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HARMONIC MAPS FROM §* TO HP?
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In this paper, we describe all harmonic maps from the Riemann 2-sphere
to HP? the quaternion 2-projective space. In example 1.3, all isotropic
harmonic maps from S? to HP" are given. A particular class of nonisotropic
harmonic maps from S? to HP" are classified by Theorem 1.4. With theorem
1.5, the description of harmonic maps from S? to HP? becomes complete.

Harmonic maps from S? to S” and S? to CP” are classified by Calabi. E
[1] and Eells-Wood [2] respectively. Our description of harmonic maps from
S? to HP? is not as elegant as those of Calabi and Eells-Wood. Still it gives
hope for classifying harmonic maps from S? to compact symmetric spaces.

We state our main results in §1. §2 contains some preliminaries. In
§3, the proof of theorem 1.4 is given. Theorem 1.5 is proved in §4. Here
we use some of the ideas from [6].

I am grateful to M.V. Nori for suggesting the problem and also for many
useful discussions.

1. Main results

H" denotes the quaternionic space of dimension z over H, the quaternions.
We have the quaternion metric < , > on H" defined <{v, w)>=3a;b; where v=
(ay, =+, a,), w=(by, -+, b,)EH". For acH, a denotes the conjugation of a in
H. Write

<o, wy = H(o, w)+A(v, w)j (1.1)

whete H(v, w), A(v, w)€C=R+Ri. Define T: H"—C* by T(x;+yj, -+

Xyt VuJ)=(%1, Y1, *** Xy ¥s). T is a C-linear isomorphism of H" with C**. Al-

ways, we identify C** and H" through this isomorphism. Then H defined in

(1.1) is the standard Hermitian metric on C** and 4 defined in (1.1) is a non-

degenerate alternating C-bilinear form on C?. Let J denote left multiplica-

tion by j in H". Then H(v, Jw)=A(v, w) and A(v, Jw)=—H(v, w) for v,wE H".
For a subspace W of C?, put

W+ = {xeC?*: H(x,y) =0 for all y& W} and
Wi={x€C”: A(x,y) =0 forallyeW} .
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C" stands for the trivial bundle S*x C" with the standard connection 8 and
standard Hermitian metric on each fibre. For a smooth (=C*) subbundle E
of C", E* denotes the bundle with (E*),=(E,)*, where E, denotes the fibre of
E at x&S? and in case n is even, Ey denotes the bundle with (E%),=(E,)x.

By a chart (U, Z) of S% we mean a nonempty open set U of S* equipped
with a holomorphic coordinate Z: U— C. For a smooth complex vector bundle
E over S?, CU (E) (resp. C(E)) denotes the space of all smooth sections of E

over U (resp. S?). A pair (E, F) of holomorphic subbundles of C" is called
a 8'-pair of C" if ECF and 5%(C(E))CQ(F) for all charts (U, Z) of S%
U

For a subbundle E of C", let Df denote the induced connection on
E. Then, we have operators

D (resp. DF): C(E) — C(E)
defined by Df(s):p(%) (resp. D3 s:p(%)) for SEC:J(E). Here, p: C"=E
@E+— E is the orthogonal projection. Also, we have operators

A (resp. A5): C(E) > C(E*)
defined by AE(s):q(%) (resp. AZ s———q(gaéi—)) for s€C(E). Here, : C"=E
@E+—E™* is the orthogonal projection. A% and A% are tensors (i.e. A5(fs)

=fA%(s) for all s&C(E) and for any function f: U—C).
v

For integers k, n with 0<k<n, G)(C") denotes the Grassmannian of k-
dimensional subspaces of C". There is a one-to-one correspondence between
maps from S% to G4(C") and subbundles of C" of rank . We often denote
the map and the corresponding subbundle by the same letter.

A subbundle E of C” is said to be full in C” if it is not contained in a proper
trivial subbundle of C”. First, we give some examples of harmonic maps from
S% to HP"'(n>2).

ExampLE 1.2. Let SCTC Tz be a sequence of holomorphic subbundles
of C¥ such that (i) (S, T) and (T, Tx) are 98'-pairs of C** and (ii) (rank S)+1
=rank T<n—1. Put ¢(x)=S;i NT,DJ(S;y NT,), for x&S%. Then ¢: S*

— HP"! is a harmonic map.

ExampLE 1.3. Let F be a holomorphic subbundle of C** of rank n—1
such that (F, F7) is a 8'-pair of C*. Put ¢(x)=F; N(F1),. Then ¢: §?
— HP"! is a harmonic map which is isotropic. All isotropic harmonic maps
from S? to HP""! can be described in this way [3].

