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A ring R is right finitely pseudo Frobenius (FPF) if every finitely generated
faithful right R-module generates the category of right R-modules. In [2], C.
Faith has shown that a commutative ring R is FPF if and only if (1) The total
quotient ring K of R is injective, and (2) Every finitely generated faithful ideal
is projective. In particular, as in case that R is a commutative semiprime ring,
he has also shown that R is FPF if and only if the total quotient ring K of R
is injective and R is semihereditaty.

On the other hand, S. Page [8] has proved that a (Von Neumann) regular
ring R is (right) FPF if and only if R is isomorphic to a finite direct product
of full matrix rings over abelian regular self-injective rings. Therefore we shall
require a characterization of arbitrary FPF-rings, which involves above results.

In this paper, we shall concerned with non-singular rings. In section 1,
we shall give a characterization of non-singular (resp. semihereditary) FPF-
rings, which involves the theorems of C. Faith and S. Page. Further we shall
give another characterization of commutative semiprime FPF-rings. In section
2, we shall present some examples.

0. Preliminaries

Throughout this paper, we assume that a ring R has identity and all mod-
ules are unitary.

Let R be a ring and M (resp. N) be a right (resp. left) R-module. Then
we use 7x(M) (resp. Ig(IN)) to denote the right (resp. left) annihilator ideal of M
(resp. N), and we use Trg(M) to denote the trace ideal of M, i.e. Trx(M)=
21 (M), where M* means that the dual module of M. Further we use Z,(M)

femx*
to denote the singular submodule of M, and L,(M) (resp. L,(N)) to denote
the lattice of right (resp. left) R-submodules of M (resp. N).

For any right R-module M, M is said to have the extending property of
modules for L,(M) if for any 4 in L, (M), there exists a direct summand A* of
M such that AC ,A*, where the notation 4<,4* means that A4 is an essential
submodule of A4*.

For any ring R, we use B(R) to denote the set of all central idempotents
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in R, and we use BS(R) to denote the collection of all maximal ideal of B(R).

A ring R is said to be right bounded if every essential right ideal contains
a nonzero two-sided ideal which is essential as a right ideal. In section 1, if
R is a non-singular ring, we shall show an elementary property of right bounded
ring.

1. A characterization of non-singular FPF-rings

The purpose of this section is to give a characterization of non-singular
FPF-rings. First we prepare some lemmas.

We recall that a ring R is right bounded if every essential right ideal con-
tains a nonzero two-sided ideal of R which is essential as a right ideal.

Lemma 1. For a non-singular ring R, the following conditions are equiva-
lent.

(1) R s right bounded.

(2) For any finitely generated right R-module M, rz(Z,(M))< Rp.

Proof. (1)=(2). Let B be a complement submodule of Z, (M) in M.
Then since M|(Z,(M)®DB) and (Z(M)PB)/B are singular right R-modules,
so that M/B is also singular. Let #,,,--, /M, be a set of generators of M/B.
Then rx(M|B)= Nri(M;R) is an essential right ideal of R, because R is right

bounded and 7,(7%;) is an essential right ideal. On the other hand, since Z,(M)
=(Z,(M)®B)/|B<M|B, we conclude that rg(Z,/M)) is an essential ideal of R.
(2)=(1). Let I be an essential right ideal of R. Then since R/I is a cyclic
singula r right R-module, (2) implies that 75(R/I) S ,R;. Thus R is right bounded.

Lemma 2. Let R be a right non-singular right bounded ring. Then for any
finitely generated right R-module M, M is a faithful right R-module if and only
if M|Z,(M) is a faithful right R-module.

Proof. First we assume that M is a faithful right R-module and set =
re(Z,(M))Nrx(M|Z,(M)). Choose an element a of I, then M-a-rx(Z,(M))=0.
Thus a-rx(Z,(M))=0 since M is faithful. While by Lemma 1, r,(Z,(M)) is an
essential right ideal of R, so @ must be zero since R is right non-singular. Hence
I=0. Moreover since 7x(Z,(M)) is an essential right ideal of R, we conculde
that M/Z,(M) is a faithful right R-module. Conversely, if M/Z/(M) is faithful,
then evidently M is faithful.

