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Introduction

Analysing singularities of distributions, we often examine the following
integral with a parameter σ > 0 :

/(a-) = j Γ ί ί f « p ( « ; <*)dx (or ^eiσφMp(x; σ)dx),

where φ(x) is a real-valued C°° function and ρ(x;σ) is a C°° function with an
asymptotic expansion

ρ(x;σ)~pQ(x)+ρ1(x)(iσ)-1+p2(x)(i<r)-2+ ••• (as σ->oo) .

In this paper we study conditions for the integral I{σ) not to decrease rapidly
as σ->oo, and solve some inverse scattering problems.

As is well known, if stationary points of φ{x) are non-degenerate (i.e. det
(d2

xφ(x))φ0 when dx<p(x)=0), I(σ) is expanded asymptotically as σ—»oo, and we
can know whether I(σ) decreases rapidly as σ->oo. Also when the stationary
points are degenerate, the asymptotic expansion of 7(σ) is obtained if φ (x) is
analytic (cf. Varchenko [16], Duistermaat [1], etc.), and then we can know it
through the expansion. But it seems difficult to do so when all derivatives of
<p(x) vanish at some points, whose case we take into consideration. In our meth-
ods we do not employ the asymptotic expansion of 7(σ). In the previous paper
[13], the author examined the case that n=2 and pι(x)=0 (j^l): If po(x)^O on
R2 and po(xo)>O for a degenerate stationary point x0 of φ(x), then (1+ \σ\)mI(σ)
§zL\Rι) for some m<2rλ (cf. Theorem 1 of [13]). Improving the methods in
[13], whose idea is due to [8], we shall obtain similar results also in the case of

Let supp[p( σ)] and supp[p ; ] (^^0) be contained in a compact set D in
R\ We set

E(s)= {x:φ
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(0.1) g&)

One of our main results is the following

Theorem 1. Let all pj 0*^0) be real-valued. Then, for every m^R we
have

σ»GL 2(l, oo)

if and only if for every integer N(^l)

The following theorem, derived from the above theorem, seems useful to
estimate singular points of distributions.

Theorem 2. Let all pj(j^O) be real-valued, and let ρo(x)^O on Rn. If p0

satisfies

ρQ(x)>0 on 2?(min φ(x)),

then for some m(EzR) depending only on the dimension n we have

Theorem 1 implies that decreasingness of I(σ) is connected with smoothness
of the measure \E(s)\. This is seen also from the discussions in VasiPev [17]
or Kaneko [3] (cf. §2 in Chapter I of [3]). Our methods in the proof of The-
orem 2 (and in the author [13]) are based on analysis of \E(s) | .

In the latter of the present paper we shall consider some inverse scattering
problems, and solve them by means of the above results. In § 2 we deal with
the scattering by a bounded obstacle Θ (CJRn, n^2) with a C°° boundary 80.
Assume that the domain Ω—Rn—Θ is connected, and consider the initial-
boundary value problem

(Πu(t,x) = 0 i n l P x Ω (D = 8?-Δ),

u(t, x') = 0 on R1 x 9Ω (9Ω = 80),

u(0,x)=f1(x) onΩ,

, x) =f2(x) onO.

We denote by k^(s, ω) (k+(s, ω))^L2(R1xStt~1) the incoming (outgoing) trans-
lation representation of the data (/i,/2) (cf. Lax and Phillips [6], [7]). The
operator S:k--+k+ is called the scattering operator and represented by a dis-
tribution kernel S(s, θ, ω) called the scattering kernel:
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(SkJ) (s, θ) = (( s(*- ί , θy ω)k_{t, ω)dtdω

(cf. Majda [8] or § 1 of the author [14]).
Majda [8] showed in the case of OdRz (i.e. n=3) that for any fixed

(0 2) ^ s u p p 5 ^ ' ~ ω ' ω ) c ( ~ o o > ~2r(ω)Ί >
(ii) S(sy — ω, ω) is singular (not C°°) at s= —2r(ω) ,

where r(ω)=min x ω. He reduced proof of the above (ii) to verifying that the
XΪΞO

integral of the form

f e'iσΨMp(x;σ)dx

does not decrease rapidly as σ—>oo (cf. §2 of Majda [8] or §4 of the author [14]).
His methods are not applicable to the case of n>3, one of whose reasons is that
the stationary points of the phase function <p(x) are not necessarily non-dege-
nerate.

