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Introduction

Throughout the present paper, R will represent a ring with identity 1.
Let 7 be a right ideal of Ry and bR(I) = {r^R\RrdI}. Then, bR(I) is the
largest ideal of R contained in /. We shall call that / is a prime right ideal
provided that if X and Y are right ideals of R with XYdl, then either Xdl
or Fc/. It is clear that a maximal right ideal is a prime right ideal. If /
is a prime right ideal, then bR(I) is a prime ideal. Next, let S be a ring ex-
tension of a ring R with the same identity 1. S is said to be a left torsionfree
./?-bimodule if rs(X)=0 for every essential ideal X of R, where rs(X) is the
right annihilator of X in S (cf. [1]). Right torsionfree is defined similarly,

and S is said to be torsionfree if it is both left and right torsionfree. More-
over, S is said to be fully torsionfree if, for every prime ideal P of S, S/P is a

right torsionfree R/(P Π J2)-bimodule (cf. [3]). Furthermore, we say that S is
a finite normalizing extension (resp. a liberal extension) of R if there exists
a finite subset {aly a^ •••, an} of S such that S=^Σn

i=,ιRai and Ra^fyR for all
/=!, 2, •••, n (resp. ra^ay for all r^R and for all /=!, 2, •••, w). A ring ex-

tension 71 of R is said to be an intermediate normalizing extension (resp. an
intermediate extension) if there exists a finite normalizing extension (resp. a

liberal extension) S of R containing T.
Recently, Heinicke and Robson [1, 2], Lorenz [5], Jabbour [3] and others,

gave some descriptions of the relationship between the prime ideals of R and
any intermediate normalizing extension T. In this paper, we shall verify
that there is a similar relationship between the prime right ideals of R and T.
In Section 1, we shall prove a "lying over" theorem for a liberal extension,

and a "lying inside" theorem and a "lying outside" theorem for an intermediate
extension. In Sections 2 and 3, we shall prove a "cutting down" theorem
for a fully torsionfree finite normalizing extension and an intermediate nor-
malizing extension of a fully torsionfree finite normalizing extension.
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1. Prime right ideals of a liberal extension

In this section, we discuss the relationship of prime right ideals of a liberal

extension and an intermediate extension.

Theorem 1.1 (Lying over). Let S be a liberal extension of a ring R. If
K is a prime right ideal of R, then there exists a prime right ideal I of S such that

IΠR=K. When this is the case, there hold bR(I)ΠR = bR(K) and I t\R=-

KSΠR=K.

Proof. Since bR(K) is a prime ideal, there exists a prime ideal P of S such

that PΠR=bR(K) and P is a maximal with respect to PΓiR=bR(K) by [9,

Theorem 4.1]. By [9, Lemma 3.2], S/P is a liberal extension of RjbR(K).
Hence we may assume that S is a prime liberal extension of a prime ring R

such that jBfϊ-RφO for each non-zero ideal B of S, and K is a prime right ideal

of R with bR(K)=0. Since, by [9, Lemma 3.5], there is a non-zero ideal A
of S such that R + A is contained in a full matrix ring MW(-R), we have
KAdMm(K), and so KAΓiRdK. Consequently, by Zorn's Lemma, there

exists a right ideal I of S which is maximal with respect to IΓ\R<^K and

I^KA. Let X and F be right ideals of S with XYdl and Yet/. Then

we have ((X+I)ΠR) (SY ΓιR)dK. Since SΎΦO, SYΓiR is a non-zero
ideal of R, and so SYftR<tK. Therefore (X+I)ΓlRc:K, and so XdL

This implies that / is a prime right ideal of S. According to [9, Theorem

4.6], it is clear that bs(I)=0 and A<tl. Since KSA=KA Π /, we have KS C/

andKSΓ\R=!Γ(R=K.

By making use of the same methods as in the proof of the above theorem,
we readily obtain the following

Corollary 1.2 (Going up). Let S be a liberal extension of R. If
are prime right ideals of R and I is a prime right ideal of S with I Π R=K, then

there exists a prime right ideal IQ of S such that /0H>/ and I0r\R~KQ.

If P and Q are prime ideals of S such that P^Q and P f]R=QΓ( R, then
P=Q ([1, Theorem 5.10]). We shall now present some examples of liberal

extensions in which there does not hold an "incomparability" theorem for
prime right ideals.