Lemma 3 ([5, Proposition 1]). Let R be a non-singular right FPF-ring.
Then R is right bounded.

Proof. See [5].
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Lemma 4 ([8, Corollary]). Let R be a non-singular right FPF-ring and
let Q be the maximal right quotient ring of R. Then the multiplication map Q®Q
=Q is an isomorphism and Q is flat as a right R-module.

Proof. See [8].
Now we can give a characterization of non-singular FPF-rings.

Theorem 1. Let R be a ring and Q be the maximal right quotient ring of
R. Then the following conditions are equivalent.
(1) R is a non-singular right FPF-ring.
(2) (i) R s right bounded.
(i1) The multiplication map Q@Q Q is an isomorphism and Q is flat
as a right R-module.
(iii) For any finitely generated right ideal I of R, Try(I)Pre(I)=R
(as ideals).

Proof. (1)=(2). (i) and (ii) are evident by Lemmas 3 and 4. In order
to prove (iii), let I be a finitely generated right ideal of R. First we claim
that 7x(I)=eR for some central idempotemt e of R. It is easy to see that rx(I)=
7o(J/) N R and 7o(I)=eQ for some central idempotent e of € since  is a regular
right self-injective ring. While [9, proposition 3] shows that B(R)= B(Q).
Hence 7z(I)=eR. Now I is a finitely generated faithful right ideal of (1—e)R.
Since (1—e)R is also a non-singular right FPF-ring, we see that Trq_,z(I)=
(I1—e)R. Note that Trx(l)=Trq-yzx(I)=(1—e)R. Therefore Try(I)Prz(I)=
eRPB(1—e)R=R.

(2)=(1). First we shall show that R is a right non-singular ring. Let x be an
element of Z,(R). By (iii), Trz(xR)=eR for some central idempoetnt e of R.
It can be easily seen that Trx(xR) S Z,(R), hence e is in Z,(R). This implies e=0,
so Z,(R)=0. Now let M be a finitely generated faithful right R-module. Since
R is a right bounded ring, by Lemma 2, M/Z (M) is also faithful. If M/Z.(M)
generates the category of right R-modules, then clearly M generates the category
of right R-modules. Therefore we may assume that M is non-singular. The
non-singularity of M miplies that Homg(M,Q)=+0. While it is well known that
Homg(M, Q) is isomorphic to Homy(M @Q,Q) as abelian groups. Hence Homg

(M®Q,Q)=*0. Then [6, Proposition 1] say that Homo(M®Q, Q) is a nonzero
R R

finitely generated left @-module. Let f,, f,, ---, f, be a set of generators of Homg

(M®Q @) and set I—Ef(ZW) We can write [= Za,,R for some a;;€Q.

Further we set J={rER|ra;;ER}. Then we define an R-homomorphism ¢:
R—(Q/R)"™ by @(r)=((ra;;))%:7-1- Since Ker(p)=], we obtain an exact sequence
0—R/J—(Q/R)"™. Therefore the condition (ii) implies that Q=@ J. We claim
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that J is an essential left ideal of R. Choose f; such that f;(M)==0. Then since
Q=@ ], there exists an element 7 in J such that ra;#0. Hence rf,-(]l[)=r(i a;;R)

+0 and it is contained in R, so Homg(M,R)=0. This proof is valid for all
finitely generated non-singular right R-modules. Consequently, we see that the
dual module of every non-zero finitely generated non-singular right R-module is
not zero. 'Therefore it is easily seen that for any in-essential right ideal L, I5(L)
is not zero. In this case [3, Theorem 3.15] shows that R is a left non-singular.
Let K be a complement right ideal of J in R. Then an exact sequence 0— J— J
@ K-> K—0 implies the exact sequence O—>Q§j—->Q§(]EBK)-—>Q§K—> 0.

l l U
G{lj QJ GI?QK QK
Q Q

Thus QK=0, so J is an essential left ideal of R. Furthermore since Q=@ J, we
can write that lzg g:b; for some ¢;=Q and b;=J. Set J ’:g‘, Rb;. Clearly
J'€SJ and QF ’=€l?. Hence J' is also an essential left ideal of I'Q Next we set
H 2;2‘1 b;I. H is a finitely generated right ideal of R. We claim that 7;x(H)=0.