M.V. Nori conjectured that (1.2) and (1.3) give all harmonic maps from
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S% to HP*™'. This is found to be false when n=3. See example 4.15 and
remark 4.17.
Now we state our main results.

Theorem 1.4. Let ¢: S*—>HP"™' (n>2) be a harmonic map such that
(i) ¢ s not an isotropic map and (ii) rank[0p]=1. Then there exists a holo-
morphic line subbundle F of C?" such that (F, Fx) is a 8'-pair of C*" and ¢ is
given by
d(x) = F.+JF,
for x€8S,.

Theorem 1.5. Let ¢: S*—> HP? be a harmonic map such that (i) ¢ is
not an isotropic map (ii) rank[0¢p]=2. Then there exist

(a) a unique holomorphic map h: S*— CP® with the property that Jh,=hs

(b) a line bundle RC(h,Dh;Dh,) =H satisfying, for all charts (U, Z)
of S,

(1) % CRYCCERD) @) DICR)CR).

Y] U v v
such that ¢ is given by
P(x) = (RO JRDh,Dhs):

for x= S2

RemARks. (1) For the definitions of [8¢] and rank[d¢] , see §2C.

(2) Isotropic maps are defined in §2D.

(3) For a holomorphic map A: S?— CP", there are harmonic maps #,’s
associated to it. See §2E.

2. Preliminaries

A. Harmonic maps. Let M, N be two compact smooth (=C*) Riemannian
manifolds. A smooth map ¢: M — N is harmonic if its tension field

7(¢) = Trace Dd¢p

vanishes identically. Here D is the connection on the bundle 7*M® ¢ (TN)
induced from the Riemannian connections on 7'M and TN.

Now let dimM=2, M orientable and N a complex manifold with a Her-
mitian metric. Since vanishing of 7(¢) depends only on the conformal class
of the metric on M, we can talk of harmonic maps whose domain is a Riemann
surface. Let (d¢)¢: TMQC — TN Q@ C be the C-linear extension of the differ-
ential d¢p: TM— TN. (d¢)C gives, in particular (see [2] for the notation below)

d¢: T'M — T'N and 3¢: T"M — T'N 2.1)
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where T'M is the holomorphic tangent bundle of M and T M is its conjugate
in TM®C. Let (U, Z) be a chart of M. Then

' = 0 vy — (@) (-2 -y
o' = @4)( ;) nd 076 = @) (2 )ec@raN)  @2)
Taking N to be Kihler, ¢ is harmonic if and only if

D>8'¢ =0 (2.3)

where D is the connection on ¢~}(7'N) induced from the Hermitian connection
on T'N. See [2].

B. Consider G,(C") with the standard Kahler metric [4]. Then T'G,(C")
gets a unique Hermitian connection. Let » be the tautological k-plane bundle
over G,(C"). Equip v and »* with metrices and connections induced from
G4(C")XC". There is a canonical linear transformation

7t T'GY(C") — Hom(v, v™)

defined by, for X T%G,(C") and for a section s of v defined in a neighbour-
hood of W,

7(X) (5) = p(Dx) -

Here D stands for the standard connection on G4(C")X C" and p: G,(C")x C”
=v@v-—v" is the orthogonal projection. 7 is a connection-preserving iso-
metric isomorphism ([2]).

Let ¢: M— G,(C") be a smooth map from a Riemann surface M. Give
¢ (T'Gy(C")) and ¢ '(Hom(», »*)) pull-back metrics and pull-back connec-
tions. o7 (n): ¢ (T'Gy(C"))— ¢ *(Hom(v, v*)) is a connection-preserving
isometric isomorphism. Let V denote the connection in either of the two
bundles. Let (U, Z) be a chart of M and s€C(¢~'(v)). Through the iso-
morphism ¢ (), !

(09) (s) = Az(s) (24)

and
(V2,0'9) (5) = DzoAx(s)—AzoDx(s)
= [Dz, 4] (s) -

Here A,, Dz are defined with respect to the decomposition M X C"=¢ *(v)
@¢7'(v"). See §1. From (2.3), ¢ is harmonic if and only if

[Dz, A1 (s) =0 (2.5)
for all charts (U, Z) of M and for all sEC’U(gb‘l(v)).
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Let E be a subbundle of M xC". Over a chart (U, Z) of M let s€C(E)
or C(E*). Then !
u

?}QZ: (s) = (Dz+432) (5), a% () = (Dz+4z) (s) -

Here Dz, D;, Az, A, are defined with respect to the decomposition EDE™ of

MxC". The identity [a'az: ,aiZ]so implies

([Dz, D]+[A4z, Az]) (5) =0 (2.6)
and

([Dz, Az]+[A4z, Dz]) (s) = 0. (2.7)