Using Theorem 2, we can prove that (0.2) is valid also when n>3:

Theorem 3. For any fixed ω and Θ^Sn~ι with ω^θ,we have
(i) supp 5( , θ, ω)c(-oo, -r(ω-θ)l
(ii) S(sy 0, ω) is singular at s=—r(ω—θ).

In § 3 we consider the scattering by inhomogeneity of media expressed by
the equation

(0.3)

( dh(t, x)~ ΊlJxt{a{j{x)dXju{ty *)) = 0 in R1 XR" ,

u(0,x)=f1(x) onR",

, dtu(0, x) = f2(x) onR",

where a^^x) are real-valued O°° functions satisfying

aυ(x) = ajΊ(x), xe.R" ,

ah{x) = 0 (iφj), au{x) = 1 when | * |

We can apply the scattering theory of Lax and Phillips [6], [7] to the equation
(0.3). For this scattering the author in [15] has obtained the results correspond-
ing to (0.2), but they are not satisfactory in the case of w^3. By means of
Theorem 2 we get rid of the restriction to the dimension n.

Let us review the results of [15]. We set
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Denote by (q~(t s, x, ξ), p~(t\ s, x, ξ)) the solution of the equation

and for ω, fleS*"1 set

Mω((9) = {y: j ω = - r 0 , lim/Γ(ί; —r0,^, ω) = θ} ,

ίω(0) = sup {lim<ί-(ί; -r o ,y,ω) 0-ί)} ,

i0.((9) = {yξΞMω(θ): sω(θ) = lim(?-(ί; - r 0 > ^, ω) θ-t)} .
t + oo

We assume that for any y (y ω=— rQ) and ω^S"'1

(0.4) lim \q-(t;-ro,y,ω)\ = oo .

Then singular support of the scattering kernel S( , θ, ω) for the equation (0.3) is

contained in the interval (— oo, sω(θ)] (cf. Theorem 2 in the author [15]); further-

more, when n=2, it is proved under some assumptions that S(s, θ, ω) is singular

at s=sω(θ) (cf. Theorem 3 in [15]).

We show in §3 that this is valid also in the case of ?z>2:

Theorem 4. Assume (0.4) for any y (y ω=—r0) and ωES"" 1 . Fix ω and
i w ^ ω φ # ^ and ιet the assumption

(0.5) dtt[dxq-(t; -ro,y9 ω)]Φ0 for any (*, j;)GΞ[-r0, oo)χMω(0)

be satisfied. Then S(s, θ, ω) is singular at s=sω(θ).

The assumption (0.5) means that there is no caustic on {(tyx):x=q~(t;— ro,y,ω),

- r o ^ K o o j G i ί ί ^ ) } , namely, the mapping: (ί,y)->?"(ί; — ro,y,ω) (—rΌ^t<

°°,y ω——r0) is difFeomorphic on [—r0, oo)χMω(ί), In the previous paper [15]

we added the assumption

t; -ro,y, ω)]φθ for any (t,y)EΞ[-rOy oo)χMω(θ),

but this is not necessary.

1. Proofs of Theorem 1 and Theorem 2

We denote by Hm(M) the Sobolev space of order m on Λf, and by H™OC(M)

the space of functions g(x) satisfying a(x)g(x)^Hm(M) for any a(x)^

is the space of C°° functions on M with compact support).

Lemma 1.1. Let φ{x) be a real-valued C°° function on Rn

} and let p(x)

be a C°° function on Rn with compact support. Then the function
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{where E(s)= {x: φ(x)^s}) satisfies

( i ) g(s)=O ifs< min φ(x),

(ii) g(s) is constant if s> max <p(x),

(iii) g(s)<ΞHURι)for any m<2'1.

Proof. Set

1 fors^O,

0 for s<0 .