(D D\
EXAMPLE 1.3. Let D be a division ring, and S=l 1 . Then S is a

liberal extension of Z> — <l \ d^Dl , and /— I 1 is a maximal right

ideal of S with bs(I)= 0. But / Π D=0 which is a prime ideal of D.
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EXAMPLE 1.4. Let A be a simple ring with a non-zero maximal right

., t _ , „ (A A\ m τ (M M\ Λ (M M\
ideal M, and 5= 1. Then L=\ and /2 = are prime

U A) l U A) \M M) P

right ideals of S such that /ιB/2, but 71ΓI-4=Λf= I2Γ\A, which is a prime
right ideal but not an ideal.

In the rest of this section, we investigate the relationship of the prime

right ideals between R and any intermediate extension.

Theorem 1.5 (Lying outside). Let T be a intermediate extension of R

with a liberal extension S of R containing T, and J a prime right ideal of T. Then

J Π R is a prime right ideal of R, and there exists a prime right ideal I of S such

that inTdJand bs(I) Π R=bτ(J) Π R=bR(J (Ί R)=bx(I Π R).

Proof. By Zorn's Lemma, there exists an ideal P of S which is maximal
with respect to the property P Π Tdbτ(J). Since bτ(J) is a prime ideal of Γ,

P is prime and P ΓiR=bτ(J)ΓίR (cf. [7, Theorem 12.3] and [8, Theorem 3.2]).
Then, since S/PnT/(P Π T)^>R/(P Γ]R), we may assume that S is a prime

liberal extension of a prime ring R, and T is a subring of S containing R, and

/ is a prime right ideal of T such that bτ(J) Π R—Q and Q Π T<£J for each non-
zero ideal Q of S. By Zorn's Lemma, there is a right ideal / which is maximal

with respect to the property lΓ\TdJ. It is clear that bs(I)=0. Suppose

that X and Y are right ideals of S with XY c/ and Yet/. Then ((X+I) Π T)

X (SY Π T) C / Π T C/ and SY is a non-zero ideal of S. Therefore we obtain
(X+I)Γ\TdJ, and so Xdl.Ύhus / is a prime right ideal of S. Next we

claim that J |Ί R is a prime right ideal of R. To prove this, assume that Xl

and X2 are right ideals of R with JY^C/ΠΛ and J^ct/Π-R. Now, by [8,

Proposition 2.5], there exist a liberal extension Sf=^Σp

j=ίιbjCR of CR and a
non-zero ideal X of CR such that XS'dCTdS'dCS, where C is the center

of the complete ring of quotients of R, and bl9 b2, •••, bp^Vcs(CR). Moreover,

by [8, Lemma 4.1], there exist non-zero ideals Yly Y2 of R such that Σpj=ιbjY2

is a ring (without 1) and TY1TdΣp^1bJY2c:T. Then we have X1TY1TX2Y2T

C.X1ΣjbjY2X2Y2TdX1Y2X2ΣjbjY2Tc:X1X2TciJ. Since F^O, F2ΦO and

J5Γ2ΦO, Yi-XiYg is a non-zero ideal of R contained in the ideal TYλTX2Y2T of
T. Since δr(/) Π R= 0, we have X^dJ. Hence / Π Λ is a prime right ideal.

Once again, using [8, Lemma 4.1], we obtain that TF1ΓόΛ(/nΛ)F2Γc/, and

so bx(jΓ\R)Y2Tc:J. This implies that iΛ(/ΓI<R)=0. The rest is clear.

Corollary 1.6. Let R, Ty S and J be as in the above theorem.If (JΓ\R)S Π
Tc/, then there exists a prime right ideal I of S such that IΓ\ TdJ and
I π R=J Π R. In this case, there holds that bs(I) Π R=bτ(J) Π R=bR(J Γ\R)=
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Let T be an intermediate extension of Ry and S a fixed liberal extension

of R containing T. Let K be a prime right ideal of R and / a prime right ideal

of S with / Π R=K. Then, by Zorn's Lemma, there exists a right ideal /

of T which is maximal with respect to the property J (~]R=K and J^>I Π T.