Taking E=¢7'(v), where ¢: M — G,(C") is a smooth map, (2.5) and (2.7)
imply that ¢ is harmonic if and only if

[D,, 42] (5) = 0 (28)
for all charts (U, Z) of M and for all s€C(97'(v)).
U

C. ¢: M—G4(C") is a harmonic map from a Riemann surface. It is well
known that, if E is a C* complex vector bundle over a Riemann surface, a com-
plex connection D on E induces a unique holomorphic structure on E whose
9 operator is the (0, 1) part of D (See [5]). With respect to the connection
described in §2B, ¢~'(v), ¢ (") get unique holomorphic structures. Then
a section sEC’U(¢“(v)) or C U(qb“(zﬂ‘)) is holomorphic if and only if Dzs=0,

(U, Z) being a chart of M. Since ¢ is harmonic, (2.5) implies that AY(v):
¢'@)|v—>¢'(»") |y is holomorphic. Define [0¢]: T'"M®p~'(v) = ¢~ '(v™)

by [0¢] (aiz®s):(a'¢) (5) for s€C($™(), (U, Z) being any chart of M.
By (2.4), [0¢] is holomorphic. Hence, we have

(2.9) If dim ([0¢] (T"M Q¢ ~'(v)),)=r for all points of a nonempty openset
of M, then it is so at all but a discrete set of points of M.

DEerINITION 2.10. Define rank [0¢]=r if (2.9) holds.

D. Isotropic maps. Let ¢: M— G4(C") be a smooth map from a Riemann
surface. Define

(piny) (x) = span {D%A;s(x): 0<m<z, sEC’U(qf)“(v))} and
(pth) (x) = span {Dz Az s(x): 0<m<r, s6€(¢‘1(v))} for xeM ,

(U, Z) being a chart of M around x. Let (¢(w)) (x)=’U0(qb(’,)) (%) and (L)) (%)
— U@ (). >
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DerINITION 2.11.  We say that a smooth map ¢: M—G,(C") is (strongly)
isotropic if (¢p{.y) (x) is orthogonal to (¢p(%)) (x) for each x= M.
Suppose ¢: M— HP"™' is a smooth map. Let i: HP"'— G,(C?") be the
inclusion and denote ie¢p by ¢ itself. For any seC(¢7'(»)), gaz(js)z 56%—,
U
(U, Z) being a chart of M. Then (¢p()) (x)=J(d{4) (x). Hence, we have

REMARK 2.12. ¢: M—HP"™' is an isotropic map if and only if (¢{.,) (x)
is an isotropic space, i.e., A(v, w)=0 for all v, WE(P(w)) (%).
E. Harmonic maps from CP' to CP". Let h: CP'— CP” be a full holomor-

phic map (i.e. image % is not contained in a proper projective subspace of CP").
Let (U, Z) be a chart of CP" and £ be a lift of # to C**'—0. Let

Ek(Z)=span{6Zfl 1 0<7<k}, k=0, 1, ---, n. E, is independent of the
co-ordinate Z and the lift chosen and dim.E,=k+1 except possibly at a dis-
crete set of points. E, gives rise to a unique complex vector bundle denoted
again by E,. Write

1(Z) = B Z) N (Esri(Z)) k=0, 1, -,

(Put E_,=0).

Then for each k=0, 1, ---, n, h,: CP'—CP" is harmonic. This construction
works for any Riemann surface in place of CP*.

Conversely, if ¢: CP'—CP" is a full harmonic map, then there exists
a unique full holomorphic map 4: CP'— CP”" and an integer k, 0<k<n, such
that ¢=r,. See [2] for details.

3. Let ¢: S>> HP"™' be a map and 7: HP""'— G,(C*") be the inclusion.
Throughout §3 and §4, E(¢) stands for the bundle (fo¢)~*(v) (where v is the
tautological 2-plane bundle over G,(C**)) and D,, Dz, A;, Az are defined with
respect to the decomposition E(¢p)+E(¢p)™ of C** (See §1). Further (U, Z)
stands for an arbitrary chart of S2

We start with a lemma.

Lemma 3.1. Let ¢: S>> HP"™' be a harmonic map. Then for any chart
(U, Z) of S* and x€ U, A,(E($),) is an isotropic space.