Then it follows that H{s)^H^c{R1) for any m<2~1, and so H(s—φ{x)) becomes

a H^R^-valued continuous function on Rn

x. Therefore, noting that g(s)~

!
p(x)H(s~φ(x))dx, we obtain (iii). If s< min φ{x) we have E{s) Π supp [p]

Rn Λresuppfjo]

= φ, which proves ( i ) . If s> max φ{x), E(s) contains supp[p], which yields

(ii). The proof is complete.

Proof of Theorem 1. It follows from ίiii) of Lemma 1.1 that the function

g/s) defined in (Ό.l) belongs to L^R1). Therefore we have

Γ 0—1)!

Hence the function gN(s) (=£ 0(*)+Σ 1 —.—-—gj(t)dt) satisfies

IT

(1.1) & ( s ) = Σ8f- '£/*) .

We define J(σ) by

f/(σ) forσ>0,

l/(—cr) for σ<0 .

Then σw/(σ)GL2(l, oo) if and only if (1+ \σ\)mΊ{σ)^L\Rι). Furthermore,

since pj{x) are assumed real-valued, it follows that for any integer N(^0)

(1.2) I(σ) = Σ ( e-iσφMpj(x)dx(iσ)~s + 0( | σ | " ^ " ^ .

Here 0( |σ |*) means that | 0 ( | σ | * ) | ^C\σ\k ( | σ | ^ 1 ) for some constant C inde-

pendent of σ.
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Noting that S(s—φ(x)) is a Hm(R])-val\ied continuous function of x(m<
—2"1) and equal to dsH(s—φ(x)), we obtain

iσs8(s-φ(x))ds = F[dsH(s-φ(x))] (σ) ,

where F is the Fourier transformation in s (the above integral is in the sense of

distributions). Therefore we can represent the Riemann sum \ e~i<χ(p(x)pj(x)dx
J R

in the following way:

(1.3) ( e-l"<*Pj(x)dx = F[d.\ H(s-φ(x))pj{x)dx](σ)
J R J R

(1.1), (1.2) and (1.3) yield that

(1.4) W'JCσ)

Let (1+ I σ | )*J(σ)eL2(Λ1) for every wzei?. Then it follows from (1.4) that

which implies

Conversely, let gN(s)^CN for every non-negative integer JV*. Then we have
d?+1gN(s)^Hrol(R% which means that dΐ+^s^H^R1) since 8 j r + 1 ^(ί)=0
for large | ί | (cf. (i), (ii) of Lemma 1.1 and (1.1)). Therefore, by (1.4) we obtain
(1 + Iσ I )Λ Γ"1/(σ)GL2(JB !) for every integer N(^ 1). This shows that

(1+ Iσ I Γl(σ)eL 2 ^ 1 ) for every

The proof is complete.

Proof of Theorem 2. We can assume without loss of generality that so=

min φ(x)=0. Since max | gj(t) \ ̂  | E(s) \ max | pAx) \ (| E(s) \ = [ dx), there is

a constant C independent of s such that

Therefore we have

\gN(s)\ ^ \go(s)\-Έ\
y=i Jo 0—1)!

^(minPΰ(x)-C^\s\')\E(s)\ .
^ECϊ j l
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Since min P0(x)>0, we obtain min po(x)^28 for a constant δ > 0 independent of

s if | ί | is small enough. Therefore, if \s\ is small enough, it follows that

Take a point xQ satisfying φ(xo)=O (=min φ(x)). Then there is a constant d (>0)

such that

which yields | E(s) | ^ | E(s) \=δ'sn for s^0 (the constant δ' does not depend on

s). Thus, for any sufficiently small ί^Owe have

(1.5) \gN(s)\^8S's\

Now, assume that σmI(cr)^L2(l, oo) for every tn^R. Then it follows from

Theorem 1 that gN(s)(=CN for any integer Λ^^O. Take the N so that N^n+1.

All the derivatives gN(0), dsgN(0), , dfgN(O) vanish because of (i) in Lemma 1.1,

and so, by the Taylor expansion, we obtain

This is not consistant with (1.5) as ί->+0. Therefore we have

for some constant m^R depending only on n.

2. Proof of Theorem 3

In this section we review some results obtained in Majda [8] and the author

[14], and prove Theorem 3.

