A q-ANALOGUE OF YOUNG SYMMETRIZER*

Акініко GYOJA

(Received August 9, 1985)

Let W be the symmetric group on the set of n letters $\{1, 2, \dots, n\}$, s_i $(1 \le i \le n-1)$ the transposition (i, i+1) in W, and $S = \{s_1, s_2, \dots, s_{n-1}\}$. Then every element w of W can be expressed as $w = s_{i_1} s_{i_2} \cdots s_{i_l}$ $(1 \le i_{\infty} \le n-1)$. We denote the minimal length of such an expression by l(w), i.e., $l(w) = \min\{l\}$. Let K = C(q) be the field of rational functions in one variable q over the complex number field C. The Hecke algebra H = H(q) of W is defined as follows: H has a basis $\{h(w)\}_{w \in W}$ which is parametrized by the elements of W. The multiplication is characterized by the rules

$$(h(s)+1)(h(s)-q)=0$$
, if $s \in S$,
 $h(w)h(w')=h(ww')$, if $l(w)+l(w')=l(ww')$.

Notice that H is a q-analogue of the group algebra CW of W in the sense that when q is specialized to 1, H is specialized to CW. It should also be mentioned that the Hecke algebra can be defined for a general Coxeter system (W, S) (see [2; Chap. 4, § 2, Ex. 23]).

As is well-known, a complete set of mutually orthogonal primitive idempotents of CW is constructed by A. Young (see, for example, [6], [9]). Our main theorems are (3.10) and (4.5). In these theorems, we give a complete family of mutually orthogonal primitive idempotents of H, which is specialized to the one constructed by Young, when q is specialized to 1.

The present work was motivated by a question posed by Dr. M. Jimbo in connection with his investigation [7] of the Yang-Baxter equation in mathematical physics. The author would like to express his thanks to Dr. M. Jimbo.

1. Let (W, S) be a Coxeter system, w an element of W and $w=s_1s_2\cdots s_n$ $(s_i \in S)$ a reduced decomposition of w. See [2; Chap. IV] for the fundamental concepts concerning Coxeter systems. It is known and easily proved by using [2; Chap. IV, n° 1.5, Lemma 4] that the set

$$\{s_{i_1}s_{i_2}\cdots s_{i_p} | 1 \le i_1 < \cdots < i_p \le n, \ 0 \le p \le n\}$$

^{*} This research was supported in part by Grant-in-Aid for Scientific Research, The Ministry of Education, Science and Culture.

is uniquely determined by w and does not depend on the choice of a reduced decomposition of w. If an element x of W is contained in this set, we write $x \le w$. The partial order defined in this way is called the Bruhat order.

Assume, from now on, that W is finite. It is known that every representation of the Hecke algebra H=H(q) can be afforded by a W-graph [5]. The precise definition of a W-graph is irrelevant here. What we need is that, for every finite dimensional representation ρ_q of H, by an appropriate choice of a basis of the representation space, the elements $h(w)(w \in W)$ are represented by matrices over C[q]. Hence we can obtain a representation ρ_1 of W by the specialization $q \rightarrow 1$. This fact is used, for example, in the following way.

Let χ_q =trace ρ_q , χ_1 =trace ρ_1 and $\chi_q = \sum_i m_i \chi_{i,q}$ the irreducible decomposition of χ_q . By [3], we have

$$\sum_{w \in W} \mathcal{X}_q(h(w)) \mathcal{X}_q(q^{-l(w)}h(w^{-1})) / \sum_{w \in W} q^{l(w)} = \sum_i m_i^2(d_{i,1}/d_{i,q})$$
 ,

where $d_{i,q}$ is the generic degree of $\chi_{i,q}$ [1; Definition (2.4)] which is known to be a polynomial in q, and $d_{i,1}=(d_{i,q})_{q\to 1}$, which is equal to the degree (i.e., the dimension of the representation space) of the representation affording $\chi_{i,q}$. By the specialization $q\to 1$, we get

$$\sum_{w \in W} \chi_1(w) \chi_1(w^{-1}) / \mathrm{card} \ W = \sum_i m_i^2$$
.