Proof. With respect to the holomorphic structures on E(¢) and E(¢p)™
given in §2 C, A,: E(¢)|y— E(¢)™ |y is holomorphic. Let s, t&C(E(¢)) be two
U

linearly independent holomorphic sections. For x& U, putting

_ A 5), A1) 4
B0 ="ty a2
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BEC(K?. K always stands for the canonical line bundle of S?. Since A4,
v
is holomorphic and s, ¢ are holomorphic sections, A(A,s(x), At(x)) and A(s(x),
t(x)) are holomorphic functions on U. Hence B is a holomorphic section of
K? over U. Also B is independent of the linearly independent holomorphic
sections s, tEC(E(¢)). Further, it is easily seen that B is a global holomorphic
v

section of K% Since K? has no nonzero holomorphic section, 8=0. The
lemma now follows.

Corollary 3.2. A9 0 A5 =0 over any chart (U, Z) of S°.
Proof. For s, tEC;(E(¢)) and xe U,
A(A5s(3), 1) = — A(Azs(x), Ag(x)) = 0.
Since 4 is a nondegenerate alternating form on E(¢),, AZs(x)=0.

Proposition 3.3. Let ¢: S’—>HP"™' be a harmonic map with rank [9¢)]
=1. Then A5®o A9 =0 over any chart (U, Z) of S

Proof. Let t&C(E($)) be a section which is nowhere zero on U and
V)
A,t=0. Consider SEC;(E((I))J‘).

A(Azs(x), t(x)) = —A(s(x), Azt(x)) = 0.

Since A4 is nondegenerate on E(¢), and dimension E(¢),=2, the proposition
now follows.

There is an isometry f: G(C")—G,_(C") given by f(W)=W=. If ¢:
S?— G,(C") is a harmonic map, then ¢*=fo¢ is also harmonic.

Let ¢: S*—> HP"™' be a harmonic map with rank [d¢]=1. Then [3¢]:
T'S*QE(¢p)— E(¢p)* and [0¢~]: T'S*QE(p)"— E(¢) are holomorphic maps
(See §2C). Since Rank [0¢]=1, the kernel of [8¢] gives a unique line sub-
bundle ker[0¢] of T'S*®E(p) which will coriespond to a line subbundle L
of E(¢). Similarly, let W be the subbundle of E(¢)™ corresponding to ker
[0p™]. Let Im[0¢] (resp. Im[d¢p™]) denote the unique bundle obtained from
the image of [0¢] (resp. [0¢™]). L, Im[0p™] (resp. W, Im[d¢p]) are holo-
morphic subbundles of E(¢) (resp. E(¢)*). Also by Corollary (3.2), Im[d¢]
CW and by proposition (3.3) Im[0¢]=L. Then, rank W=2n—3.

Let 7: B(@¢)— 2 and u: By - HO),
be the canonical maps. Define D,:C (E(¢)) — C§E%@) by D,=5oD, and define

D= poDy: C(E(9)*) > CU’(E_(;V’;)*) for k=1,2, . Leti: L— E(¢)and j: Im[0¢:]
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— E(¢)" be the inclusion maps. Dot gives a linear map D:L— @@K
and D'oj gives a linear map D': Im[3¢] — E%/t@[( since Im[ap]C W.

Proposition 3.4. D is a holomorphic map.

Proof. For s€C(L), [Dz, D;]s=[A4;, Az]s by (2.6). So, DzD,s=D,Dzs
+[4,, Az]s. [Az, Auz]szAZAz s, and by proposition (3.3), A,AzseC(L).
Hence, if s is a holomorphic section of L (i.e. Dzs=0), then Dsisa holomorl;)hic
section of @@K. This proves that Dis a holomorphic map.

We want to show that D=0. For each integer k>0, define ¢(x(x¥)=span
{DzA,s(x): 0<r<k, sECU(E(¢))}. Put ¢<'°°>(x):}io¢’f”(x)'

Proposition 3.5. If D=0, then p!..,(x)C W,.

Proof. By induction on &.
By Corollary (3.2), ¢(o)(x)C W,. Assume by induction that ¢{,(x)C W,. Then
D%"oj gives a linear map

D*: Im[0g] — E(—I?/):®K"“.

Now, for sEC’U(E‘@)))Dz(D’}+ '4,5)=D,Dz(D%A;5)+[Az, Az)D% A, s(by 2.6). By

induction assumption, [4,, Az]D%A,s=A,(AzD%A,s)C(W). Using the in-
duction repeatedly, we get ’

Dz(DY" Ays) = DY Dz A, s+1(s) (3.6)
where t(s)€C(W). From (3.6) we see that D**! is a holomorphic map.
V]
We have isomorphisms T'S2®M > T'S*QE(¢)" and T'S*QE($)"
W  canonical ker[9¢™] ker[0¢™]

[94"]

—"L. Denote the composite of these two maps by [9¢™] itself.
L. ’ E(¢)J-
ap™]: T'S*Q=2EL - L.
(6471 ® w