In this situation, we shall prove the following

Lemma 1.7. bR(K)=bτ(J) Π R=bs(I) Π R and bs(I) Π T ciτ(/)

Proof. Obviously we obtain bs(I) Π Tdbτ(J). Since δΛ(^ )S is an ideal of

S contained in /, this implies b^^db^^S Γ\Rc:bs(I)Γ\Rc:bτ(J)nRc:bR(K).

Proposition 1.8 (Lying inside). J is a prime right ideal of T if and only

if bτ(J) is a prime ideal of T.

Proof. If bτ(J) is prime, then bτ(J) is an ideal Q of T which is maximal

with respect to QΓiR=bR(K) and Q^bs(I)Γ\T (cf. [7, Theorem 12.7 and 8,

Theorem 3.3]). Suppose that X and Y are right ideals of T with XYdl and

YφJ. Then TY+bτ(J)Φbτ(J) and ((X+J)ΓiR)((TY+bτ(J))ΠR)cjΓ(R

=K. Hence it follows from the maximality of bτ(J) that (X+J) Γ\RdK, and

so J is a prime right ideal.

The following examples show that whether / is a prime right ideal or not.

(A A\
EXAMPLE 1.9. Let A, M and S be as in Example 1.4, and let 71=ί J.

\0 A)

Then 1=1 1 is a prime right ideal of S with IΓiA = M. Since

(MA\(AA\ (M A\

lo Λ)VO ojc/nr' / n r is not prime right' (o A) is re(iuired />
and which is a prime right ideal of T.

EXAMPLE 1.10. Let A be a simple ring having at least two maximal right

ideals, and let M and N be distinct maximal right ideals. Let us put S =

I A A A\ I A A 0\ IMM M\
I A A A\ and T= 0 A Q\ . Since ^ is two-sided simple, 1= I A A A\
\A A A/ \0 0 A) \N N N]

is a prime right ideal of S and IΓ(A = MΓ\N is a prime right ideal of A.

(MA 0\ (MA 0\ M^0\
Hence, 0 ^ 0 is the required /. However, since 0 A 0 0 A 0 C/,

\ 0 0 ΛΓ/ \ 0 0 ^/ \0 0 O/
/ is not a prime right ideal.
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2. Prime right ideals of a finite normalizing extension

In the rest of our study, suppose that S is a finite normalizing extension

ofR.

Proposition 2.1 (Lying over). Suppose that S is a finite normalizing ex-
tension of R. If K is a prime right ideal of R, then there exists a prime right ideal

I of S such that I Γ\RdK and bR(K] is a minimal prime ideal over bs(I)Γ\R.

Proof. Since bR(K) is a prime right ideal of R, there exists a prime ideal
Q of S such that bR(K] is a minimal prime ideal over Q(~}R. Hence we may
assume that S is a prime finite normalizing extension of R and K is a prime
right ideal of R such that Af\R<tbR(K) for each non-zero ideal A of S and
bR(K) is minimal prime. We next claim that there is a prime right ideal / of
S which satisfies IΓ\R<^K and bs(I)Γ\R=Q. By Zorn's Lemma, there exists
a right ideal I of S which is maximal with respect to I Γ\RdK. Let X and
F be right άdeals of S such that XYc.1 and Yd I. Since ((X+I)ΠR)
χ(SYf}R)c:inRc:K and SY is a non-zero ideal of S, we have Xc.1.
Thus / is a prime right ideal of R. Clearly we have bs(I)=0.

Lemma 2.2. Let S be a torsionfree finite normalizing extension of R. If
Y is an essential ideal of R, then bs( YS) Φ 0.

Proof. If X is an jR-S-subbimodule of S with YS Π -Y=0, then YX=0.
Since FΦO, there holds X=0. Hence it follows that YS is an essential 7?-
S-subbimodule of S. By [6, Lemma 4], we have bs( FS)ΦO.

Proposition 2.3. Let S be a prime torsionfree finite normalising extension
of a prime ring R. If I is a prime right ideal of S with bs(I)=0, then I Γ\R is

a prime right ideal of R with bR(I Π R)=0.