If rx(H) is not zero, then there exists a central idempotent e of R such that »(H)
=eR by the condition (iii). Note that J'-le=0. Hence Ie=0 since R is left
non-singular. This shows that f;(Me)=0 for all i=1,2,---,n. We shall show that
Me=0. We assume not, then since Me is non-singular, Homg(Me, R)=Hom,
(Me@Q, Q)=Homg(M %Qe, Q). Thus HomQ(Me§Q, Q) is a nonzero direct

summand of Homg(MQQ,Q). Therefore there exists a nonzero f; such that
R

fi(Me)=%0. But this is impossible, so Me=0. While since M is faithful, e=0,
hence rx(H)=0, as claimed. Thus H is a generator in the category of right R-
modules by the condition (iii). It follows that M is also a generator in the cate-
gory of right R-modules. Now the proof is complete.

Remarx. If R is a commutative semiprime ring, then the condition (iii)
of (2) of Theorem 1 shows that R is a semihereditary ring and the condition
(ii) implies that the total quotient ring of R coincides the maximal quoteint ring
of R. Hence the theorem of C. Faith follows from Theorem 1. Further, later,
we shall give another characterization of commutative semiprime FPF-rings.

If R is a regular ring, the condition (ii) implies that R is a right self-injec-
tive. Furthermore, the conditions (i) and (iii) implies that R is isomorphic to
a finite direct product of full matrix rings over abelian regular self-injective
rings by [5, Corollary of Theorem 2]. Therefore the theorem of S. Page fol-
lows.
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Next we consider semihereditary FPF-rings. If R is a commutative FPF-
ring, then by Theorem 1, R is semihereditary. However, for arbitrary non-
singular FPF-ring R, it is not known whether R is semihereditary. In this
paper, we shall give a characterization of semihereditary FPF-rings, and by
this characterization, we shall give a necessary and sufficient condition for non-
singular FPF-rings to be semihereditary.

Theorem 2. Let R be a ring. Then the following conditions are equivalent.
(1) R s right semihereditary and right FPF.
(2) () R isright bounded and right non-singular.
(i) For any positive integer n, (nR)p has the extending property of
modules for L,(nR).
(iii) For any finitely generated idempotent right ideal I of R, there
exists a central idempotent e of R such that RI=eR.

Proof. (1)=>(2). (i) is clear by Lemma 3 and semihereditarity of R.
Next we show (ii). Since R is right semiheredirary right FPF, Theorem 1
and [4, Theorem 5.18] show that all finitely generated non-singular right R-
modules are projective. Given a positive integer »# and any right submodule
K of (nR)g, then let K* be the closure of K in (nR)g. Now nR/K* is a finitely
generated non-singular right R-module, so K* is a direct summand of (#R).
Hence (nR)y has the extending property of modules for L,(nR). In order to prove
(iii), let I be a finitely generated idempotent right ideal of R. Then we show
that Trp(I)=RI. Evidently, RIC Trgx(I). Let f be any element of the dual
module I* of I, and a be any element of I. Then since [ is an idempotent right

ideal of R, azi b;c; for some elements b;, c;=1. Thus f(a):ﬁ,_,“ f()e;ERI, so

Try(I)=RI. While Theorem 1 shows that there exists a central idempotent e
of R such that Trg(I)=eR. Therefore (iii) follows.

(2)=(1). First we show that any finitely generated non-singular right R-modules
are projective. Let M be a finitely generated non-singular right R-module.
Then we have an exact sequence 0— K — R"— M — 0 for some positive integer
n. This implies that K is a closed submodule of (#R), so K is a direct summand
of (nR)g. Hence M is projective. 'To prove that R is right FPF, it suffices to
show that every finitely generated faithful non-singular right R-module is a gene-
rator in the category of right R-modules since R is right bounded. Let M be a
finitely generated faithful non-singular right R-module. Then since M is pro-
jective, M*, the dual module of M, is finte finitely generated. Let m,,m,,---,m,
be a set of generators of M and f,, f,, -+, f, be a set of generators of M*. We set