Then we have

o[og]: T'S2@E@)” _, E(¢)

Do[op*]: T'S*® 7 TIRK. (3.7)

Also, denote the composite of T'S2®M - I'S"QE(9) and I"S*@E(¢)
L canonical ker[d¢] ker[0¢]

G}
[_qb! Im[0¢] by [0¢] itself and form the composite

Drtafog): Ts*@R) B g K. (3.8)
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All bundles involved in (3-7), (3.8) are holomorphic line bundles and the linear
maps between.them are holomorphic. Let a and b be the first chern classes

ofE(I?/—)J- and @ respectively. It is well known that, over a compact Rie-

mann surface, a holomorphic line bundle with negative first chern class does
not admit any nonzero holomorphic section. Using this, since f)0[6¢*]=|:0,
we have 2+a<<b—2. This implies that 2-+b>a+(—2)(k—+1) for k>0. Hence
D~"50[6¢]:0. So D*'=0 giving ¢fs+1y(*) C W,. We conclude that ¢f.,(x) C W,
if D=0.

Proposition 3.9. If D=0, ¢ is an isotropic map.
Proof. By (2.12), we have to show that ¢(.)(x) is a isotropic space. Let

s&C(E(¢)) be arbitrary. For any nonnegative integer p, we show that P, ,(x)
U

=A(D%A;s(x), D7A;5(x))=0 for all &, m s.t. 0<k, m<k+m< p, by induction
on p.

For p=0, we are through by lemma 3.1. Assume that P, ,(x)=0 for
k, ms.t. k+m<p. Then for &k, ms.t. k+m=p-1, using the induction assump-
tion repeatedly,

Py (%) = —Ppoymns(®) = -+ = (—1)*Py mss(¥)

But Py ,,(x)=—A(s(x), A,(D% "A,s(x))) which is zero by proposition (3.5).
Hence P, ,(x¥)=0 for k4-m=p4-1. 'The proof is now complete.

If ¢ is assumed to be nonisotropic, we conclude that D=0.

Proof of theorem 1.4. For s&C(L), A;5=0 by definition of L, and D=0
implies that D, sEC:J (L). Then 6; (L) uis 7
subbundle of C?. Since L is a holomorphic subbundle of E(¢), C(L) is
Dz-closed which implies that —6—% (C:J (L))CCU(Lj). Put JL=F. Thenu F is

a holomorphic line subbundle of C?* and (F, F%) is a d'-pair of C**. Also,
E(¢)=F@® JF. TThis completes the proof of theorem 1.4.

In the following, we prove that the map ¢ given by example 1.2 is har-
monic.

-closed i.e. L is an antiholomorphic

Put H =S, H,=S8"NT, H;=T"NTx.
Then E(¢)=H,® JH, and E(¢) " =H,@H,P JH,. Itis clear that
D2C(Hy) CC(H), D3C(Hy) C(Hy), A,C(H) S C(H)
Hence [Dz, AZ]C;(HZ)CC;(HQ (3.10)
Also,
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DzCU(Hz) CC;(Hz)’ DzCU(HO CC;(HI), Az(,;(Hz) CC(H,).

Hence,
[Dy, AZ]C:J(Hz)CC&HJ- (3.11)

From (3.10), (3.11), (2.7), we get [Dz, A;]=0=[D,, Az] on C(H,;). We con-
U
clude that [Dz, A;]=0 on C(E(¢)). Thus ¢ is harmonic.
Y

We end this section with the following two remarks.

RemMARK 3.12. Let W be a maximal isotropic subspace of C** (n>2) and
T be a holomorphic line subbundle of S?X W which is nontrivial (i.e. 7 is not
a constant line bundle). Then (7, T7%) is a 3'-pair of C**. Then, ¢ given
by ¢(x)=T.DJ T, is a harmonic map with rank[d¢p]=1. But ¢ is an iso-
tropic map.

Proof. ¢lwy(x)CW. Hence ¢ is isotropic.

Remarx 3.13. Let T be a holomorphic line subbundle of C* such that
Tis full in C* and (T, T%) is a 8'-pair of C*. As in example 1.2, let ¢ be the
harmonic map given by ¢(x)=T,8 J T,. Then, rank[dp]=1 and ¢ is not
isotropic.

Proof. We prove that ¢ is not an isotropic map. Let A: S*— CP® be
the holomorphic map defined by A(x)=T7,. By proposition 4.18, Jh=h,.
By (4.13), Jhy=h;. Hence ¢(wy(x)=E(p)s. S0, p{.)(x) is not an isotropic
space.