Let v(t, x; ω) be the solution of the equation

(2.1) υ(t, x') = -2-\-2πi)ι-nh{t-x' -ω) on Rιχ 9Ω ,

v(ty x) = 0 for t<r(ω) .

Then v(t, x; ω) is a C°° function of x and ω with the value S'(R]).

Proposition 2.1. S(s9 θ, ω) is represented of the form

S{s, θ,ω)=[ idΓ2d,v(x θ-sy x; ω)-vθdnΓιv(x-θ-s, x; ω)}dSx (ωφ(9),
JθΩ

where v is the outer unit vector normal to dΩ (cf. Theorem 1 in Majda [8] and

Theorem 2.1 in §2 of the author [14]).

In the above proposition the integral I dSx is in the sense of the Riemann
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integral with the value S^R1). For the proof see Majda [8] and the author
[14].

It is seen that the wave front set of δ(t—x ω) | j^xao is non-glancing in {{t, x):
-r(ω-θ)-2v^x-θ-t} Pίi&XdΩ) (ωΦ0) if η (>0) is small enough (for de-
scription of wave front sets, see Hormander [2], Kumano-go [5], etc.). Therefore
we can construct there the solution v(t, x\ ω) of (2.1) mod C°° by means of the
Fourier integral operators (cf. §9 of Nirenberg [10]), and get information about
d »v I ĵ xaQ. This is indicated by Majda [8] in the case of θ=—ω (cf. Lemma 2.1
of [8]). We have

L e m m a 2.2. There exists a first order pseudo-differential operator B on

R1 X 9Ω independent of t such that

(i) its symbol B(x' T, f') represented near

N(ω-Θ) = {x: x-(θ-ω) - r(ω-θ)} Π 8Ω

by local coordinates (t, %'), has a homogeneous asymptotic expansion Σ Bj(xf; T, f')

satisfying

(2.2) —iB0(%'; ± 1 , = F ^ ) > 0 o n N(ω-Θ) (θf is the tangential component of θ

to the plane {x: x {ω—θ)=r(ω—θ)}),

(2.3) Bj{%' T, ξ') are purely imaginary-valued for even j and real-valued for odd),

(ii) 9 v ϋ | Λ i x θ Q is equal to B(v\R^dΩ) mod C°° iw i(t,x): —r(ω—θ) — ηtίx θ—t}

Π ̂ X dΩ for some small constant η>0.

In the above lemma, "a homogeneous asymptotic expansion Σ BX3t'\ r, f ' )"

means that Bs{%'\ μτ, μψ)=μι~*Btf'\ τ, %') for /^^l, | τ | + l f Ί ^ l and that

| β ( * ' ; T, D - Σ βy(Λ'; T, I') | ^ C ^ I T I + | | Ί +1)'N'1 for any non-negative in-

teger iV (for detailed description of pseudo-differential operators on manifolds,
see Seeley [11], etc.); (ii) in the lemma states that a(tyx') (d^v \RixdQ—B(v \RiχdΩ))
GC°° for any a(t9 xf)GC°°(RιχdΩ) with supp [a]C {(ty x): — r(ω—θ) — η^x-θ

Proof of Lemma 2.2. Let Σ X (#) be a partition of unity on a neighborhood
i = 1

of N(ω—Θ) satisfying max | supp [%,] | 5^£0 (So is a sufficiently small positive con-

stant). Then there is a constant ^ X ) such that Σ ^ M ^ l for any x^dΩ

satisfying —r(ω—θ)—£1^x θ—x ω. Let Vi(tyx) be the solution of the equation

ϋ, (f,*) = 0 i n ^ X ί l ,

Vi(t, x') = Xi(x')v(t, x' ω) on R1 X 9Ω ,

, ϋ, (f, Λ?) = 0 for ί<r(ω) .
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Since supp[z; I^XSΩ]^ {(*> x'): x' ω=t}y Σ vi{ty x') *s equal to v(ty x'; ω) on (R1

ί = l

X9Ω)Π {(t, x'): —r(ω—θ)S1tίx
f θ—t}y and so, noting that the propagation

speed is less than one, we have

v(t, x; ω) = Σ i>i(t, x) in (RιχΩ)Γ\ {(ty x): —r(ω—θ)—S1^X'θ—t} .