I =i‘, fi(M). Then I is projective, so we can write that T7r,( )='ﬁ_ Rg.(a;)R for

some g;€I* and a;€1. Moreover by the Dual basis lemma, we see that a;=
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k m k
lg b,g/(a;) for some b,&I. Set ]=i§1g,~(a,-)R. Then gi(a;)= g',-(;=l bigda;)=
’_i gi(b)ga;)e J?. Thus J=]J? Therefore by the condition (iii), there exists a

central idempotent ¢ of R such that R/=eR. Note that Trgz(J)=RJ. Thus
R]=Trg(J)=Trg(I). Next we show that Trg(M)=Trg(I). Since RI< Trg(l),
it is clear that Trp(M)S Trg(I). Let f be any nonzero element of I* and a be

any nonzero element of I. Then a= )3 fi(m;)r;; for some r;;ER. Hence f(a)=
i,5=1

f(ii}lf,-(mj)r,-j)zig f(fi(m;))r;;. Observing that ff;€Homg(M, R) for all i, we

1
conclude that f(a)E Trx(M). Hence Try(M)=Trg(I). Therefore Trz(M)=eR.
On the other hand, it is easily seen that e=1 since M is faithful and projective.
Thus M is a generator in the category of right R-modules.

Corollary 1. Let R be a right semihereditary and right FPF-ring. Then
R is left FPF if and only if R is left bounded.

Proof. If R is left FPF, then clearly R is left bounded. Conversely, we
assume that R is left bounded. Then by Lemma 2, it suffices to show that every
finitely generated faithful non-singular left R-module is a generator in the cat-
egory of left R-modules. Since by Theorem 2, all finitely generated non-
singular right R-modules are projective, Theorem 1 and [4, Theorem 5.18]
show that all finitely generated non-singular left R-modules are projective.
Let M be a finitely generated faithful non-singular left R-module. Then M
is projective. Further since M*, the dual module of M, is also projective, we
set I=rx(M*) and choose any r&r,(M*). Then for any f&M* and meM,
(fr) (m)=f(m)r=0. Hence f(M)-rx(M*)=0. Furthermore, (rx(M*)- f(M))*=0.
Now since R is semiprime, 7x(M*)- f(M)=0. Hence f(rg(M*)-M)=0. While
since M is projective, so rx(M*)-M=0. Therefore ry(M*) is zero since M is
faithful. Hence M* is a generator in the categoty of right R-modules since R
is right FPF. In this case we have also that M is a generator in the category
of left R-modules. Therefore R is left FPF.

Corollary 2. Let R be a non-singular right FPF-ring. Then R is semi-

hereditary if and only if for any positive integer n, nR has the extending property
of modules for L,(nR).

G. Bergman [1, Theorem 4.1] has proved that a commutative ring R is
'semihereditary if and only if

(1) RisaP+P-ring, and

(2) For any MeBS(R), R/MR is a Priifer domain.

Therefore combining Theorem 2 with the theorem of G. Bergman, we
have another characterization of commutative semiprime FPF-rings.
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Corollary 3. Let R be a commutative ring. Then the following conditions
are equivalent.

(1) R is semiprime FPF-ring.

(2) RPR has the extending property of modules for L(RP®R) and for any
MeBS(R), R|MR is a Priifer domain.

Proof. (1)=>(2). Itis clear by Theorem 2 and the theorem of G. Bergman.
(2)=(1). Let x be any element of @, the maximal qutoient ring of R, and set
M=xR+R. Then M is faithful and projective since RPR has the extending
property. While since there is an exact sequence 0— J—RPR—M — 0, where
J={reR|xr&R}. Hence ] is a direct summand of RPR, so projective. There-
fore clearly JQ=@Q. In this case, [4, Theorem 5.18] shows that Q?QQQ, and

Q is flat as a R-module. On the other hand, evidently, R is a P.P-ring by the
extending property of RPR. Thus the theorem of G. Bergman and Theorem 1
show that R is a semiprime FPF-ring.

2. Examples

In this section, we present some examples to illistrate the idea of this paper.

ExampLE 1. There exists a non-singular ring such that right bounded, but
not right FPF.