4. Let ¢: S?—HP? be a harmonic map such that ¢ is not isotropic
and rank[8¢]=2. Then Im[d¢] (See §3) is a holomorphic subbundle of
E(¢)™ and is of rank two. There is a holomorphic map

D*: Im[6¢]—>IE—H(1[%®K (See §3).

Proposition 4.1. Dimension D'(Im[0¢])=1 everywhere except possibly at
a discrete set of points of S2.

Proof. If D'=0, then D, (CU(Im [0¢4]) C C’U(Im[aq‘)]). Then (¢pfey) (x)C

Im[d¢], for all x=S% By lemma 3.1 and remark (2.12), ¢ is an isotropic
map which is a contradiction. Hence D'#0. Now it is enouth to prove that

$((x) = span {D%A4,s(x): SEC’U(E(gb)), k=0, 1}

is a proper subspace of E(¢)z.
Let s, 5,&€C(E(¢)) be two linearly independent sections. Put v,=A,s,,
v
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v,=A,$, v;=D,A;s, and v,=D,A,s,. Put

b = [ Ao o), A0, 5]
A(vy(x), v5(x)), A(vy(), V(%))
Then,
0 P(x)
5 78) *:l

[A(vi(x), v;(x))] = [

by lemma 3.1. Define 3 by

¥ — determinant P(x) 47
A TERETEs)

for xe U. Using lemma 3.1, one can verify that B is independent of the linearly
independent pair of sections of E(¢) over U. Again, using lemma 3.1, g is
independent of the chart (U, Z) chosen. Hence 8 is a global section of K.
We prove that 3 is a holomorphic section.

Choose sy, SZEC;(E@))) such that Dzs,=0=Dzs,. By (2.6),

DZDZAZsi = DzDzAzs"—‘r‘[Az, AZ]Az.?‘ .
Then by (2.5) and lemma 3.1, DzD,A4,s;=A,A34;s;. Now,
%A(AZ 5 DyAys;) = A(DzAys, DyAys)+A(Ays,, DzD,A,s;)
== A(O, DZAZSj)—f—A(AZS;, AzAEAzsj-)
=0.

Each entry being holomorphic, det. P(x) is a holomorphic function on U. Since
s, 5, are holomorphic sections, A(sy(x), sy(x)) is a holomorphic function on U.
Thus @ is a holomorphic section of K Then =0 and hence determinant
P(x)=0. It follows that [A(v;(x), v;(x))] is a singular matrix. This implies
that ¢{;)(x) is a proper subspace of E(¢);. This completes the proof.

The kernel of D' gives a unique line bundle R of Im[d¢]. We have, then
(4.2) R is a holomorphic line subbundle of Im[d¢]. So, DzC(R)CC(R).
u U

(4.3) By Corollary 3.2 and definition of R, -2- C(R)cC(Im[8$]). Put M—
R* N Im[66]. 0z v " v
Define a: S?— G,(C®) by a(x)=(Im[0¢]),.

Proposition 4.4. «: S*— G,(C®) is a harmonic map.

Proof. Over a chart (U, Z) of S?% A% always denotes either A% or
ATt (See §1). Similarly we have the operators A%, D and D%. « is
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harmonic if and only if [D%, A5]=0 on C(Im[d¢])

U

Since Im[0¢] is a holomorphic subbundle of E(¢)™,

for all seC(Im[0¢]), Ass = Azs. (4.5)
U
By Corollary 3.2,
for all s€C(E($)), Dss = Dys. (4.6)
v
Az Js=]JA;s, and A;s=0 for any s€C(Im[d¢) (Corollary 3.2). So
U
for seC(Im[a¢]), AzJs=0. 4.7)
U

By lemma 3.1, Im[8¢] and J Im[d¢] are mutually orthogonal. Hence

(Im[9¢])* = E(¢)D J Im[9¢] . (4.8)
For seC(Im[0¢]), D7A%3s=D,Azs by 4.5,4.6. Since ¢ is harmonic, by 2.8,
DzAzs=UAzDzs. By 4.8, and 4.7 and 4.5, 4AzD,s=A%D%s. Thus [D7, A%]s
=0. This completes the proof.
Recall, M=R* N Im[0¢].

Proposition 4.9. M: S?— CP® is a harmonic map.

Proof. Over a chart (U, Z) of S% let A% denote either AY or Ay (See
§1). Similarly define 4%, D7, D7.
By (2.5), M is a harmonic map if and only if [D¥, A%]s=0 for any seC(M).
U
Let the operators A%, A%, D%, D% be as in proposition (4.4). By (4.2),
*C(M)cC(M). Hence for s&C(M),
v v U
AY s = Ays. (4.10)
By (4.3),
%s=0 for s€eC(R) . (4.11)
v

Now, for s€C(M), by (4.10), DY A¥s=DY/(Ass). By (4.3), D/ (Afs)=Dj(4ss).