Proof. Assume that X and Y are right ideals of R with XYdl ΠR and

Y<f.lΓ\R Then we obviously obtain XSbs(RYS)c:Iy and hence we have
either XSdl or bs(RYS)c:I. On the other hand, since R is prime, RY is

an essential ideal of R, and so, bs(RYS) is a non-zero ideal of S by Lemma 2.2.
Hence there holds XSdl. Therefore, it follows that I(~}R is a prime right
ideal of R. The rest of the proof is clear from Lemma 2.2.

If R is not prime, then it may happen that / Π R is not a prime right ideal

ofΛ.

EXAMPLE 2.4. Let A, M and S be as in Example 1.4. Putting R=l j ,

S is a prime torsionfree finite normalizing extension of R and R is not prime.
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(M M\ (M 0 \
Considering the prime right ideal /=[ I of S, If}R= I I is not a

prime right ideal of R.

Let S=^Σi=\Rai(Rai = aiR) be a prime torsionfree finite normalizing
extension of R. Let Q(S) be the right Martindale quotient of S. Then,
there exist orthogonal idempotents /ι,/2, •••>/», in F0(5)(/ί) — {q&Q(S)\rq = qr
for all r^R} such that /i+/2H ----- h/m = 1 and m ̂  w. We set here Pi = rΛ(/i),
i=l, 2, •••,#!. Then, the Pt are m distinct minimal prime ideals of J? such

that n?-ι/Y=0, and Λ/P^Λ/Pj for all i. Let us set Df.= n j -i./φ. Py, for
all ί. Then each J5, is a non-zero ideal of Λ with/ t rf=d (for all ί/GΞZ),), and
so Z>, is an essential ideal of/, Λ. Since /f ej3(S), there exists an essential ideal
S of S such that/f.ScS for all i (cf. [1] and [5]). By [1, Theorem 5.7], each
fiSfi (l^i^ni) is a prime torsionfree finite normalizing extension of the prime
ring fiR. Now, let / be a prime right ideal of S with bs(I)= 0. Let us set
gi(I)={fisfi^fiSfi\fisfiBc:I}. Then we have f^fβ^fβ^S by [1, Pro-
position 5.5], and so £/(/) is a right ideal of fiSfi. Then gi(I)=fiSfi if and
only if/,J?Z)/. Under this situation, we shall prove the following

Lemma 2.5. There exists an /,- s#£/z ίΛαί g i ( I ) 3 r f i S f i . Such an /f £ί
independent of a choice of an essential ideal B.

Proof. If gi(I)=fiSfi for ί=l,2, —,m, then we have
+/«-Bc/. This is a contradiction. To prove the rest, for essential ideals
β' of S, we assume that /,-£<£ / and /,-£'(=/. Since fβB'^fβ'al an
we have β'c/, which contradicts bs(I)= 0. Hence /,-jBcJ:/ if and only i

By Lemma 2.5, we may assume that fβttl if /=!, 2, •••, Z, and
if /z

Lemma 2.6. For £α*Λ /— 1, 2, ••-, Z, ,̂-(7) w ίz />nwβ right ideals o

Proof. For ί=Σy-ι^yS^y^ R), we put J*(0 = Σyef(i)rΛ > where
^:{y|/.β./.φO}, and then/^/^j w/i ([1, Proposition 5.4]). Let *•<•'>/;

and s'Wfi be any elements of /,•£/,• such that s^f^SfiS'^f^g^I) and
j'W/ί φ ft(/). Then we obtain ^fβ^Ss'^fβ C s^f.Ss^fβ c /. Since

f i S ' f i $ g i ( I ) , it follows that Ss'^fβdl and so f^fβc.1. Thus, ^-(/) is a
prime right ideal of /,S/,. Next, if /#,£#(/) and /,-S/ /^ C^ (/), then
fβ Sfisfβ<Σ.fiSfisfβζi.L Since /^φ/, we have Sf&Bc: I. This implies

^Q, and so fisfβ=0. Since fisfi^Q(S) and S is an essential ideal of
follows that

Combining Proposition 2.3 with Lemma 2.6, we obtain the following
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Corollary 2.7. #(/) Π fiR is a prime right ideal of fiR such that bfiR(gi(I) Π

fiR)=Ofσri=l,2, -,f.

