(/), b(i+l), •••, b(j— 1)}. In fact, if b(j) is comparable with b(k)
(i^k<j)y ihena0=b(j)>b(K). Rut a~1(b(j))=i and b(k)t£ {6(1), •• ,b(i—l), α0} —

), •••, α(i)}y hence α~l(b(k)}>i. Since Λ<y, this is a contradiction.
Now we can define an element c of A by

lb(k)

b(k-\)
b(k)

Then b~c and α(k)=c(k) (k<i-\-l). Thus, by an induction on i, we can show
that α~b.

4.3. Let .XT be a set of idempotents in a ring with 1. Let us define a relation
^ in JC by

e^e' if there exists a sequence

( # ) £ — £0, ^^ •••, en = e' of elements of X

such that £/£,-+! Φ 0 (0 ̂  i < n) .

Assume that

(4.3.1) the relation < defined by (#) is a partial order .

We can define A for this partially ordered set.

REMARK. If from the beginning, X is totally ordered and satisfies

(4.3.2) ee' = 0 if e>er ,

then (4.3.1) is automatically satisfied. For example the set
satisfies (4.3.2) with any total order such that l([T— ])>l([Tf— ]) whenever

E(T)>E(Tr).
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Lemma 4.4. Let X be a set of idempotents. Let x^X, a^A, i=a~\x) and
E(a, x)= (1— #( 1 ))•••(!— a(i—\))a(ί). Then {E(a, x)}χ(Ξχ are mutually orthogonal
idempotents, and each element E(a, x) is independent of a

Proof. I f i > j , then a(i)a(j)=Q. Hence

) - o (ί>y) .
From these equalities, we can conclude that E(a, a(i)) are mutually orthogonal
idempotents.

To show that every E(a, a(i)) is independent of a, it is enough to prove that

(4.4.1) E(a, a(j)) = E(a', a(j))

if a' is obtained from a by the transposition (i,i-\-l). There is nothing to prove
forj<i.

E(a, a(i)) = (l-

and

E(a', a(ι)) = (l-β'

since α'(t+l)=α(ί). Since

we have E(a', a(ι))=E(a, a(i)). Foιj=i+ί,

E(a, a(i+\)) = (l-a(

and

E(a', β(ί+l)) - (l-α'(

since a'(ί)=a(i+l). Since

a(i)a(i+l) = a'(i+l)a'(i) = 0 ,

we have E(a', a(i))=E(a, a(i)). Since

(4.4.1) holds for ;>»+!.
By the above lemma, we can define a set of mutually orthogonal idempotents

X" = {x°\x<=X} ,
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where, xΌ=E(a,x) for some a&A.

Theorem 4.5. The set

{E(T)Q I T standard tableau}

is a complete family of mutually orthogonal primitive idempotents in H.

References

[1] C.T. Benson, C.W. Curtis: On the degrees and rationality of certain characters of
finite Chevalley groups, Trans. Amer. Math. Soc. 165 (1972), 251-273.

[2] N. Bourbaki: Groupes et algebre de Lie, Chap. IV, V, VI, Hermann, Paris,
1968.

[3] C.W. Curtis, T.V. Possum: On centralizer rings and characters of representations
of finite groups, Math. Z. 107 (1968), 402-406.

[4] J.A. Green: On the Steinberg characters of finite Chevalley groups, Math. Z. 117
(1970), 272-288.

[5] A. Gyoja: On the existence of a W-graph for an irreducible representation of a
Coxeter group, J. Algebra 86 (1984), 422-438.

[6] G. James, A. Kerber: The representation theory of the symmetric group, Ad-
dison-Wesley, Massachusetts, 1981.

[7] M. Jimbo: A q-analogue of U($[(N-\-l)), Hecke algebra and the Yang-Baxter
equation, to appear in Phys. Lett. A.

[8] R. Steinberg: A geometric approach to the representations of the full linear group
over a Galois field, Trans. Amer. Math. Soc. 71 (1951), 274-282.

[9] H. Weyl: The classical groups, Princeton University Press, 1946.

Department of Mathematics
College of General Education
Osaka University
Toyonaka, Osaka 560
Japan