By (2.8) and proposition (4.4), D5 A7s=A%D%s. Using (4.10), A%(D%s)=A% D¥s.
So, [D%, A7]s=0 as needed.

REMARK 4.10. M is not a holomorphic map. For, let x&S? and (U, Z)
be a chart with x&U. Since rank [0¢]=2, Az: E(¢)s — E($), is surjective
except possibly at a finite number of points of S Since Azs=0 for s&
CU (J Im[8¢]), the remark follows. Recall the map a: S*— G,(C®) defined by

a(x)=Im[8¢],. Define da: T'S?— T'G,(C®) by da=po(da)’ where p: TG,(C®)
®C—T'G,(C®) is the projection. da gives a map [0a]: T'S*QIm[8¢]—
(Im [8¢])™" (See §2C). By Proposition (4.1), rank [da]=1. The image of [8cx]
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gives a unique line subbundle N of (Im[8¢])*. By (4.8) and Corollary (3.2),
Nc JIm[d¢].

Proposition 4.11. JM=N.

Proof. R, M are mutually orthogonal and Im[0¢]=R@PM. It is enough
to show that JR and NN are mutually orthogonal. Over a chart (U, Z) of S?,

[6cx] (%@s):ﬁ[’zs for sEC;(Im[i)d)]). Then for tECU(R), H(A%s(x), J t(x))

=—H(s(x), Az Jt(x)). AZ(Jt(x))=JA%(¢(x))=0 by (4.11). Hence H (4, s(x),
Jt(x))=0. This implies that JR and N are mutually orthogonal.
For an odd positive integer #n, consider C**! with H, 4, J as in § 1.

Proposition 4.12. Let h: S*— CP” be a holomorphic map such that for
some integer k, 0<k<n, Jhy=Hh,,,. Then h is a full holomorphic map if and
only if 2k+1=n.

Proof. If k=0 or k+1=n, then Jh,=Hh,., implies that 4, is a holomorphic
map and /%, is an antiholomorphic map. Then, 4,%,,, is an antiholomorphic
bundle and being J-stable (i.e. J(#,Dhyr,)=h,Dhyy,), it is a holomorphic sub-
bundle of C*™'. Thus #,Ph,,, is a trivial bundle of rank two. Then /4 is full
if and only if n=1=2k-+1.

Now assume that 1<k+1<n. For x&S? and a chart (U, Z) around x,
define

hi(x) = span {:—; (x): sEC;(h,-)} and
}//(x) — span {a% (x): seC’U(h,.)} :

For i==n, dimension of %{(x) is equal to two except possibly at a finite number
of points of S?, hence gives a unique bundle %,. We have #/=h;®h;,,. Sim-
ilarly, for ¢==0, A’ =h;Dh;_,. Now for i=k+1, k. 1=n,,Ph,.,, and since A,
=Jh, hto=Jhi’. So, we get .. Dl ,=Jh@D Jhy_,. Since the bundles %;
are mutually orthogonal, we get Jh,_,=h,.,. Continuing this procedure, for
7 such that 2+1<k+14+:i<n,

Jheei = Py (4.13)

If k—i=0, then by 4.13, Jhy=hy,. Since hy=h is a holomorphic map, /gy,

is an antiholomorphic map. Then C(#,® -+ Dhy.,) is stable under 582 and 6%
V)

Thus hyP -+ Phyy, is a trivial subbundle of C**. Hence we conclude that 2
is a full map if and only if n=2k4-1.
By proposition 4.9, M: S?— CP® is a harmonic map. By a result of Eells-
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Wood (§2E), there exists a holomorphic map %: S*— OP® such that M=h,
for some integer k, 0<<kE<5. Since M is not an antiholomorphic map 0<<k<5.
2C(M)cC(M) by (4.2) and then by Corollary 3.2 N=h,,;. Then by

v U

proposition 4.11, Jh=h,,,. By proposition 4.12, 0<k<2 and by remark
4.10, k%=0. Thus, k=1 or k=2 i.e. M=h, or M=h, In the following pro-
position we prove that M=h,.

Proposition 4.14. M=h,.

Proof. Suppose on the contrary that M=h,. Using proposition 4.12
and 4.13, we see that h,DhBh,Ph, is a J-stable trivial subbundle of C° Put
W= (hy®h,Ph,Ph;)". Rank W=2. We have, RC (h,Dh,Phs)*=H. Then,
H=hDW.