Hence ρ_q is irreducible if and only if ρ_1 is irreducible.

We will use this kind of "specialization argument" very often without mentioning the details.

From now on, we assume that W is the n-th symmetric group acting on $\{1, 2, \dots, n\}$ and $S = \{s_1, s_2, \dots, s_{n-1}\}$, where $s_i = (i, i+1)$. See [6] for the fundamental concepts concerning symmetric groups.

For each partition λ of n, we can define two standard tableaux $T_+ = T_+(\lambda)$ and $T_- = T_-(\lambda)$, e.g., if $\lambda = (5 \ 4^2 \ 1)$,

We omit the exact definition of $T_{\pm}(\lambda)$. Let $I_{+}=I_{+}(\lambda)$ (resp. $I_{-}=I_{-}(\lambda)$) be the set of s_{i} 's which preserve each row (resp. column) of $T_{+}(\lambda)$ (resp. $T_{-}(\lambda)$) as a set.

For example, if $\lambda = (5 4^2 1)$, then

$$I_{+} = \{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_{10}, s_{11}, s_{12}\}$$

and

$$I_{-} = \{s_1, s_2, s_3, s_5, s_6, s_8, s_9, s_{11}, s_{12}\}$$
.

Let $W_{\pm} = W_{\pm}(\lambda)$ be the parabolic subgroups of W generated by I_{\pm} , and $H_{\pm} = \sum_{w \in W_{\pm}} Kh(w)$. Then H are subalgebras of H_{\pm} . Let

(1.1)
$$e_+ = e_+(\lambda) = \sum_{w \in W_+} h(w)$$

and

(1.2)
$$e_{-} = e_{-}(\lambda) = \sum_{w \in W_{-}} (-q)^{-l(w)} h(w).$$

Since, for each $s \in I_+$,

$$e_{+} = \sum_{\substack{w \in W_{+} \\ sw > w}} (1 + h(s))h(w)$$
,

we have

$$h(s)e_+=qe_+$$
.

Hence

$$h(w)e_{+} = q^{l(w)}e_{+} \qquad (w \in W_{+}).$$

In the same way, we can show that

$$h(w)e_+ = e_+h(w) = q^{l(w)}e_+ \qquad (w \in W_+),$$

and

$$h(w)e_{-} = e_{-}h(w) = (-1)^{l(w)}e_{-} \qquad (w \in W_{-}).$$

From these equalities, we get

$$e_+^2 = P_+ e_+$$

where

$$P_{\pm} = P_{\pm}(\lambda) = \sum_{w \in W^{\pm}} q^{\pm l(w)}$$
 .

The left H-modules He_{\pm} are isomorphic to the induced representations $H \underset{\mu_{\pm}}{\otimes} \mathcal{E}_{\pm}$, where \mathcal{E}_{\pm} are the one-dimensional H_{\pm} -modules denfied by

$$h(w)v = q^{l(w)}v$$
 $(v \in \mathcal{E}_+)$

and

$$h(w)v = (-1)^{l(w)}v$$
 $(v \in \mathcal{E}_{-})$

By the classical result of A. Young and by the specialization argument, we have

$$\dim_K \operatorname{Hom}_H(He_{\pm}, He_{\mp}) = 1$$
.

Take (non-zero) intertwining operators

$$f_{\pm} \in \operatorname{Hom}_{H}(He_{\mp}, He_{\pm})$$
.

The images of f_{\pm} do not depend on the choice of f_{\pm} . Thus we have the following result.

Proposition 1.3. Let $V_{\pm} = V_{\pm}(\lambda)$ be the images of f_{\pm} . Then V_{\pm} are irreducible H-modules and

$$f_{\pm} \colon V_{\mp} \xrightarrow{\sim} V_{\pm}$$
.

Every irruducible representation of H can be realized uniquely as V_{+} (or as V_{-}).

Remark. It is known that every irreducible representation of H is absolutely irreducible [1].