We denote by WF[/(ί, x)] the wave front set of f(t, x). It is seen that

=0, ? ' = — τ(ω—(ω z>)z>), τφθ} (z> is the outer unit normal to 9Ω). Hence, for
any (*, * V , Π e W F ( > < IΛ^ΘΩ]

 t h e equation τ 2 - | Γ + λ z > | 2 = 0 in λ has real
roots, and the null-bicharacteristics associated with d] — Δ through W F ^ I^XQQ]

are transversal to R1 X 9Ω (non-glancing). This implies that sing suppfθv^ 1 R1^^]
Csing suρp[ϋf | Λ i x θ Q ] (cf. Theorem 7 in §9 of (Lax and) Nirenberg [10]), and so
it suffices to examine v^t, x) only in a neighborhood (ίf— £0, ίf +£0) X »̂ or* (̂ > x 0
(^esupp[%t]ΠΛ^(ω—5) and ti=xi*ω).

To analyze ^ t more precisely, we transform Ω in C/f. into the half-space Λ+
=={5?=^', lf0): xo>O}. Let the derivative 9V be transformed in t/,. into — 9^0.
For any set M in Rn

x we denote by M the set transformed by the coordinates %.
Let — Ax be represented by % of the form A= Σ ^(^)9? Here we can assume

1*1^2

that the coefficients aΛ(x) are real-valued C°° functions defined on Rn and constant
out of t/, . Let us examine the solution ϋ(t, x) of the following equation instead
of Vi{t, x):

f(d2

t+A)v(ty%) = 0 in tfxBί,

(*> * ' ) = ̂  ^ ' ) o n R1 x /?w~1 >
(t,X) = 0 for

where ^(ί, JC r)=-2-1(-27Γίy-Mδ(^') ω -t)Xi(x(X')). Note that
is contained in a sufficiently small conic neighborhood of (£,-, Λ;1 ± 1 , T0') (^' is
the component of θ (transformed by the coordinates x) tangent to the plane x0

=0), and that if | (r, ξ') \ ~\T9 ξ') is near | ( ± 1, Tθ') | '\±19 Ψθ') the equation

(2.4) τ*+Ao(X; f', fo) = 0

(AQ(X, ? )= Σ acύ(%)ζ*) m fo n a s t w o Γ e a l roots. Furthermore, examining the
1*1=2

forms of these roots, by the same procedure as in Nirenberg [10] or Kumano-go
[5] (see Lemma 1 in §5 of [10] or Appendix II of [5]) we can construct first order
pseudo-differential operators ξ±(x; Dt) D?) on ΛjχΛ~ (independent of t) with

CO ^

homogeneous asymptotic expansions Σ %t(X'> τ> I') such that
j = 0

( i ) ζj{x\ T, f') are real-valued for even j and purely imaginary-valued for
odd),
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(ii)Jf\{τ,ξ')\-\τ,ξ')isnear \{-l,&') \~\-l,θ') or | ( l , _
i{%\ T, f') are equal to the roots of the equation (2.4), and

(iii) all the null-bicharacterίstίc curves associated with Dχ0—ζo{%\ Dt, Dψ)
through WF[g(ί, %')] are transversal to the boundary {xo=O} an^ proceed in the
direction t>0 as they leave the boundary,

(iv) if the wave front set of u{ty x) is near the bicharacteristic curves stated
in the above (iii), then we have

(D~Xo-ξ-(x; A , D~x,)) ( 0 ; o - f > = ζ{*) (Q2t+Λ)u mod C°° ,

where ζ(X) is a C°° function on Rn satisfying ζ(x)<Ofor every x.
(iii) and (iv) imply that ϋ(t, %', x0) is approximated mod C°° by the solution

w{%Q\ ty xf) of the equation

Therefore we have

I yo-o = - i Γ ( * ' , 0; A, O^ mod

Combining this with the above (i) and (ii) yields the lemma. The proof is
complete.