Theorem 2.8 (Cutting down). Let S be a prime torsionfree finite normaliz-

ing extension of R. If I is a prime right ideal of S such that bs(I)=Q, then there

exist prime right ideals Kly K2y •••, Kt of R such that Π Li -£,-=/ ΓΊ R, b#(Ki)=Pi

for ί=l, 2, •••, t. In this case, there holds bR(lΓ(R)= Π LiΛ

Proof. By Lemma 2.5, we may assume that /VBct/ for /— 1, 2, •••, £, and

fiBdIiori=i+l,"'im. By Corollary 2.7, g{(I ) Γl /*# ( 1 ̂  i ̂  0 is a prime right

ideal of fiR such that ft/^£f{/) Γl //.R) = 0. Here we set A^fre/ZI/ire

g i ( I ) Γ l f i R } (l^ί^O Then, it is easily seen that each .KΓ, is a prime right

ideal of R such that ftΛ(J£f )=Pf . Now we claim that ΓΊ ί-i !£,•=/ Π Λ. Actually,

if re Π ί-i ̂ , , then fir^g^I) Π ̂  for ί=l, 2, — , ί, and so firBdl. On the

other hand, for ί=ί+l, •••, w, firBdfiBdl. Hence rBaf1rB+f2rB-{ ----- h

ftrB-\-ft+1rB-\ ----- \-fmrBdI. Since / is the prime right ideal of S with

bs(I)=Qy we have therefore r^lΓiR. Thus Π Li ̂ , C/ Π R. Conversely, for

r<=I Γ\R, we have r/^C/, which implies that firfi e ̂ (/) ΓΊ /, Λ for ι=l, 2, — , ί,

and so r e n ί -i^ί Therefore, nLi^i=/nl2. The rest of the proof is

clear.

Corollary 2.9. Let S be an arbitrary fully torsionfree finite normalizing

extension of R. If I is a prime right ideal of S, then there exist prime right ideals

K^Kz, ~ ,Kt of R such that IΓ\R= Π ί-ι^f , and each bR(Ki] (l^i^n) is a

minimal prime ideal of R over bs(I)Γ\R. In this case, there holds bR(I Γ\R) =

EXAMPLE 2.10. Let A and M be as in Example 1.4. Let us set

IA A A\ IA 0 0 \
S= I A A A\ and R= 0 ^ 4 0 . Since R is an only essential ideal of R, S is

U A A] \o OA'
a prime torsionfree finite normalizing extension of R. For the prime right ideal

IMMM\
I = \M M M\ of S with bs(I) = 0, we immediately obtain that 70^? =

U A AJ

MO 0\
0 M 0 is a right ideal of R which is not prime and not an ideal. On the

0 0 A]

/O 0 0\ /A 0 0\ IA 0 0\
other hand, P,= 0 A 0 , P2 = 0 0 0 and P3= 0 A 0 are the all minimal

\0 OA \0 QAJ U 0 O/
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IM 0 0\
prime ideals of R. Moreover, KI= 0 A 0 and K2= 0 M 0 are prime

\ 0 0 A]
right ideals of R such that If]R=K1Γ\K2 and

and £=

3. Prime right ideals of an intermediate normalizing extension

In this section, we shall prove a "cutting down" theorem for prime right
ideals of an intermediate normalizing extension which corresponds to that of
Section 2. Throughout this section, suppose that T is an intermediate nor-
malizing extension of R, and S is a fixed finite normalizing extension of R con-
taining T.

Lemma 3.1. Let S be a torsίonfree R-bίmodule. If Y is an essential ideal
of R} then YT is an essential R-submodule of T and there exists a non-zero ideal
A of S with OΦ^Π Tc:bτ(YT).

Proof. Since Y be an essential ideal of R, by making use of the same
methods as in the proof of Lemma 2.2, we readily obtain that YT is an essential
Λ-subbimodule of T. Let Γ* be a relative complement of T in the ./2-bimodule
S. Then, by [6, Lemma 4], YT+T* contains a non-zero ideal A of S which
is an essential Λ-subbimodule of S, and so OΦ A Π Tdbτ(YT).

Now, let Q be a prime ideal of T. Then, by [3, Proposition 5.6], there
exists a prime ideal P of S such that P Π TdQ and AΓ\ T<tQ for all ideals
A^P of 5. Obviously, S/P is a finite normalizing extension of R/(PΓ\R)
and Ql(P IΊ Γ) is a prime ideal of an intermediate normalizing extension
TI(P n T) of R/(PΓ\R) such that B/P (Ί Γ/(P Π Γ)φρ/(P Π T) for each non-
zero ideal E\P of S/P. As in [2], Q will be called a standard setting if 5 is a
prime ring and Q satisfies B Π T φ Q for each non-zero ideal B of S.