By (4.3), DC(R)CC(R). Hence RChy®T where T is a trivial line sub-
v Y
bundle of W. Let xS? and let (U, Z) be a chart arround x. Put
S, = span {4zs(x): s€C(R)}
U

Dimension S,=1 except possibly at a finite number of points of S. Hence
we get a line subbundle S of E(¢). Since hPT is holomorphic and RCHh,
DT, we get iy T=RDS. Now,

a% C(h) CC(h®hy) and h@h®T = hBRDS.
v u

It follows that Az C(h,)cC(S). Thus Az C(h@R)CC(S). This contradicts
u. U v v
the assumption that rank[0¢]=2. We conclude that M=h,.

Proof of theorem 1.5. Let & be a holomorphic map from S? to CP® such
that M=h, 'Then by proposition 4.12, % is a full holomorphic map and hence
M is a full harmonic map from S? to CP%. Thus the map % is unique (§2E).

Put H=(h,®h,Ph,)*". Using (4.2) RCH and 5E—%C;(R)(:C}Rj;). By (4.3),
D% C’U(R)CC;(R). Finally, ¢(x)=(RP JRDI,Bh;);. The proof of theorem

1.5 is now complete.

ExamPLE 4.15. Let 4: S?—>CP? be a holomorphic map such that Jk, = .y,
for some 0<k<2. Define

_ {(hk®hk+l)_‘_ if k=0

N (7B, DPhyrz)™ otherwise.

Let REH be a line bundle such that DY C(R)CC(R) and 5% C(R)C C(R3)
for all charts (U, Z) of S®. Define ¢: S*— HP? by ¢(x)=(RD JROIDhy1)x
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for x& 8% Then ¢ is a harmonic map.
We briefly sketch a proof of this. One can check that AZ(C’U(R@hk))=O

and Dz(C(RGM)CC(RDN). Then [Dz, A;]=0 on C(R®My). Using (2.7),
)

[Dz, A;1=0 on C(JRDh,,). By (2.5), ¢~ is harmonic. So, ¢ is a harmonic
u
map.

REMARks 4.16. (1) In example 4.15, if Jh,=h,,, for k=0, 1, then rank
[0¢]1<1. If Jhy=h, and R=h,, then ¢ is not an isotropic map, but rank
o411,

(2) In example 4.15, consider the case when Jh,=h;. Then, RCh®hCH
if and only if rank [0¢]=1.

REMARK 4.17.  Consider example 1.2 with n=3. There are nonisotropic
harmonic maps ¢ with rank [0¢]=2 (e.g. Take S to be a full holomorphic line
subbundle of C®) For any such map ¢, R (Recall that R is given by the ker-
nel of D, proposition (4.11)) is an antiholomorphic subbundle of C® In fact,

R=JS.

In example 4.15, consider the case when Jh,=h; and R==hs, RE hyDh.
Such a harmonic map ¢ is nonisotropic and rank [d¢]=2. Im [8p]=RDh,
and R=ker D' is not an antiholomorphic line bundle. So examples 1.2, 1.3
do not cover all the harmonic maps from S? to HP"™*.

Following proposition describes holomorphic maps k: S?— CP*® having
the property that Jh,=h,,, for some 0<k<2. Let FCC® be the holomorphic
linebundle corresponding to & (i.e. F,=h(x) for x&S?). Let F(, be the r-th
associated bundle of F (See [3] for the notation F,).

Proposition 4.18. (a) Jhy="h, if and only if F is full in S*X W, where
W, is a J-invariant subspace of C® of dimension 2.
(b) Jhy=h, if and only if (F, Fx)is a 8'-pair of C® and F is full in S* X W, where
W is a J-invariant subspace of C® of dimension 4.
(¢) Jhy=nhs if and only if F is full in C° and (Fy, (F)x) s a 8'-pair of C°.

Proof. We prove (c).
=>. Suppose Jh,=h;. By proposition 4.12, Fis full in C° By (4.13), (F(»):
is an isotropic space for any x&.S%.  But, F, S(Fp)a < (Fo, (Fo)x) is a 3’-pair
of C°®.

<. Let s;eC (h) for 0<i<3. Since (F), is an isotropic space, A( (x)
si(%))= —A(sz(x), 0si (x)) 0 for 0<<i<<1. 'This implies that AsC(F)7.

Hence (F)x —F(3). For 0<i<1,
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A(Jsx), si(x)) = H(s(x), 5:(x)) = 0 .

This implies that Jh,C(F)a=Fa. Also for 0<i<2,

H(si(%), Js:(%)) = A(s:(x), s(¥)) = 0

since (F(y);, is an isotropic space. We conclude that

Jhy=F5NFs =hs.

The proof for (b) is similar to that of (c). (a) is obvious.
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