Proof of Theorem 3. The solution v(t, x; ω) in (2.1) satisfies supρ[^ | ^x9Q]
d{(ίy x): x ω=t}. Therefore, noting that the propagation speed is less than
one, we see that supp[^(ί, x; ω)]c {(t, x)\ x ω^t}, which yields

v(x θ—s, x; ω) = 0 if s>x (θ—ω) .

Hence, if s > maxx (θ—ω)=— r(ω—θ) (ωφ(9), we obtain S(s>θ,ω)=Q from
Proposition 2.1.

Next, let us prove that S(s, θ, ω) is singular at s=—r(ω—θ). Take a(s)Ez
C-iR1) such that O ^ α ^ l on R\ a(s) = l for \s\ ^2~ι and a{s)=0 for \s\ ^ 1 .

For any £ > 0 set

Then we have only to prove that
Proposition 2.1 yields

s, θ, ω) is not C°° for any small £>0.

ί, 0, ω) =

- ( o
J 9Ω

θΩ
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Let F[k(s)] (<r)= \eiσsk(s)ds. As is readily seen, it follows that

(2.5) F[J2(s)] (σ) = -2-\-2πi)ι-n Σ C Γ V Γ 1 " ' ' ! eiσχ «-<*\--vθ)

(where Cγι=(n— l)!/(w— 1-;)!/!). Taking the £(>0) so that IS^-η, by Lemma
2.2 we have

\ \ W - \ B v \ R ^ ^ (s, x)dsdSx

Γ ( *fi[β'*(1! β- )αiΛ(* 5-5)] |S=X.JSX
j=0 J9Ω

•(kr)-2-Λ

Here *B denotes the transposed operator of B (i.e. <?Bf,gy=ζf, Bgy for any /
and g^C^(R1XdΩ)). Let us note that the symbol of *B expressed near supp
[ae(x θ—t)] Γϊί&XdΩ) by the local coordinates (ί, %'), has a homogeneous

asymptotic expansion Σ *!?_,•(£'; T, f') such that ΉΛX'; τ, ξ') are real-valued for
y = o

odd j and purely imaginary valued for even j and that —i*B0(%'; ± 1 , T ^ ' ) ^
-iB0(x'; ψl, ±θ')^0 ίor%fείN{ω-θ), which follows from Lemma 2.2. By the
methods of stationary phases (cf. §3.2 of Hϋrmander [2], §4 of Matsumura [9],
etc.), we can expand ^B[£'ff(*'e~s)a4y)(#*0—s)] asymptotically (as σ^oo) in the
same way as in Proposition 4.1 of the author [12]. Therefore we obtain the
asymptotic expansion

(2.6) F[JJ (a) 2-χ-2ιnγ- g (iσ)-1->\j"* «-'*βJ(x)dSx (as o—oo),

where βj(x) are real-valued C°° functions on 9Ω with supρ[/5y]czsupp[αε(ΛJ (^—
ω))] Π 9Ω, and βo(x) is non-negative valued and satisfies

for

Combining (2.5) and (2.6) yields that for any integer 7V(>0)

F[a9(s)S(s, θ, ω)] (σ) - - 2 - 1 ( -

Here #' is the local coordinates on 9Ω near N(ω—Θ) and

».fl)α<Λ(«(ί).(ί-ω)) (α<Λ=0, y ^

Noting that ρo(xf)>O when the phase function x(x') (ω—θ) is minimum, and
applying Theorem 2, we obtain for some constant mEΞR

σmF[at(s)S(s, θ, ω)] (ff)φLJ(l, oo) ,
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which shows that at(s)S(s, θ, ω) is not C°°. The proof is complete.

3. Proof of Theorem 4

We use the same notations as for the scattering by obstacles in §2. The

scattering operator S for the equation (0.3) is represented as follows (see The-

orem 1 and (3.1) of the author [15]):

Proposition 3.1. Set

S0{s, 0, ω) = ^Rn(dΓ2aw)(x θ-s, x)dx ,

where w(t, x) is the solution of the equation

({d]-A)w{t, x) = 0 {Aw = Σ dxJ(a{jdXJa)) in Λ'xΛ",

w(-rQy x) = -2-\-2πiy-nδ(-r0-x>ω) on Rn ,

^—r o -Λ? ω) on Rn .

have

(Sk) (s, θ) = j\so(s-t, θ, ω)k(t, ω)dtdω+{Kk) (s, θ) .