- 2. The purpose of this section is to construct a q-analogue of the Young symmetrizer. The main result of this section is (2.2.1).
- 2.1. First, let us determine f_+ explicitly. For this purpose, it suffices to determine $f_+(e_-)$. Since

$$f_{+}(e_{-}) = e_{-}(P_{+}^{-1}P_{-}^{-1}f_{+}(e_{-}))e_{+}$$

and

$$e_-h(x)h(w)h(y)e_+ = (-1)^{l(x)}q^{l(y)}e_-h(w)e_+ \qquad (x \in W_-, y \in W_+),$$

 $f_{+}(e)$ is of the form

where

$$X = \{w \in W \mid sw > w \quad \text{for every} \quad s \in I_{-}(\lambda), \text{ and}$$
 $wt > w \quad \text{for every} \quad t \in I_{+}(\lambda)\}.$

Let T_1 and T_2 be standard tableaux which belong to the partition λ , and $[T_2, T_1]$ the permutation which transforms T_1 to T_2 . We write $[T \pm]$ (resp. $[\pm T]$, $[\pm \mp]$) for $[T, T_{\pm}]$ (resp. $[T_{\pm}, T][T_{\pm}, T_{\mp}]$), e.g., if $\lambda = (5 \ 4^2 \ 1)$ and

then

$$[T+] = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 1 & 2 & 4 & 7 & 14 & 3 & 5 & 6 & 8 & 9 & 10 & 11 & 13 & 12 \end{pmatrix}$$

and

$$[T-] = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 1 & 3 & 9 & 12 & 2 & 5 & 10 & 4 & 6 & 11 & 7 & 8 & 13 & 14 \end{pmatrix}$$

If i and i+1 are in the same row of T_+ , then [T+](i)<[T+](i+1). Hence

$$[T+]s>[T+] (s \in I_+).$$

In the same way, we can show that

$$[T-]s>[T-] \qquad (s \in I_{-}).$$

Note that $[T_1, T_2][T_2, T_3] = [T_1, T_3]$ and $[+-]W_-[-+]$ consists of permutations which preserve each column of T_+ . Hence we can restate [9; Lemma (4.2.A)] as follows.

Lemma 2.1.4. For $z \in W$, the following two conditions are equivalent:

(i)
$$zW_+z^{-1}\cap[+-]W_-[-+]=\{1\}$$
.

(ii)
$$z \in ([+-]W_{-}[-+])W_{+}$$
.

In fact (ii) \Rightarrow (i) is trivial. Consversely, assume (i). Let T be the transform of T_+ by z, i.e., z=[T+]. If there are two numbers a, b which appear in the same row of T and the same column of T_+ , then the transposition (a, b) belongs to $zW_+z^{-1}\cap[+-]W_-[-+]$. This contradicts (i). Hence we get (ii) by [9; Lemma (4.2.A)].

Let [-+]z ($\pm[-+]$) be an element of X. By (2.1.2) and (2.1.3), [-+] is also an element of X. Hence

$$[-+]z \in W_{-}[-+]W_{+}$$

by [2; Chap 4, §1, Ex. 3]. By (2.1.4)

$$zW_{+}z^{-1}\cap[+-]W_{-}[-+] \mp \{1\}$$
 ,

i.e., we can find elements $x_{\pm} \in W_{\pm}$ such that

$$([-+]z)x_{+} = x_{-}([-+]z), \quad x_{\pm} = 1.$$

By the equality

$$e_{-}h([-+]zx_{+})e_{+} = q^{l(x_{+})}e_{-}h([-+]z)e_{+}$$

= $e_{-}h(x_{-}[-+]z)e_{+} = (-1)^{l(x_{-})}e_{-}h([-+]z)e_{+}$,

we conclude that

$$(2.1.5) e_{-}h([-+]z)e_{+} = 0.$$

Hence (2.1.1) is of the form

$$a \cdot e_- h([-+])e_+ \qquad (a \in K)$$
.

Since $f_{+} \neq 0$, $a \neq 0$. Note that the above argument shows also that

$$e_{-}h([T-])^{-1}h([T+])e_{+} = b \cdot e_{-}h([-+])e_{+}$$

with some $b \in K$. By the specialization $q \rightarrow 1$, b specializes to 1. Hence $b \neq 0$. Thus we may assume that

$$f_{+}(e_{-}) = e_{-}h([T-])^{-1}h([T+])e_{+}$$
.