Proposition 3.2. Lei S be a prime torsίonfree finite normalizing extension
of a prime ring R. If J is a prime right ideal of T such that bτ(J) is a standard
setting, then J (Ί R is a prime right ideal of R with bR(J Π 1Z)=0.

Proof. Let X and Y be right ideals of R with XY C / Π R and Y φ / Π R.
Since J2 is prime, RY is an essential ideal of R, and so, by Lemma 3.1, there
exist a non-zero ideal A of S with OΦ^ln Tdbτ(RYT). Hence, we have
bτ(RYT}<tJ since δr(/) is a standard setting. Noting XTbτ(RYT)c:J, we
obtain J^C-XTn^C/ntf. The assertion bR(J Π #) - 0 is clear by Lemma 3.1.

Throughout the rest of our study, we assume that S is a prime torsionfree
finite normalizing extension of R. The notations in Section 2 will be used
again here. As was seen, each fiSff (1 ̂ i^m) is a prime torsionfree finite
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normalizing extension of the prime ring fsR. Now, by T[t ], we denote the
subring of the prime ring /,-£/,• which is generated by fiTfi. Then, by [3,
Proposition 5.1 (2)], there exists an ideal F(i) of TK\ such that F^cT and
F(ί) is an essential /^-subbimodule of Γ[, ]. Then F(, ) can be regarded as an

essential jR-subbimodule of 7[, ]. Hence, Σf-i F(, ) = ΣΓ-iΦFω is an essential

Λ-subbimodule of ΣΓ-iθ^w It is obvious that (Σf-i Tm)Γ\R=R. More-
over, for a prime right ideal J of T such that bτ(J) is a standard setting, we

set AK/) = {?eZMlfPwC/}. Then, *,(/)= ΓM if and only if F(ί)Γc/.
Using a similar argument to Lemma 2.5 making use of the above remark and
Lemma 3.1, we obtain the following

Lemma 3.3. (Σ?-ι^ω)ΓlΛ is an essential R-subbimodule of R, and
VWT <tj for some f,.

By Lemma 3.3, we may assume that V^TttJ for i=l, 2, •••, sy and

for i=s-\-l, •••,;#. In this situation, we shall prove the following

Lemma 3.4. έΓ(/)n^cP1nP2n - Γ(PS.

Proof. Let l^i^s. Since FωΓcJ:/, we obtain TVωT<tJ and so

TVwT<tbτ(J). If ΓFωF(|.)TcftΓ(/), then we have ΓFωΓF(0Γc
TV(i)fiTfiV(i)Tc:TVωVωTc:bτ(J) and so TV(0TdbT(J)9 which contradicts
ΓFωΓcCiΓ(/). Hence we have ΓFωFωΓctftΓ(/). We set here Pfo =
{ί eΓc,-]! TV(fitiV(fiTc:bτ(J)}. Then, by the correspondence of prime ideals
in a Morita contest

/ Γ TV(i

P^ ) is a prime ideal of Γ[, ] such that Pf^φF^ΓFo ). We now claim that
A'Γ\ Ttϊ\<tP(i) for all non-zero ideals A' of /, S/, . Let ^4' be a non-zero ideal

of /iS/, such that^'nΓmcP^, and let A={s^S\fiSsSfic:A'}. Then A
is an ideal of S. Since fiSfiA'fiBc.fiSfiB^fiBc:S and fiS^SftA'f^S^c:
fiSfiA'fiBfiCA', we have fiSfiA'fβdA. By the Morita context Ct , ir(/)
is the prime ideal of T corresponding to the prime ideal Pfa of T^. Clearly,

VωT(An ΓiTV^CLfiSASfin TLiΊcA'Π ΓcncPfo- This implies ^ΠTc:b τ(J).
Since έr(/) ig a standard setting, we have .4 — 0, and so fiSfiA

ffiBfi = Q.
Recalling that/,-5/,- is a prime ring, we have A'=Q, which is contradictory to
^4'ΦO. Hence we obtain that A' Π ΪMφPfo for all non-zero ideals A' of frS/i.
If P(f )ΓI/ί-RΦθ, then, by Lemma 3.1, there exists a non-zero ideal A' of

/iS/i such that OΦ^'Π ^^(P^ΠfiRjT^dP^ which is a contradiction.