Note that S0(sy θ, ω) = S(sy 0, ω) if .

To prove Theorem 4, we have only to show that for any small £(>0)

there exist a real number m and a function ρ(s)^Co(sω(θ)—2β, sω(θ)-{-2ε) such

that

(1 + I σ I )mF[p(s)S(s, θ, ω)] (σ) $ L\Rι) .

Let j(x)eC%(Rn) with γ ( x ) = l in a neighborhood of Mω(θ), and denote by

w) (ί, x) the solution of the equation

(d2

t-A)w(t,x) = 0 in R'xR\

w(—rOy x) = y(x)w(—r0, x) on Rn,

dtw(—r0, x) = rγ(x)dtw(—r0, JC) on Rn .

The author [15] showed that if t is large enough we have for any integer iV(>0)

F[p{s)S(s,θ,ω)](σ) = 2-1e-^Σ{

asσ->oo (iV0 is an integer independent of iV) (cf. (4.5) in [15]). Here, 3*'

denotes the Fourier transformation in x, and the functions βj(x)^C%(Rn) are

all real-valued.
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We take t so large as to have (i) and (ii) stated in the following

Lemma 3.2. Let rx be an arbitrary constant (z^rQ), and set

ψ(x; t) = q~(t; — r09 x,ω)-θ.

Then, for any £(>0) there is a constant t0 such that for any fixed t^

(i)

0

(ii) all points at which ψ(x;t) is maximum (# ω = — rQ, \x\ ^rλ), are contain-

ed in 6-neighborhood (Mω{θ))z of Mω(θ) {{M\= {x: dis(#, M)<S}).

This lemma will be proved later. Choose the p(s) so that p(s)^0 on R1 and p(s)
> 0 on [sω(θ)—6, sω(θ)+6]. Then it is seen from the form of βo(x) (cf. (4.4) and
(4.6) in [15]) and the above lemma that

(3.1) A W ^ O onfi" and /30(?"(?; -r09y, ω))>0

for any y<=(Mω(θ))ζ (y-ω=-r0).

We take the γ(x) so that j(x)^0 on Rn, γ(^)>0 on (Mω(θ)\ andsuρρ[γ]c

By the same procedure as in Nirenberg [10], Kumano-go [5] (cf. §5 of

[10] or Appendix II of [5]), we can construct a symbol \(x, ξ) with a homo-

geneous asymptotic expansion ]ΓJ λ ; (#, ζ) such that

d2
— d2t-\-A = (Dt+X(x9 Dx)) (Dt—X(x, Dx)) modulo a smoothing operator

(cf. Corollary 2.5 in the author [15] also). Furthermore we see that \j(x, ξ)
are real-valued for even j and purely imaginary valued for odd j since the coef-
ficients a;j(x) are all real-valued (recall the construction of ξ±{5cf T, ξ') in §2).
Consider the Cauchy problem

Γ (Dt—\(x, Dx))u(t, x) = 0 in Rι X Rn ,

ltt|ίe=o = uo(x) onRn ,

and denote by E(t) the operator: uQ->u(ty •). Then w(t, x) and dtw(t, x) are re-
presented as follows:

w(t, x) = 2~ιE(t+rQ) (w(-roy )-iμdtw(-rQy •)) (x)

+2-1E(-t-r0)(w(-r0y .)+iμdttv(-r0, .))(«),

where λ and /Λ are pseudo-differential operators whose symbols coincide with
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\(xyξ) and μ(xyξ) (μ(xyDx) is the parametrix of λ(x, Dx)) respectively in a neigh-
borhood of supρ[γ(#)] and vanish for large \x\. Therefore, noting that

(-σ<9) = O(σ - ) ,

Ψ[βjE(-ϊ-r0) Ha(-r0, .)+iμdtίv(-r0, •))] (-<r0) = 0(σ-)

as σ-*oo (cf. §4 of the author [15]), we have

F[P(s)S(s, θ, ω)] (<r) = l-h-' *^{iσγ-'-'S'il-'