By the same argument as above, we can also show that

$$f_{-}(e_{+}) = e_{+}h([T+])^{-1}h([T-])e_{-}$$

(up to scalar multiple).

2.2 Now let us construct a q-analogue of the Young symmetrizer. Since $f_{+}(e_{-}) \in V_{+}$,

$$f_+f_-f_+(e_-)=cf_+(e_-)$$
 $(c=c(q)\in K)$,

i.e.,

$$e_{-}h_{-}^{-1}h_{+}e_{+}h_{+}^{-1}h_{-}e_{-}h_{-}^{-1}h_{+}e_{+} = ce_{-}h_{-}^{-1}h_{+}e_{+}$$

where $h_{+}=h(\lceil T+\rceil)$. Hence

$$(2.2.1) (h_-e_-h_-^{-1} \cdot h_+e_+h_+^{-1})^2 = c(h_-e_-h_-^{-1} \cdot h_+e_+h_+^{-1}).$$

By the specialization $q \rightarrow 1$, $(h_-e_-h_-^{-1})(h_+e_+h_+^{-1})$ specializes to the Young symmetrizer (corresponding to the standard tableau T). Hence $c=c(T) \neq 0$.

2.3. For a standard tableau T which belongs to a partition λ , let

$$E(T) = c(T)^{-1}(h([T-])e_{-}(\lambda)h([T-])^{-1})(h([T+])e_{+}(\lambda)h([T+])^{-1}).$$

Let us consider when

$$E(T_1)E(T_2)=0$$

for two different standard tableaux.

If T_1 and T_2 belong to different partitions, $E(T_1)E(T_2)=0$. In fact, if \mathcal{X}_q is an irreducible character of H such that $\mathcal{X}_q(E(T_1))=m$ (± 0 , $\in \mathbb{Z}$), then $\mathcal{X}_1(E(T_1))_{q\to 1}=m$. By (3.9) below, which will be proved without using the results

of (2.3), the specialization $E(T_1)_{q\to 1}$ is well defined and equal to the Young symmetrizer. Hence m=1. In the same way we can show that $\chi_q(E(T_2))=0$. Hence $E(T_1)$ and $E(T_2)$ are (primitive) idempotents which belong to different irreducible representation of H. Hence $E(T_1)E(T_2)=0$.

Assume that T_1 and T_2 belong to the same partition λ .

Lemma 2.3.1. If
$$T_1 \neq T_2$$
 and $l([T_1-]) \ge l([T_2-])$, then $E(T_1)E(T_2) = 0$.

Proof. It suffices to prove

(2.3.2)
$$e_{+}(\lambda)h([T_{1}-])^{-1}h([T_{2}-])e_{-}(\lambda) = 0.$$

By using the fact

$$l(w) = \operatorname{card} \{(i, j) | 1 \le i < j \le n, w(i) > w(j) \} \quad (w \in W),$$

it is easy to see that

$$(2.3.3) l([T+])+l([T-]) = l([+-])$$

for any standard tableau T. By our assumption,

$$(2.3.4) l([+-]) \ge l([T_1+]) + l([T_2-]).$$

Let

$$Y = \{x_1x_2 | x_1 \leq [T_1+]^{-1}, x_2 \leq [T_2-]\}.$$

Then $Y \cap W_+[+-]W_- = \phi$ by (2.3.4). Since we can express $h([T_1+])^{-1}h([T_2-])$ as a linear combination

$$\sum_{y \in Y} a_y h(y) \qquad (a_y \in K),$$

the argument of 2.1 shows (2.3.2).

3. The purpose of this section is to determine the scalar c=c(q) which appeared in (2.2.1). Our main result of this section is (3.8).