Therefore we have P (

/

0n/iΛ = 0. Since TVwfi(bτ(J)nR)fiVωTcibτ(J), it
follows that/ ί(iΓ(/)n/ZlΛcP(

/

0n/ ί12 = 0, and hence bτ(J)f}RdrR(fi) = Pi.

This implies iΓ(/)nΛcP1nP2n ••• ΠPS, completing the proof.
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Lemma 3.5. Let J be a prime right ideal of T such that bτ(J) is a standard
setting. Then, for each i=l,2, •••,£, λ, (/) w a prime right ideal of TM such
that bTm(hi(J)) is a standard setting in the extension /, 5/, of /,/?.

Proof. It is clear that &,•(/) is a right ideal of T^. Let X and Y be right
ideals of TίΩ with -XΎcA, (/) and Yet /*,-(/). Then, we have YVωTdJ and
XVωTYVωTdJ. Hence XFωCJΓ, and so Xah^J). Therefore A,(/) is
a prime right ideal of T^-]. Next we shall show that &Γ[.](Al (/))n/ί Λ=0.

Now, let /i r be an arbitrary element in bTln(hi(J))Γ\fiR (r&R). Then

ZWΛΓc/, and Fωϊy,= Fω/,2yic:Γω. Hence we have ΓωΓrFωΓ=
Fω7y>F(, )Tc:jΓ, and so rFωcΓrΓωΓciΓ(/)c:/. Since the ideal A of Λ
is an essential ideal of /,-J?, we obtain ?*(£),• Γ! F(t ))c&Γ(/)ni?czPί by Lemma
3.4. Noting that A Π F ω Φ O and fir(DiΠVw)c:fiPi = 09 we have /ir=0.
Thus bTmhi(J) Π /,Λ = 0. If bTm(h (J}) is not a standard setting, then there

exists a non-zero ideal ^4 of fgSft with <4Π T[^c:bTιn(hi(J}). By [1> Theorem

5.10], ^4n/ίΛΦθ, this is a contradiction to &r[n(Af{/))ΓΊ /*/?==(). This com-

pletes the proof.

Combining Lemma 3.5 with Proposition 3.2, we obtain the following

Corollary 3.6. Ifjisa prime right ideal of T such that bτ(J) is a standard
setting, then A f (/)n/*R is a prime right ideal of f{R with bfiRhi(J(ΠfiR)=0 far
alli=ly 2, •••, s.

Now we arrived at the position to prove the following theorem which
corresponds to Theorem 2.8.

Theorem 3.7 (Cutting down). Let S be a prime torsίonfree finite normaliz-
ing extension of a ring R} and T a ring with RdTczS. If J is a prime right ideal
of T such that bτ(J) is a standard setting, then there exist prime right ideals
XΊ, £»•••,£, of R such that J Γ]R=nϊ=ιKiy b^K^PJor ί=l, 2, -, s, and

Proof. By Lemma 3.3, we may assume that V^TctJ for i=l, 2,
and VωTdJ for i=s+l, — , m. Then, by Lemma 3.4, we have
Πί-iίV Let us set Ks= {reΛ|/,.reA,(/)n/t Λ} for i=l,2, -, j. Then, by
Corollary 3.6, A/(/)n/ t Λ is a prime right ideal of/i/Z with bfiR(hi(J)ΓifiR)=Q.
Hence it follows that K{ is a prime right ideal of R with bR(Ki) = Pi. By
making use of the same methods as in the proof of Theorem 2.8, we obtain

Corollary 3.8. Let S be an arbitrary fully torsionfree finite normalizing
extension of R, and T a ring with RdTdS. If J is a prime right ideal of T,
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then there exist prime right ideals Kl9 K2, •••, Kr of R such that JΓ\R =

nί-i^f, ^(jΠR)=n^ιbR(Ki)^bτ(J)ΠR9bx(Ki)=Pi for all ί=l,2, ,ί,

and the Pf are minimal prime over bτ(J}Γ\R
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