The assumption (0.5) implies that if WF[M0] is contained in a conic neigh-
borhood of M"ω((9)x{—ω} (WF[a?(-r0, )—iμdtti)(—r0, •)] is contained there)
E(ϊ-\-r<^u0 is represented by the Fourier integral operator:

E(t+ro)uo(x) = (2π)-γ*«+'o-*-Va(ϊ+rO9 x, ξ)ύo{ξ)dξ mod C°°

(cf. the proof of Theorem 2.6 in the author [15]). Moreover note that 3'\h{k)

(-r0-χ.ω)](Bv)=(-iVl)
keiro\8(v') (v = (VlyV% where B = (bly-ybn) is an

orthogonal matrix with bλ = ω. Then, introducing change of the variables
x=q-(t; —ro,y,ω)(=q~(y)) near x=q~(t\ — r0, Mω((9),ω) (y={yo,y

r) is ortho-
gonal coordinates with yo=x ω), we obtain

-r* >)-iβdtU)(-r0, -))](-σθ)

o, *, -τω)e-irr°dτdx+O(σ-°°)

0, q~(y)y -στω) |det ξ^Z | +0(σ-°°) (as σ->oo)

(Λ;)=l on a neighborhood of #~ (suppfγ]), and T is a positive
constant independent of σ). The function Φ(y0, τ)=q~(yo,y

f) θ—τ(yo-\-ro) has
the stationary point (yQj τ)=(—ro,p~(—ro,y') θ)y at which its Hesse matrix equals

t θ γi f°° Γ?

i g . Expanding I I eIσΦ(3Ό'τ>/3;.γ ..Jj;()rfτ (as σ->oo) by the methods of
stationary phases (e.g., cf. §3.2 ̂ of Hormander [2], §4 of Matsumura [9], etc.),
we have the asymptotic expansion
(3.2) F[p(s)S(s, θ, ω)] (σ) = e-^\iσ)"A eJσq-(f, -ra,x,ω)v

(NQ is an integer independent of N=ίy 2, •••). Here pj are C°° functions with
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supp[p; ]Csuρp[γ] and all real-valued, which follows from the fact that the
CO

symbol a(t, x, ξ) has a homogeneous asymptotic expansion Σ ^k{h #> ?) s u c h that

ak(t,Xyξ) are real-valued for even k and purely imaginary valued for odd k; further-
more p0 is of the form

t\ —rQ,y, ω))ao(t+ro, q~(t; —ro,y, ω), -
oy

Combining this with (3.1) and (ii) of Lemma 3.2, we see that po(#)^>O on
Rn and pQ(x)>0 for any x at which the function

φ(x) == —q-(t; —r0, x,ω)-θ (x ω= —r0)

is minimum. Thus, applying Theorem 2 to (3.2), we obtain

σmF\pS](σ)&L\l,oo)

for some constant ni^R, which proves Theorem 4.

Proof of Lemma 3.2. We denote by j> the variables on Rn~1= {x: x ω= —r0}.
It follows from (0.4) that for a large constant t0 independent of t, y and ω

q~(t;—r09y,ω) = q~(to;-ro,y,ω)+(t-tQ)p-(to\-rQ,y,ω), t^t^

Fix y^Mω(θ) arbitrarily and take a neighborhood U(y) of y such that

\q~(to'y —r*y, ω)—q-(t0] —r0, y, ω)\££β for any j/GΞ C/(^),

I toίp-(to; -r 0 ,y, ω)-p-(t0; - r 0 , j>, ω)} | ^6/2 for any yGΞ ί/(5f).

Then, in view of the definitions of MJΘ) and sω(θ) we have for any y^ U($) and

t^ΐ0

; ϊ)£q-(t0; -r0, yy ω)-θ-top-(to; -r 0, 5, ω) θ+tp-(t0; -rOyy,ω)-θ+ε

On the other hand, for any neighborhood U of MJε) it follows that δ—inf {1 —

i>~(*o; — r0,y,ω) θ}>0, which yields that ψ(y;t)^(C—δt)+t for any
(I y\ ^r x ) and ί̂ 3f0 (C i s a constant independent of 3; and ί). This means that

, \y I ̂ r 2 and ? is large enough. Therefore we obtain the lemma.
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