Let us define a linear functional tr on H by

$$tr h(w) = \begin{cases} g & (w=1) \\ 0 & (w \neq 1), \end{cases}$$

where

(3.1)
$$g = (q-1)(q^2-1)\cdots (q^n-1)/(q-1)^n = \sum_{w\in W} q^{l(w)}.$$

It is known [4] that

(3.2)
$$tr(h(x)h(y)) = \begin{cases} gq^{l(x)} & (xy=1) \\ 0 & (xy \neq 1) \end{cases}$$

and

$$(3.3) tr(h_1h_2) = tr(h_2h_1) (h_1, h_2 \in H).$$

By specializing q to a prime power r, H(q) specializes to a C-algebra H(r) which can be identified with a subalgebra of the group ring $CGL_n(r)$ (see [3]). It is easy to see that the restriction of the character of the regular representation of $CGL_n(r)$ to H(r) equals the specialization $tr_{q\to r}$. It is known [3] that every irreducible character of H(r) can be uniquely obtained by restricting an irreducible character of $GL_n(r)$ (which is extended to a linear functional on $CGL_n(r)$). Let $\mathcal{X}(\lambda)$ be the character of $V_{\pm}(\lambda)$ (see (1.3)) and $\widetilde{\mathcal{X}}(\lambda)$ the irreducible character of $GL_n(r)$ corresponding to $\mathcal{X}(\lambda)_{q\to r}$ in the above sense. Let $\widetilde{\mathcal{A}}(\lambda, r)$ be the multiplicity of $\widetilde{\mathcal{X}}(\lambda)$ in the regular representation of $GL_n(r)$, which is also the degree of $\widetilde{\mathcal{X}}(\lambda)$. Then

$$(3.4) \quad \tilde{d}(\lambda, r) = \frac{\prod\limits_{i>j} (r^{\lambda_i + (m-i)} - r^{\lambda_j + (m-j)})}{\prod\limits_i (r-1)(r-1)^2 \cdots (r^{\lambda_i + (m-i)} - 1)} \times \frac{(r-1)(r^2 - 1) \cdots (r^n - 1)}{r^{\binom{m-1}{2} + \binom{m-2}{2} + \cdots}},$$

where $\lambda = \{\lambda_1 \ge \lambda_2 \ge \dots \lambda_m \ge 0\}$. (See [8].) Let $d(\lambda, q)$ be the polynomial such that $d(\lambda, r) = \tilde{d}(\lambda, r)$ for any prime power r. The above argument shows that

$$(3.5) tr = \sum_{\lambda} d(\lambda, q) \chi(\lambda),$$

where λ runs over the set of partitions of n. We have

(3.6)
$$tr(h_{-}e_{-}h_{-}^{-1} \cdot h_{+}e_{+}h_{+}^{-1})$$

$$= q^{-l(T^{-})} tr(h_{-}e_{-}h([-+])e_{+}h_{+}^{-1}) \qquad \text{(by (2.1.5))}$$

$$= q^{-l(T^{-})} tr(h([-+])e_{+}h_{+}^{-1}h_{-}e_{-}) \qquad \text{(by (3.3))}$$

$$= q^{-l(T^{-})-l([T^{+}])} tr(h([-+])e_{+}h([+-])e_{-}) \qquad \text{(by (2.1.5))}$$

$$= q^{-l([-+])} \sum_{x \neq \in W_{\pm}} (-q)^{-l(x_{-})} tr(h([-+])h(x_{+})h([+-])h(x_{-}))$$

$$= q^{-l([-+])} \sum_{x \neq \in W_{\pm}} (-q)^{-l(x_{-})} tr(h([-+]x_{+})h([+-]x_{-}))$$

$$= q^{-l([-+])} (q^{l([-+])}g) \qquad \text{(by (3.2) and (2.1.4))}$$

$$= g.$$

On the other hand, (2.2.1) implies that $E=c^{-1}h_{-}e_{-}h_{-}^{-1}\cdot h_{+}e_{+}h_{+}^{-1}$ is an idempotent of $V_{+}(\lambda)h_{+}^{-1}$. By the specialization $q\to 1$, E specializes to a primitive idempotent. Hence the value of the character $\chi(\lambda)$ at E specializes to 1. But a character value at an idempotent must be an integre. Hence E is primitive. Hence