Proof. Let F be a field and let F,=F for all n=1,2, ---. Weset T=]IF,
and K=>1PF,+F-1;. Itis easily seen that T is a commutative regular self-

injective ring. Since S=@F, is an ideal of T, S is a regular ideal of K, and
since K/S=F, K is a regular ring. Note that T is a maximal quotient ring of K.

K S T T

We set R=<

). It is clear that Q:( ) is a maximal right and left

K K T T
quotient ring of R. Hence R is a right and left non-singular ring. We show
that R is right bounded. Let I be a right ideal of R. Then I is of the form,

A AS
Iz( ), where A, C, D are ideals of K such that DS C and CS=DS.
C D

Thus I is an essential right ideal of R if and only if 4, DC,R;. Now, if I is an
(AnD) (AnD)S

(AnD) (AnD)
and essential as a right ideal ot R. Therefore R is right bounded. Next set

essential right ideal of R, J =< ) is clearly a two-sided ideal,

1 0 K S
e=< ) Then eR= is a finitely generated faithful right ideal of
0 o0 0 0
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K S
R. While TrR(eR)=ReR=( ):#R, so eR is not a generator in the category
K S

of right R-modules. Therefore R is not right FPF.

ExampLE 2. There exists a non-singular ring R suhc that T7rx(M)Prz(M)
=R (as ideals) for any finitely generated non-singular right R-module M, but
not right FPF.

Proof. Choose fields Fy, F,, -, set R,=M,(F,) for all n=1,2,---, and set
T=I'IR,,. Let M be a maximal two-sided ideal of T which contains > PR,

Then T/M be a simple right and left self-injective regular ring. Hence all
finitely generated non-singular right 7/M-modules are projective, so by [7,
Lemma 1], Try(M)@®rg(M)=R (as ideals) for any finitely generated non-sin-
gular right R(=T/M)-module M. On the other hand, [5, Proposition 2] states
that R is not right bounded. Thus by Theorem 1, R is not right FPF.

ExampPLE 3. There exists a semihereditary ring such that the condition
(i) and (iii) of (3) of Theorem 2 are satisfied, but not satisfy the condition (ii).
(This example is due to H. Kambara).

Proof. Let F be a field and let F,=F for all n=1,2,---. We set T=

II M»(F,) and set (¥)={x=(x,)ET'| there exists a positive integer 7, and for all
e i

mzn,y=| oo |, where eachxy=| o %, 0| (@j=1,2 -, 2" and
Xgny* o Xgnan aij

x,=(a;;);.;21}. Let R be a F-sub-algebra of T generated by @M(F,) and (*).

Note that R is a regular ring and 7 is a maximal right quotient ring of R. Then

[5, Theorem 2] states that R is right bounded. Let x be an element of R. We

may assume that x&s @Mp(F,). Then x=(x;, x5 **+, X, X4y, =), and x,=

a;j
(@), /%1 and (0%) yrw=(xis)s. 20 and w=| o % . 0| (j=1,2, -, 27).
a;;

Since M(F,) is a simple ring and x,30, My (F,)x,Mun(F,)=My»(F,), so My+m

(Fpiom) X psmMon s m(F ) =Mopp+m(F, ) for all m=1, 2, ---. Thus RxR=(M,(F))

X, My(Fy), +++, Mp(F,), =++). Set e=(ey, **, €4y, 1, 1, 1, -++), where ;=1 if x,40,

and ¢;=0 if x;=0. Clearly, e is a central idempotent of R, so RxR=eR. There-

fore the condition (iii) is satisfied. While since R is not self-injective, the condi-

tion (ii) does not satisfy.

ExampLE 4. There exists a semihereditary ring R such that the condition
(1) and (ii) of (3) of Thoerem 2 are satisfied, but not satisfy the condition (iii).
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Proof. Let F be a field and V be a countable, infinite dimensional vector

space over F, and set R=Endy(V), i.e. R is a right full linear ring. Hence R
is a prime rgeular and right self-injective ring. By [5, Theorem 1], R is right
bounded, but does not satisfy the condition (iii) by the proof of Corollary to
[5, Theorem 2].
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