$$(3.7) tr(c^{-1}h_{-}e_{-}h_{-}^{-1}h_{+}e_{+}h_{+}^{-1}) = d(\lambda, q).$$

By (3.6) and (3.7),

$$c = \frac{g}{d(\lambda, q)}$$

By (3.4), c can be also expressed as follows

(3.9)
$$c = \frac{\prod\limits_{i} (q-1)(q^2-1)\cdots(q^{\lambda_i+(m-i)}-1)}{\prod\limits_{i>j} (q^{\lambda_i+(m-i)}-q^{\lambda_j+(m-j)})} q^{\binom{m-1}{2}+\binom{m-2}{2}+\cdots} \cdot (q-1)^{-n}.$$

Let us restate our results as a theorem.

Theorem 3.10. Let λ be a partition of n and $\{T_1, \dots, T_f\}$ the standard tableaux which belong to λ . Assume that

$$l([T_i-]) \ge l([T_j-]), \quad if \quad i < j.$$

For each standard tableau T, let

$$E(T) = c^{-1}(h(\lceil T - \rceil)e_{-}(\lambda)h(\lceil T - \rceil)^{-1}(h(\lceil T + \rceil)e_{+}(\lambda)h(\lceil T + \rceil)^{-1}),$$

where

$$c=\frac{g}{d(\lambda, q)}.$$

Then $E(T_1), \dots, E(T_f)$ are primitive idempotents which belong to $X(\lambda)$, and

$$E(T_i)E(T_j) = 0$$
, if $i < j$.

(See (1.1) and (1.2) for e_{\pm} , section 2.1 for $[T\pm]$, (3.1) for g, (3.4) and the subsequent lines for $d(\lambda, q)$.)

4. Orthogonalization of idempotents

The purpose of this section is to give a procedure to construct an orthogonal family of idempotents from a given family of idempotents. By applying this procedure to the family of idempotents $\{E(T)\}$ which was obtained in the preceding section, we get a complete family of mutually orthogonal, primitive idempotents of H.

4.1. Let X be a partially ordered set of cardinality n. Let $I = \{1, 2, \dots, n\}$ and A be the set of bijections $a: I \rightarrow X$ such that a^{-1} is order preserving. If a is an element of A and if a(i) and a(i+1) are not comparable, we define a new element of A by

$$a'(j) = \begin{cases} a(j) & (j \neq i, i+1) \\ a(i+1) & (j=i) \\ a(i) & (j=i+1) \end{cases}$$

If $b(\subseteq A)$ can be obtained from a by applying this operation several times, we say that b is equivalent to a and write $a \sim b$. This relation is an equivalence relation.

Lemma 4.2. Any two elements of A are equivalent to each other.

Proof. Let $a, b \in A$ such that

$$a(k) = b(k)$$
 $(k < i)$
 $a(i) \neq b(i)$.

Let $a(i) = a_0$ and $b^{-1}(a_0) = j$. Then j > i and $a_0 = b(j)$ is not comparable with any one of $\{b(i), b(i+1), \dots, b(j-1)\}$. In fact, if b(j) is comparable with b(k) $(i \le k < j)$, then $a_0 = b(j) > b(k)$. But $a^{-1}(b(j)) = i$ and $b(k) \notin \{b(1), \dots, b(i-1), a_0\} = \{a(1), \dots, a(i)\}$, hence $a^{-1}(b(k)) > i$. Since k < j, this is a contradiction.

Now we can define an element c of A by

$$c(k) = \begin{cases} b(k) & (1 \le k < i) \\ b(j) & (k = i) \\ b(k - 1) & (i < k \le j) \\ b(k) & (j < k \le n). \end{cases}$$

Then $b \sim c$ and a(k) = c(k) (k < i+1). Thus, by an induction on i, we can show that $a \sim b$.

4.3. Let X be a set of idempotents in a ring with 1. Let us define a relation \leq in X by

$$e \leq e' \text{ if there exists a sequence}$$

$$e = e_0, e_1, \cdots, e_n = e' \text{ of elements of } X$$
such that $e_i e_{i+1} \neq 0$ $(0 \leq i < n)$.

Assume that

(4.3.1) the relation \leq defined by (#) is a partial order.

We can define A for this partially ordered set.

REMARK. If from the beginning, X is totally ordered and satisfies

$$(4.3.2) ee' = 0 if e>e',$$

then (4.3.1) is automatically satisfied. For example the set $\{E(T_1), \dots, E(T_f)\}$ satisfies (4.3.2) with any total order such that $l([T-]) \ge l([T'-])$ whenever $E(T) \ge E(T')$.

Lemma 4.4. Let X be a set of idempotents. Let $x \in X$, $a \in A$, $i=a^{-1}(x)$ and $E(a, x)=(1-a(1))\cdots(1-a(i-1))a(i)$. Then $\{E(a, x)\}_{x\in X}$ are mutually orthogonal idempotents, and each element E(a, x) is independent of $a \in A$.

Proof. If i > j, then a(i)a(j) = 0. Hence

$$a(i)(1-a(1))\cdots(1-a(i-1))a(i) = a(i)$$
,
 $a(i)(1-a(1))\cdots(1-a(i)) = 0$,
 $a(i)(1-a(1))\cdots(1-a(j-1))a(j) = 0$ $(i>j)$.

From these equalities, we can conclude that E(a, a(i)) are mutually orthogonal idempotents.

To show that every E(a, a(i)) is independent of a, it is enough to prove that

$$(4.4.1) E(a, a(j)) = E(a', a(j))$$

if a' is obtained from a by the transposition (i,i+1). There is nothing to prove for j < i. For j = i,

$$E(a, a(i)) = (1-a(1))\cdots(1-a(i-1))a(i)$$

and

$$E(a', a(i)) = (1-a'(1))\cdots(1-a'(i))a'(i+1)$$

since a'(i+1)=a(i). Since

$$a'(i)a'(i+1) = a(i+1)a(i) = 0$$

we have E(a', a(i)) = E(a, a(i)). For j=i+1,

$$E(a, a(i+1)) = (1-a(1))\cdots(1-a(i))a(i+1)$$

and

$$E(a', a(i+1)) = (1-a'(1))\cdots(1-a'(i-1))a'(i)$$
,

since a'(i)=a(i+1). Since

$$a(i)a(i+1) = a'(i+1)a'(i) = 0$$
,

we have E(a', a(i)) = E(a, a(i)). Since

$$(1-a'(i))(1-a'(i+1)) = (1-a(i+1))(1-a(i))$$

= $(1-a(i))(1-a(i+1))$,

(4.4.1) holds for j > i+1.

By the above lemma, we can define a set of mutually orthogonal idempotents

$$X^0 = \{x^0 | x \in X\} .$$

where, $x^0 = E(a,x)$ for some $a \in A$.

Theorem 4.5. The set

$\{E(T)^0 \mid T \text{ standard tableau}\}$

is a complete family of mutually orthogonal primitive idempotents in H.

References

- [1] C.T. Benson, C.W. Curtis: On the degrees and rationality of certain characters of finite Chevalley groups, Trans. Amer. Math. Soc. 165 (1972), 251-273.
- [2] N. Bourbaki: Groupes et algebre de Lie, Chap. IV, V, VI, Hermann, Paris, 1968.
- [3] C.W. Curtis, T.V. Fossum: On centralizer rings and characters of representations of finite groups, Math. Z. 107 (1968), 402-406.
- [4] J.A. Green: On the Steinberg characters of finite Chevalley groups, Math. Z. 117 (1970), 272-288.
- [5] A. Gyoja: On the existence of a W-graph for an irreducible representation of a Coxeter group, J. Algebra 86 (1984), 422-438.
- [6] G. James, A. Kerber: The representation theory of the symmetric group, Addison-Wesley, Massachusetts, 1981.
- [7] M. Jimbo: A q-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra and the Yang-Baxter equation, to appear in Phys. Lett. A.
- [8] R. Steinberg: A geometric approach to the representations of the full linear group over a Galois field, Trans. Amer. Math. Soc. 71 (1951), 274-282.
- [9] H. Weyl: The classical groups, Princeton University Press, 1946.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan