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1. Introduction

Our object is to study limit theorems in relation to functionals built on
a dynamical system generated by the flow of Gaussian white noise or equiva-
lently functionals subordinate to a real Gaussian stationary process

(1.1) E(t) = S: expint dB(N)

with E§(f)=0, complex spectral measure d3, and spectral measure do(A)=
E|dB(\)|?% which is absolutely continuous with respect to Lebesgue measure,
do(\)=f(\)d\.

Define £} ,(1<k<<oo, 0<p<o0) to be the set of complex symmetric Borel
functions 4 on R* satisfying (i) AN)=h(—\) (ii) A€ LA (d*s), d*c=do(\)do(\,)
codo(M), A=Ay, -1, M)ERE A real-valued second order strictly stationary
process X(t), subordinate to &, with zero mean is represented by the Ito-Wiener
expansion

(1.2) Xt =3X0, X0)=|amanrds,

where ¢, € Ly, e4(\, ) =exp iAt, A=\, + -+ Ay, @*8 =dB(\,) - dB(\s); the
k-fold multiple Ito Integral ([2], [3]) in (1.2) is understood in the usual way
([6], [7], [8]). Throughout the paper the whole space as an integration domain
is suppressed in an integral sign. R is such an example for the integral in
(1.2).

Summarizing notational conventions: Constants will be denoted by ¢, ¢;, ¢,

- which are not always the same for each appearance. Given non-negative

f(x), g(x), we use f(x)<g(x) to indicate that there exist constants ¢, ¢,>0 such
that ¢, f(x) < g(x)<c,f(x) on a specified region.

To formulate the main theorem introduce an integral transform which
maps uELY(d*s) (k>1) to @(u; \)eL(R), the space of Lebesgue integrable
functions on R:



698 G. MarRuYAMA

P(u; \) = k! g A=, Ay, o M )f A=) N) - fNp-)dN AN
A= 7\‘1—""'_I—7\'}z—1 (kZZ) ) A= (7\'1) ) 7\'1:-1) )
e(u; ) = uN)f(n) (k=1).

Our main theorem is

Theorem 1. Suppose that the following conditions (1)—(iv) are satisfied.
(1) f(\) is bounded.

(ii) V(T)=V(ST X(t)dt)XT, as T—>oo,
0
where V denotes variance.
(if) tim Fim %AV,(T)zO
where
T
av ) =7v([ Rioyr), R = X085,
0

v =v({ soe),  so=3x0.
(iv) For every €0, k>1
lim ®([8]c:|7; A =0, h=1/T,

where
8[|5k|2] =|Ck|2—|fk|2/\(5Tl/3)

and ®(|c;|?; k) is the functional of | c,|? defined by

o(lal% b = | pllal; M.

Then
(1.3) dist X(T)—>N(0, 1) (weakly), as T—>co ,
with 1 T
2D = s [, xa,

where dist denotes probability distribution, and N(0, 1) the normal law with zero
mean and variance 1.

This theorem anounced in [8], [9] refines the central limit theorem in [6].

It will be easy to see that the conditions of Theorem 1 ensure the con-
vergence of finite-dimensional distributions of the process X (f), 0<t<<oo,
to the corresponding ones of standard Brownian motion, as T'—co, where

1 Tt
XT(z)=\/—V(_F)SO X()ds, O0<t<oo.
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The functional central limit theorem, which will be studied in a forthcoming
paper, would require further regularity conditions imposed on ¢;, f(A).

2. Preliminaries

Given real random variables &; (1<¢<m), each with the mth moment,
the cumulant S(&, ---, £,) as a multi-linear symmetric functional of them is
defined by

S(&, -y Ep) =i <£;.6.—'67m>10g E {exp i[o,£,+ "'+amgm]}|aol=-~-=m,,,=o .
When &, -, &, consist of m(1) »,’s, ---, m(k) n,’s, with m(1)4---4m(k)=m, we
use Sm(l)~~-m(k)(7]h ) 77k) instead of S(ED ) Em)'

Consider a family of functions F={f;, 1<i<p}, f; € L¥(d'?s), with

¢2.1l(7)=2m (m=1, 2, ---), and corresponding integrals with kernels f;

L=1f)=fa98, 1<i<p.

The arguments involved in f;, 1<i<p, together form a set of 2m letters. Make
couples (a;, by), (az bz), - of letters taken at once from the 2m letters, demand-
ing that the letters in each couple are from different kernels e.g. @; is from
fe but &, from f;, 1<k=+I[<p, we want to make as many couples as possible.
When we could get just m couples, I'=1{(ay, b,), (az, b2), **, (@m, bn)} (a complete
set of couples) the coupling is complete. Whether there exists a complete
coupling depends on the composition of the numbers /(1), ---, I(p). For example,
if /(1) is too large compared with the others, a complete coupling does not
exist. If [(1), -, [(p) are well balanced, there may be several complete cou-
plings which yield different complete sets of couples.

Given a complete set of couples T', make substitutions a, —\,;, &,—> —2y,
Ap=>Nmy by—>—N,, in the arguments of the product f,f,--- f,, to obtain a function
of Ay 5 Ay F(T 5N, =5y Am). F(T'3 Ay ++*5 Ap) Is called a p-fold kernel com-
posed of f;, ---, f, and will also be denoted by K(T';fy, -, f); fi (1<i<p) is
said to be concerned with K(T'; £, --*, f,), fu» 1 (k1) are said to be connected
by T if there exists a couple (a;, b;) with letters a;, b; from either f, or f;.

To proceed further, represent f;, 1<j<p, by distinct p points on the plane,
again denoted by f;. They are called vertices. If f,, f; (k=) are connected,
draw a segment connecting them, which will be called an edge. To avoid
configurational complexity, the points representing vertices are so chosen that
on an edge there are no other vertices than its end vertices.

The figure composed of all the edges and vertices is called the graph cor-
responding to a complete coupling T, and is again denoted by I". A subset of
the edges and vertices form a subgraph of T'. A figure composed of successi-
vely connected vertices and edges connecting them is called a polygonal line.
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In general, f,, f; (k+1) are said to be connected if there is a polygonal line
starting at f, and ending in f;. If vertices in I" are connected each other, T is
called a connected graph, and F(T';A,, -*+, A,,) a connected kernel. In general,
a disconnected graph T is a disjoint union of connected subgraphs T, ---, T',,
and the corresponding kernel K(T';; f,, ---, f,) is a product of connected kernels
corresponding to T', -+, T',. If f,, f; (k=+1) are connected, the total number
of couples (a;, b;) connecting f;, f; is called the multiplicity of the edge connec-
ting £, fi.

Let us denote by &(F) and &(F) respectively the set of graphs and con-
nected ones based on F={f;: 1 <i<p}. Obviously &F)c &(F). When
(1)+--+1(p) is odd, &(F), €(F) are empty. We have the following formulas

(141, [8D)

(2.1) E(I(f))--I( f5)) =1‘e§(9) S F(T;N)d",
2.2) SUR)- 1IN = 3 [ F; 0,

where m=(I(1)+---+1p))/2 if I(1)+---+Up) is even, and F(T"; \) are abbrevia-
tions of K(T'; f1, == f1), while if it is odd the right-hand members stand for zero.

Proof. The product I(f,):--I(f,) can be represented as a sum of home-
geneous polynomials (p. 388, [9]). E(I(f))-:-I(f,)) is then given by the non-
random term of the sum. This proves (2.1).

The formula (2.2) follows in turn from (2.1). We will prove it by induc-
tion. When p=1, the right-hand side of (2.2) is equal to zero since &() is
empty, whereas by the equality S(I(f;))=E(I(f,)), the left-hand side is also
equal to zero.

Let p>2, assume (2.2) up to the (p—1)th step, and notice that there hold
the relations between moments and cumlants ([5]):

E(I(f))-- LD —SUS)s -5 L(f5)) = STENSUS2)s == Lfp)+ -
+SUI(f), Lf)SUSs)s -+ L fp))+-+

Suppose that /(1)4---+I(p) is odd, then on the right-hand side of this
equality every term vanishes by the induction hypothesis, while on the left-
hand side the first term vanishes, so does the second one. This means that
(2.2) is true.

Suppose next that /(1)+--- +I(p) is even, and using the induction hypo-
thesis rewrite every term on the right-hand member of (2, 3) in terms of in-
tegrals with connected kernels; then they give rise to the sum

(2.3)

5 [F@ndme, m=u+-+ip)2,
re®



WIENER FuNcTIONALS AND PrOBABILITY LiMiT THEOREMS I 701

where D is a set of disconnected graphs . Here in view of the composition
of terms on the right-hand side of (2.3), one recognizes that ® must be the
totality of disconnected graphs formed by <. Therefore by (2.1), (2.3) we
have

SUR), =+ 10 =, 3 [T~ 5 [&m;

= FT; A Nd"s,
Fe%(ﬂ")s ( ) 7

which proves (2.2).
Taking into account of (1.2)

E{X,(t+7)X(t)} = k! Slck(xl, oy Ng) |2 exp iAo e
= [T fuman, ) = allals ).
So that the spectral densities of X(¢) and R,(?) are respectively

,,53 fan) and Sfu).
Define
(24) 0iA) = aM)/la)] i a)*0, =1 if a()=0,

and write
G = a()+AG) (k1)
where
) = (la) | An)8(N), n=ET.

Obviously 0,(\) € L}, «.
For later use we set up several fundamental propositions (I-V) mostly

pertaining to the expression (1.2).
I. Suppose that
(2.5) O(lesl By = O(),  as k>0,
then ®(| Ac,|?; k)=o(h) if and only if ®(8[|c;|%]; k)=o(h), h=1|T.

Proof. Suppose
O(1 Acy 1% B) = ofh)
Since

(2.6) lal—lal An = [Ac], 8[lel’]1<[Ac|(2]el),

the Schwartz inequality yields
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P(3[ 1 |?]; M) <20"(| Ay |5 M) (1 el ®; M)
whence by (2.5)
D[, 715 W) <2{D@(|cx|?; W)} *{D(| Acy|?; )} = o(h)

Suppose
(8[| ci]’]; k) = o(h) -
Since by (2.6)
[Aci’<(leal — el Am) (leal + el An) = 8[lal™],
one obtains

®(1 8¢, 1% B) < (B[ [c4]7]; ) = ok -

II. Let X(¢) be a real second order stationary process, with zero mean and
spectral density @(\). Put

o) = ([ Xy, @)= g: P(N)dN .

Then
@.7) z(l)z lim ®(k)/h< lim o(T)/ T,
VA Y0 T>
2.8) Iim o(7)/T <18 Emeb() 1< 3w i o( )/ T
I'»> h >0

Proof. Write
o) _ (° = I
deve So KO)dr = L4+-L+ 1,
where
/ H) o0
11=S’TK(x)dx, L= Ko, Iazg K\dr, 80,
0 1/T s

KO — <sin >»T/2)2 P(\)

2 /T
Then obviously
2.9) I,— o(T)
and since
(2.10) 2T < Sin;g/zisT if 0<A<T,
one gets
2.11) (%)zcb(k)/hSLSCP(h)/h , h=1T.

On the other hand, since
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K(\)<4p/\'T,
by partial integration

L,<AT ga PONNIN<AD(S)/ TS 8T sup ((k)[k) r A
(2.12) vr 0<h< S T
— O(1/T)+8 sup (@ ()

On making T'—>o0, and then & | 0

(2.13) Tll_)rg I,<8 1’.1{1;1 D(h)h .

(2.11) implies (2.7) and the second inequality of (2.8), while (2.9), (2.11), (2.13)
do the first one of (2.8).

III. Write
X(t) = XiO+AX(), 1<k<oo,

Xi(t) = Sci(?»)e,,()\, D8, AX(H) = | Aa(en D8
Then under the assumptions of the theorem

lim V(\/—IT S: AX,,(t)dt)) —0

Proof. The proof goes after that of the preceding proposition. Write
1 T
SV Xo AX,(t)dt) = L+1,,
where

rh oo
L= So K\dn, I = s,h K(\dn,

K0 = (B2 o e 0T, h= 1T,

and r is a positive parameter.
Put

D(E, x) = S @(| Ace|?; N)dn .
[
Then as in the proof of the preceding proposition
I,Sr—l};@(eé/"f, rh)—0, as h—+0.
7

On the other hand, since @(|Ac;|?; N)<@(|c;|?; N) and ®(|¢;|?; ¥) <cx on
[0, o).
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L,<4h S : (| cxl?; MAT2N = 4hD(| c,|?; )75

+8h " ®(l6,1% xpa-tdv<sen | ataw<sp .
4
On making T'—> oo, and then 7—> oo, we obtain the desired conclusion.

Let | -] be the Enclidean norm on R? and write x™ for the multipower
xf1---xfa of x=(xy, -+, x,)ER?, with m=(m,, ---, m;) a multiindex of integer
entries my, «--, m; >0.

In relation to the method of moments we mention without proof an ele-
memtary proposition.

IV. Let{§,, n>1} be a sequence of R°-valued random wvariables whose
distributions F = {F,, n>1} satisfy the conditions

sup S |x|?dF,<< oo
=1

for any p>0.
Then
(1) < isrelatively compact.
(ii) For every ¢>0, {|&,|%, n>1} is uniformly integrable.
(iii) Let G be a limit point of the sequence F, and F,, be a subsequence
of < such that
F,,—G, as n(k) — oo,

Then G has the moment of an arbitrary multi-power m and

lim S AdF g = s AdG.
koo

RemarRk. The reference topology in the above statement is the usual
weak one. By (i) & certainly has at least a limit point.

DerFINITION. Define 9, to be the set of sequences on [0, o) tending to

V. Under the assumptions of the theorem there exists a natural number n,,
such that
(1) <V (T)|T<c, for any n=>n,, T>1 with ¢, ¢;>0, independent of
T
n, T, where V,,(T):V(S S,()dt) ,
0
(i) for any D' D), there exists a subsequence D of D' with D& 9, such
that there exist the limits

() pu=lLmV(DVT)  (r2m),

rep
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(b) lim o,(T)/V(T) (n2m, k21),

where
o(T) = V{( S: x(t)dt), ViT)=W( S: S,(t)dt) ,
(c) limp,=1.

Proof. V,(T), V(T) are continuous on [0, o) and positive for 7'>0,
and AV ,(T) | 0, locally uniformly on [0, o), as n—>co. Therefore by the con-
dition (iii) of Theorem 1, given €>0, there exists 7,=m,(€) such that

sup AV(T)/T<é&

1<T <o
whenever n>n,,.

Let
I= ;-Ig V(T)|T, m= sup V(T)|T,
then obviously 0<</<m< oo, and
(2.14) sup Vi D)T<m
r21

for any #n. On the other hand
(2.15) VDT =V(T)|T—AV(T)|T>I—12 =12

for n>ny(l/2)=mn, and T>1. (2.14), (2.15) imply (i). (a), (b) in (ii) follow
from (i) by applying diagonal procedures.
Observe that
AV, (T)|T {3
1>2V,(DV(T)=1—=—"2r_"J— >]— =
VD) = 1= S5 =1 &
for all T>1, n>n,(€). This proves (c).

DerINITION. Define 9), to be the set of sequences D9, for which the
limits in (a), (b) exist.

3. Proof of Theorem 1

Take n>n, and using the notations in Section 2 write

(T) = \/—Vl”——(=——-,['r) S: Xy(t)dt
(1) = \—/,}—(T) [ xiwae, A = wl,, 7 [} axinar,

(3.1) Y(T) — (ﬂl(T)’ ) ﬂn(T)) ’

Y¥(T) = (n(T), -+ m(T)), AV(T) = (Any(T), -+, Ana(T)) -
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Then
Y(T) = YY(T)+A¥(T),
¢ L s.mar =3
VV(T)do ™" =
(3.3) E|lY(D)|*=1,
and by III, Section 2

34 al'im V(AY(T))=0  for every &€>0,

where V(AY(T))= j; V(And(T)) .

Lemma 1.
(3.5) lim sup [Syan(ni(T), -+ a(TNI=0, i k()4 +km) =24,
(3.6) sup | Sswsn(ni(T), s m(T))| <&, if E(1)+-+k(n)=3,

where c is a positive constant independent of T, &.

Proof. Step 1. Proof of (3.6). For the proof of (3.6) we are sufficed
to show that

(3.6)’ sup S(T),mi(T), 7m(T)) < &2, 1<k, I, m<n.
1

Denote by x=(xy, ---, )R}, y=(3, -+, y)ER!, z=(2,, -+, 2,,) ER” respec-
tively the arguments of c;, ¢i, ¢,. Then

S(T) = S(k, 71, Em)

1 3 3 =\ gk e —\ 7 e =\ ™
37 = ( \/V”(T)> S(S (%) D(F)d*B, g ) Do(B)d'B, S &(2)De(2)d"B) ,
where
® = Ek x;, etc, Dp(x)= e'T‘.— 1 .
j=1 449

By the formula (2.2), the right-hand member of the last equation is represented
as a sum of integrals involving connected kernels corresponding to connected
graphs. Those connected kernels are given birth through couplings among
the components of x, y, z. To be precise, write k=b-c¢, I=c+a, m=a+b
and suppose that ¢ components of y are connected with a ones of 2z, & compo-
nents of z with b ones of x and similarly for ¢. Next make the substitutions
denoted by Q=0M\®, u®, »@), with A@=(r,, -+, \,)ER’ etc.: substitute
1y ***s My Yy, *+*y ¥, Into the components of x, —w, --+, —v, Ny, ++*, A, into those
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of y, and —Ay, -+, —Ng —py, *++, — s into those of z. Q are restricted to the
set € of those substitutions which give rise to connected kernels. Let N=N(Q)
be the number of edges of the connected graph corresponding to Q. Then
N is equal to the number of positive a, b, c. The right-hand side of (3.7) is
rewritten as
1
- () 2
VV(T = =1
(3.8) ()Hﬁhﬁa
Q6
X ci(9)en(2) D1 (%) D1 (9)D1(2)} d'od'od’c

where d°c=da(\)) --do(\,) etc. Since |[c;| </ € T etc., the absolute value
of a typical term on the right-hand member of (3.8) is less than

Q(y\'(a), 'w(b), y(c)) {ci(x)

3 - o -
I= 53/21‘1/2(\/1/1 (T)> | Do(5® +0@)Dy(— v A@) D (— 2@ — @) |
Xd’cd'cd’s ,
Dy(x) = sin Tx/2
T - ’

x[2

where integers a, b, ¢ are so chosen that 0<a, b, ¢, b+c=k, ct+a=Il, a+b=m,
and the arising kernels | D (u®4-v@)D (—v® A@)DH(—A@D— D) | be con-
nected. Writing

u:k(ﬂ), 7):“(5)) w=v(c)’

one obtains

1=ere(_ L

VVAT)

) [ 1PA@)DAIDL0) | (o) dudodeo

where
1 =vtw, lz = —w-u, la = —uU—9o
fa(u) = f**(u) (the a-fold convolution of f) etc.

The linear functions /, l,, I are linearly dependent, actually
L,+1,+1,=0.

However any two of them are linearly independent. This is a consequence
of the connectedness of the graph.

There arise two cases:

A. One of a, b, ¢ vanishes,

B. a, b, c>0.
Case A (N=2). With no loss of generality, assume ¢=0, a@+6>0. Then in
view of the obvious inequalities
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(39) = IAIE S IS <IALIAIE? 1)
one gets

3, 3 1 8 _ a+b-2 2 2, oo

1<K ( o) K= I les

where ||+||; denotes L'-norm. Here we made use of the fact ([1]) that the
function
sin (o4 - +x,)/2

(@t )2

belongs to LY(R") (n>1). Since V,(T)XT, the last inequality implies

sin x,/2

x,,/z

YO (x,, -, &,) =

n
k=

1

(3.10) sup | S(T)| <c&.
r21

Case B (N=3). Choose a linear function 7; of u, v, w such that I, I, I are
linearly independent, and consider a transformation of variables u, v, w to x,,
Xy, X3t _

w=1h, x=»10L, x=I1.

We may assume that |9(x,, x5, x3)/0(%, v, w) | =1.
The inverse to this transformation takes the form
u = u¥(%y, x)Faxs, v=0%(x, x,)+ax;
w = w*(x,, x,)+azxs

where u*, v¥*, w*, are linear in »;, x,. At least one of a;, a,, a; is unequal to
zero. Let a;#0. Then

1= (o s) [ 1D DDt ) LAl

X S S agest+w*(x,, x,))dx;

<xerra(_ L,

VV,(T)
with
K, = || flls2 21w ®)l, L
laa
So that
(3.11) sup |S(T)| <c&*,
r21

that is the same conclusion as (3.10),
(3.10), (3.11) together complete the proof of (3.6).
Step 2. Proof of (3.5). Let S(T)=S(miq), ***s k) (p=4). Then
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SO =(Gy) (] dote)De@os, -, [ ap(:0:Ea08)

(3.12)

(\/ Vl (T)) g O {ciy(w)+cip(2)Dy(w) - Dp(2)} d'ar

where s=(k(1)+---+k&(p))/2, O denotes a complete coupling of the arguments
of chqys **s Caipyy SAY WER'D, ..., 2 R*® | and the summation means that Q
runs over €, the set of connected couplings.

From now on, to avoid notational complexity we deal with the case p=4.
In this case a typical term on the right-hand side of (3.12) is of the form

<ﬁ) [ )i @)@ DD DL D)

s = (j+k+14+m)/2, 1<j,k I, m<n,
(3.13) w=(ef,g), x=(—ehi), y=(—f,—h,j)),
zZ = ( g, —j’ i) ’
ll_e+f+y)' 4=_g J_ls
where the six vectors e, ---, j are so chosen that their dimensionalities d(e),

-, d(J) satisfy that 0<d(e), ---, d(J), d(e)+d(F)+d(g)=], :*-, d(g)+d(J)+d(i)=m
and moreover that the arising coupling be connected.

Since |c;j(w)| </ € T etc., the absolute value of (3.13) does not exceed

1
V7.0

G I=ETO( o) (1D DDA

X g\(€)ga(f)- -~ go(j)dedf ---dj
where

h=etftg, L= —eth+i, L= —f—htj
I4Z—g_j“i’ e=e, ’]:J’
&= [l . gg = fiO* (convolutions of f).

Depending on the composition of d(e), ---, d(j), there arise several cases. How-
ever, there is no essential change of technicality for different cases. So that
we will restrict ourselves to the case that d(e), ---, d(j)>0. [,(1<p<4) are
linearly dependent functions of 6 variables e, f, -, j, actually

4
z_‘, =0
but any three of them are linearly independent. Choose three linear functions

1, 15, 15 such that these together with I,, I,, /; form a linearly independent set.
To compute the integral in (3.14), make a linear transformation from
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e, -] t0 %y, -+, X!
(3.15) x; =1, (1<i<3), x;=1;(4<j<6).
The inverse transformation is

(3.16) e=ete, f=foth i=Jtn,

where ¢, ‘-, j, are linear functions of x,, x, ¥; whereas e, ---,j;, are those of
Xy, X5, Xg. Write

el %,

(3.17) f:‘ =lla,-,-ll(xs), 1<i<6, 4<;j<6,
M xG
N

and with no loss of generality assume that the square matrix A=l|l|a; ;4sll, 1<7,
Jj <3 is non-singular. Using these transformations and (3.9)

[ 111021 18,deds---dj

— |det D det 4| S II | Dy, Dy 4-0,-1005) | doey ey

(3.18)
X11&dllee |1 85ll-= 18oll» S 8i(eotu)ga(fot-v)gs(go+-w)dudvdw
< |det D det 4| IT llgyll- I llg,llI1w®1,T
where D = ol -+, I)fole, - 1) -

Insert this into (3.14), then (3.12), (3.13) imply that
1y -
1/6\4 — 1/3
Sup | S(T)| < const (T) (\/ ) T = const T"A3,

In general, by the same device as above one gets

sup | S(T)| < const T2 (p>4).

0<et

This completes Step 2.

Proof of Theorem 1. Since V(X(T))=1, {dist X(T), T>1} is relatively
compact. Therefore if we denote by M the set of limit points of {dist X(T),
T>1} as T—oco, M is non-empty. Let L& M, then there is a Dye9), such
that

lim dist X(T) = L.
T-»o0
TED,

By V, Section 2 we can find a subsequence D, of D,, D, 9), such that
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lim dist X(7T) = L.
T>
TeD,

Define N to be the set of limit points of {dist Y(T), T€D,}, as T—>c on D,.
Since by (3.3) {dist Y(T'), T€D,} is relatively compact, N is non-empty. Let
Pe N, then by V, Section 2 there exists a subsequence D, of D, such that
D,e9), and

(3.19) lim dist Y(T) = P.

Tpoo
TED,

(3.4) implies that
(3.20) lim dist Y(T) =P  forevery 0<&LI.

Tyoo
TED,

Suppose Y=(7,, :**, 1,) is a random variable with probability distribution P.
Taking into account of relations between moments and cumulants, (3.5), (3.6)
mean that each sequence {Y*(T), T€D,}, 0<&L]1 satisfies the conditions of
IV, Section 2, while by (3.19), (3.20) its limit P is independent of & There-
fore combination of (3.5), (3.6) and IV gives us

Sla(l)mk(n)(’]b Ty 77n) =0 if k(1)++k(ﬂ)24 ,

3.21
(3:21) | Suroro(mo s m)| <& i R(1)Lo () =3 |

0<€<1 being arbitrary the last inequality means that

(3.22) Se-sw(ms s 1) =0 if k(1)+---+k(n)=3.
Moreover, if 1<iZj<m, (3.4) implies that
E@i(T)ny(T) =0, lim E(j(T))* = b}
TED,

where b} = lTim vi(T)/V(T), whose existence is assured in V, Section 2. So
>0
TEeD,

that by the same reasoning as above
(3.23) B(oim) =0 (1<i#j<n), E(z)="5;.

(3.21), (3.22), (3.23) imply that P = N(0, B), the normal law with zero mean
and covariance matrix B=||§;,b%||.
Write

X(T) = S(T)+AS,(T),

T 1 1 T
So S,(t)dt = {V(T)|V(T)}* VTS So S, (t)dt ,

<
3
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AS(T) = —L ("R (t)ar
V(D 50 A1)t

and we are going to derive the conclusion of the theorem.
Observe that

|E exp izX(T)— exp (—=2%/2)|
< |E exp izS,(T)— exp (—2%/2) | + | E exp 12S,(T)[exp 12AS(T)—1]1,

and the second term on the right does not exceed

= AV (T)\
lzIEIAS,‘(T)|£lzl< 7T ) :
Then
ylim |Eexp isX(T)— exp (—4'12)|
_ e Ay
(3.24) < lim| E exp i25,(T) — exp (— #*/2)| + 'z'}}fﬂi\/ V(’}))

rep, TeD,

= lexp (—p,2|2)— exp (—2[2) |+ | 2| (1—pa)",
where we have used the fact that S,(T)—+/p, (m-+--+n,) in distribution
by (3.19) as T—co on D,, and \/p, (m++7,)EN(0, p,) since éb’j:l.

The left-hand side of (3.24) is the discrepancy between the characteristic func-
tion of L and exp (—2%/2), while on making n—co, the right-hand side tends
to zero. So that L=N(0, 1), or M consists of a single element N(0, 1). Since
{dist X(T), T>1} is compact, this means that the conclusion (1.3) is true.
This completes the proof of Theorem 1.

4, Random fields

We consider a direct extension of Theorem 1 to random fields. Let X{(x),
xE R’ be a strictly stationary random field subordinate to a strictly stationary
real Gaussian random field

4.1) E(x) — gexp inexdB, x ANERY

with E&(x)=0, complex spectral random measure d@ and spectral measure
do(\)=E|dB(\)|? which is absolutely continuous with respect to Lebesque
measure on R?, do(\)=f(A)dA. Then similarly to (1.2), X(x) is represented by
the Ito-Wiener expansion

(42) X(®) = 33 Xi(#)
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X(x) = | aMa, 926,

where 7\,—(7\‘ S A, d*B=dB(\Y)- dﬂ(x”) MeR (1<j<k), eN, x)=
exp i\, A-x is the inner product of A=\!4--42* with x, and each ¢,(A)
(1< k< o) is symmetric in A}, -+, A%, subject to the conditions that c,(A)=c,(—A\),

ledls = § e tdia<oo, d'o = da()-do().

Let a, be R?, a=(a,, -*-, a;) etc., and 0, 1 respectively be the zero d-vector
and the d-vector x=(x,, ---, x,;) with x;,=1 (1<i<d). Write a<b, a— oo,
a—0 (+0) respectively to abbreviate the relations, ¢;<b;, a,—~>°, a;,—0(+40)
(1<i<d). For 8>0, ac R’ we use the abbreviation Ialsb‘ (la| = 8) if
la;] <8 (la;] =8) (1<i<d). For example 0<|k| <8 (k= (h,, h;)) means
0< | iy, |B] <8

As in Section 1 define

o(alsh) = | elalnin,  o<herr,
0<A<h
o(|cl?; N) = B! S[c,,()x,—X’ AL e, MY 20— )
X fA) - fAFdAL-dA ) AeER?,
xl — (xl, ey XR—I) , X/ — Xl"*_ +)\‘k IERd .
As a direct extension of Theorem 1 we have
Theorem 2. Suppose that X(x) in (4.2) satisfies the following conditions

1)-(iv).
(1) f(\) is bounded.

(i) VD=V | X@dx)<1Q(T)], as T—>oo,

0<LELT
where T€ R¢, T>0, and IQ(T)I is the volume of Q(T)={x€R*:0<x<T}.
6 nl—if:lo Q(T)|—> IQ(T)I Tomy AN =
where
AV(T) = V(| R(@&)dn), Ry(w)=X(0)—S,), Six) =2 Xu(®).

0<I<T
(iv) For every £>0, k>1
lim (8 c,|]; 1)/10(8) | = 0,
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where
8[lal P =lal> = lal’AEIXD) "), h= (b, -, ki), h=1]T;
(1<i<d).
Then,
dist X(T) = N(0, 1) (weakly), as T — oo,
where
X(T):\—/% [ X
0<L*LT

In the same spirit as in Section 3 we clarify first relations (propositions
VI-VIII) between the growth of V(T) and behavior of spectral density of X{(x).
The proof of Theorem 2 is essentially similar to that of Theorem 1. Stress
is made on the features specific to the dimensionality d>1, but to avoid no-
tational complexity, we restrict ourselves to the case d=2, and put E=R2
So we are dealing with a random field X(x) defined by (4.2) with x€E, N an
E*-vector, i.e. a vector with & components from E.

VI. Let {X(x),xE} be a square-integrable strictly stationary real ran-
dom field with mean zero and spectral density p(N)=@(\i, Ny), A=Ay, A) EE.
Then

4.3 lim_cM_h)_ lim o(T)
(*+3) h»—«»IQ(h) =82 o)’
(4.4) m -2 <. fm (1)

w2 10 = ()]

with numerical constants c,, ¢,=>0, where

AN =V( | Xar), om= j PN, b= (hy 1)>0.
o<i<T - hA<h

Proof. Since
v(T)ng%(x)cp(x)dx, D}(A) = D3 (\)D(N),  T=(Ty T,

by (2.10), we obtain

2)Y o) o oD) oy, k=T, G=1,2),
(2) o Siomy: #=twh W=1T: (=12

which implies (4.3), (4.4).
VII. Let {X(x), X&E} be asin V1. Then
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5 fim - 27 o
(+5) =T =
if and only if
m 2 . mml o
(4.6) 1;.?01 10| <oo, lhl{r'lol P Y(h)<oo,
where

20 g, A= ().

vy = | " 2,

A <h
In this case

im 2D <. fm 20)
7= |Q(T)| — w0 |O(h) ]

with a numerical constant ¢,>0.

*.7)

Proof. Suppose that (4.5) is true. Then there is a constant ¢,>0 such that
| DHVpIr e, (T21).
Multiply e~7z and integrate over 1<T,<<co on the both sides of the last in-
equality and use the fact that

1o 1
P

Sl D3 (x)e"T2d T, = ze-l{l—i—__—“ X% o0 x} S

1+4-a#

on 0<x<<oo. Then with a constant ¢;>>0
S"" D% (A)dn, S"" Md%z<¢3T1 » =1,
- == 14207

From this, appealing to (2.8), we obtain the second inequality in (4.6), whereas
the first one is obvious by the proof of VI.
Suppose that (4.6) holds true, and write

IQ(T)I (T) B W(OSMSISS " IA151$8+ M§>8+ IAS>8)D%(7\‘)¢dX .

Mol>8  IApl<s

Denote by 1), I,, I; and I, respectively the first, second, third, and forth term of
the last expression, and we will show that I,, I;, I, tend to zero, as T—>oo.
First,

4.8) I,,<16h$hzg<pdx—>0, as T—>oo.

Second, if we write
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== ]H'Jz ’
=L S DiNpdn, Ji= L S D (\)pdn
Q(T)ogxllg-1 (7)1 m<IA <8
AgI>8 1A1>8
then
h oo
(+9) hsast §oan| EevLAT

1 ogiaI<hy

and by partial integration with respect to A,

jZSCShIhZ S AN, SM ¢/ (1—|‘7\«§)d7\2
(4.10) h<IAI<S -
< ey (U (8)/82 + 2, 5 ‘I’(x)dx} s (¥ (3)/8+-2,3up W)}

whence by (4.6), (4.9), (4.10) and by symmetry
(4.11) liml,=1liml;=0.

Tpoo Tyoo
Third, turning to I,, write
2
= o] + { + [+ | )orovear,
O<INISh OIS 0<IAgI<hy  BINISS
<IN I<hy  hpSIA<E  mSINISE  hp<IAI<E

and denote by K, K,, K, and K, respectively the first, second, third, and
forth term on the right-hand side. Obviously

_D(h)
(4.12) i K< I 5001 o)

By integration by parts with respect to A,

8
K2g4% dxl{a-z S ¢(x)dx2+zs y-3dy S q:()\)dxz}_
1 ogInyI<hy Api<s b A<y
This implies
hy, ®((hy, 8)) ., @ ke D ((5 ) h, ©((hy, 3))
K<4le 2 8) g by { B((h 2)) g, 4 1o D((s 8))
=TS TR +8h1hzssy$8 ST T
() 4, dy ( Iy ) o (h)
(+13) 8 SR Tou S N5 T2 SkeTom
emN= | pMar, xy>0,
l<#

A<y
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whence by symmetry

imK,= th <8 sup ()
Ty o<ini<s | Q(h)|

for every 8>0. This implies that

(4.14) mimK,<2fm -2 (=2 3).
540 T>oo h>+0 IQ( )

Finally
A2, S PAZZAN, .
l Q( T) l h1$§1$8 hoLIAI<LE

Apply integration by parts to the interior and exterior integral of the last ex-
pression and we have

_# (1 (=, 9))
(4.15) a IQ(T)I{84IA58 +2$ PR &
' @((3, ¥)) @((x, 5))
Shz &y 3} . +4S 1Sh xyy dxdy}
Therefore
416) K<t LD (s, &)+ Fhthy sup FOL +64 sup 0L,
whence
@17 I o K< 64

Combination of (4.8), (4.11), (4.12), (4.14) and (4.17) proves that (4.6) implies
(4.5), (4.7). 'This completes the proof of VII.

Define () after the definition of 8,(\), put
) = (laM) [ An)bN), 7= V€T,

(V) = k(M) +Ac(N) (k21),
and define
o(aals @)= | eldalsrdn,  (0<x),
(4.18) Enaier

‘1)(8, h) = ‘I)('AC,, IZ, (hnhz)) ) h = (hh h2)>0 .
Then, in the same way as in /

(€, y=o(| Q()]) if and only if ®(3[|c,|; H)—o(1QUM)1), as k|0,
(4.19)  h=(h, h,)EE, h;=1|T; (1<i<2) provided that ®(|c,|*; £)=0(|0(%)|),
as h—>-0.
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It is easy to see that

(4.20) (i) D0, %) =D(|c,|% k) (i) D(|Ac|%h)<®0, k), O<heE.

Write
Xi(x) = Xi(x)+AX,(x), 1<k<oo,

Xi(x) = S aMe, x)d* B, AX(x)= S Ac(M)e(M, x)d* B,
Then we have

VIII. Under the assumptions of Theorem 2

lim V(ﬁ_ﬁ%x&sﬁxk(x)dx) —0.

Proof. The proof is a modification of that of III. Let us write in the
abbreviated vector notations introduced in the beginning of Section 4

(4.21 V(:/_TQI‘(—TWOSJSTAXk(x)dx)
.21) 1 | |
o)l <°SI§1S8+::1:S§: -I-::l:gzg +M§>8)DT(X)¢(| Acy % )N,

and notice that @(]|Ac,|% N)<®(|c|%; N), and by VII, (4.6) holds true with
@(\), ®(k) respectively replaced by @(|c.|?; N), ©(|c|?; £). Then, if we
denote by I, IF, I¥, and IF respectively the (first, second, third, and forth
term on the right-hand member of (4.21), the passage from (4.8) to (4.11)
implies that

(4.22) lim (IF+I1F+1F)=0.
T-»
To show that
(4.23) limI¥=0
T->

represent I¥ as the sum of integrals K¥ (1<j<4) which are of the same type
as K;lin (4.12)~(4.17) except that this time the integrand is DF(\)@(|Acg|?;\)
instead of DF(A)p(\).

First, by (4.12), (4.19)

— . ®(¢, h)
4.24 Iim K¥< lim =
( ) Ty ! h>+0 [Q(h) l
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Second, consulting (4.13) one obtains

h D&, k)
K¥f<4(-% 2) ,
F<4 5 %) SR Tom)]
whence by (4.19)
(4.25) limim K# = limim K¥ = 0.
540 T>oo 540 T-»o0
Estimate K¥ after (4.15), (4.16) to have
K¥<4(4L,+8L,+16Ly)
where
£, = 12Ml e, 3, 8) -0,
1 D(0, %)
( ) 2 5 (m+ ﬂOi}:&s]Q(h)] ’ as T ,
and
L=l (" " @(1aal (5 y)wyasdy .
[Q(T)| iy e
We are sufficed to show
(4.27) lim Ly = 0.

T->00

For this purpose rewrite Ly in the form

1 rhl rhz rhx 8 8 rhz 8 8
426) L= o (001000 L0+ LT
( ) 3 |O(T)| \Iny I T by Jrhg T Srhl ha + rhy Jrhy
X D(| Acy|?; (x, y)) /x> yPdxdy ,

with parameter r>1. Denote by M;, 1<{<4, the ith term on the right-hand
member of (4.28). By the monotonicity of @, @(|c;|?%; N)<@(|d:|?; ) pro-
vided |¢;|?<|d,|% and the equality |Ac,|=c;| —|cx|V/ € (1/hh,)® we know
that for 0<x<rh,, 0< y<rh,,

(| Ay |?; (%, 3)) = S (| Acs | NAN<D(E, b)), k' =1h,
i<
Al <Y
whence for by <x<rh,, h,< y<rh,

(1 Acl?; (%, 9)) ,2P(E B)
xy - 1o@)]

This implies
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4.29 M=<r 2GR 00 (7 (7 () 2dnay = nRER)
(4.29) < ,Q(h,)llg()lghghz(xy)ddy 00!

On the other hand, since the common integrand of M,, M, M, satisfies, on
the working regions of the variables, the inequality

2(1Aal’; (% 9)) < gup UG A) 1

¥y Toamgs  |Q(R)]  (xy)?’
one gets

?_—(L{,‘k—_lz;h) rhy (oo @ (rhy dxdy
(430) MaA M= SR 1o oml(f, 1, + 1, Shz><xy)’

<2 g alsh)
r o<imi<s | Q(h)]
and similarly
1 D(|cil* k)
31 <= Ikl B
(*+31) M= SR Tom)]

Keeping (4.19), (4.20) in mind, successively make T —co, r—oco in (4.29)-
(4.31). Then one concludes that

(4.32) limL; =0,

T>00
as was requested. 'This completes the proof.

Proof of Theorem 2. In the notations of Theorem 2 put

V(T) = V( S S,(x)dx) ,
0<E<T

ol(T) = ( SX,,(x)dx), \<TEE, nk>1.
0<i<T

Under the assumptions of Theorem 2, V,(T), vi(T) behave similarly to
the corresponding quantities in Section 3. Thus, there exists an #; such that
V. (T)X|O(T)| for T>1, whenever n>n,. Define

_ 1
™= VAT OSSSTX”(‘”)dx’
e 1 . _ 1
7]k(I‘) - \/m O$SSTXk(x)dx’ Aﬂk( T) \/ V,,(T) OS‘STAXk(x)dx9

n>n, k>1.

Then, in view of VIII, for the proof of the theorem, we are sufficed to show
that for all n>n,
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(4.33) lim sup | Siy.an(ri(T), s u(T))] =
it k()L En)>4,

(4.34) SUP | Sy-am(7i(T), -+, 7a(T)) | <const €72,
i k(1)botk(n) = 3.

Before going to derive these observe that

where

DT(X) = Dr,((x)l)Drz((x)z) ’

and (A); (=1, 2) is the ith component of A& RZ.

The same computation principles as before ((2.1), (2.2)) in terms of ker-
nels apply as well to the moments and cumulants of multiple integrals with
respect to dB. Consider, for example, Syuy..ten(1(T), -5 7a(T)) with k(1)+
--+k(n)=4. In the same way as in (3.12), it is a sum of integrals with con-
nected kernels of the form (c.f. (3.13))

4 4
(4.35) (ﬁ) [ )@= I Dt)s,
s = (j+htdm)2, 1<) kL m<n,
w= (e f,g), x—( ehz), y=(—f, —h,j), z=(—g, —Jj —i)
h=e+t+f+g, - lh= —g—j—i,

where w is an E’-vector consisting of an E%®-vector e, E‘®-vector f, E‘9-
vector g as components with respective dimensions d(e), d(f), d(g), e etc. are
the sums of the component vectors of e etc., similarly for x, ---, z, so that
l,(1<p<4) are E-vectors. As in (3.13), 0<d(e), :--, d(Jj), d(e)+---+d(g)=
jy =+, d(g)+ - +d(E)=m, and moreover d(e), :--, d(j) must be so chosen that
the arising kernel be connected.

Since |cj(w)| <€ |O(T)|¥ etc., the absolute value of (4.35) does not
exceed

(+36) I=(VE IQ(T)I"°)“(

where

V1L DAL 86)- - goiYde---dj

Va(T)

h=etftg - b= —g—j—i,
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e=8, -, j=J, g =flO% ... go— fiO¥,

and de etc. are Lebesgue measure on E. Similarly as in (3.14) we have thus
6 base E-vectors e, -+, §, E-vectors [, ---, I, as their linear combinations which
satisfy /,4----+1,=0, and bounded L'-functions on E, g, (1<p<6). There
are several varieties of permissible compositions for d(e), ---, d(j). However,
by the same reason as in (3.13) we confine ourselves to the case d(e), ---, d(Jj)>0
and proceed along the same line as before. Choose linear transformations 7,,
T;, 15 of the base E-vectors, in order that these together with I, I,, I; form a lin-
early independent set. By means of these 6 linear functions, make a linear
transformation from E® onto itself, and consider its inverse, with the same
representation as in (3.15), (3.16). Obviously this transformation resolves
into a linear transformation D from R onto itself. With no loss of generality
we assume that e, .-+, 7, satisfy the same relation as (3.17) with non-singular
A, which determines a linear map from E® onto itself, or equivalently a linear
map A4 from RS onto itself. Then, corresponding to (3.18), this time we have

[ 11 it g yde-di
< aTL gl {TLIDyx) || Dt | i
(4.37) X SE3gl(eo+“)gz(fo+’0)ga(go—{—w)dudvdw
=G S 2 ,I;-[l | Dr,(%2) | | Do, (%% +%3) | dyydndocs

X SR’ ;I;]Drz(sz)l | Dy, (%10 %20+ %32) | d%y,d%00d5
= o[ ¥} O(T) ],

where we have used the notational convention x;=(x;,, #;;)€E (1<7<3), and
¢; (1<7<3) depend only on det D, det 4, ||g,ll,, 1< p<3), llg,ll (4<g<6).
Collecting (4.35), (4.36) and (4.37) we conclude that if k(1)4---+k(n)=4

1

o) 190!

| Skw-wm(mi(T), =+ ma(T)) | < eo(vV ENIQ(T) | 1""’)“<
=c(VENIQT) TR,
In general, by the same device, we draw the conclusion that if k(1)+---4k(n)=
»=3
[ Sk (ni(T), -mu(T)) | Sel(V/ EVIQT) |27,
where ¢, is independent of € and 7. This implies (4.33), (4.34). Therefore,

by the same arguments as in the proof of Theorem 1, immediately follows that
of Theorem 2.
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5. Asymptotic independence and supplementary remarks

In relation to the limit theorems in Section 3, 4 we draw our attention to
a structural interrelation between X(t), 1<k<oo, of (1.2) and (4.2). For
this purpose we make

DEFINITION 5.1.  Let X(2)={x,(¢), ---, x,(2)}, tE[0, o0), be an R*-valued

stochastic process such that dist X(z), 0 <z<<co form a relatively compact set
under the weak topology.

The components of X(¢) are asymptotically independent as t—>oo if and
only if

(5.1) tim (BT f(x(6)— 11 Bfi(x,(0)} = 0

for any choice of f;ECs(R), where Cy(R) is the set of real continuous bounded
functions on R.

Notice that the relative compactness of dist. X(¢), 0<z<<co, implies that
(5.1) is true if only it is so for an arbitrary choice of f;&S(R), the Schwartz
space of all real-valued rapidly decreasing infinitely differentiable functions
on R.

IX. Let X(t)=(%y(2), -+, x4(2)), 0<t#t<oco, be an R*-valued stochastic
process, and suppose that each X(t) has the moment of an arbitrary order and satis-
fles the conditions that there exists a mnonm-negative sequence A, 1<n<<oco, such
that

(i)
max I B(x}"(0) = 2
(5.2) <i< "m|
lim @™ 227 — for any a>0,
mye  gpl
(i)
(53) lim {B(y(t)"+x(8)") — E(a(8)") - E(y(t) )} = 0

for an arbitrary set of non-negative integers my, -+-, m.
Then the components of X(t) are asymptotically independent, as t—>cc.

Sketch of the proof. For notational simplicity we deal with the case k=3.
First notice that by (i), we can find a #,>0 such that dist X(), z,<t<<oo, is

relatively compact.
If f e S(R), then for A>0

falx) = S f(u)( |u|) edy
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where
foy = { fegeimas, fa=fo.1 DaGe),

with the Dirichlet kernel D, in Section 3.
Define

Si(t, n) = zo%ft_.»’ L At = upm(r),  1<I<3,
Ay(t, n) = exp {t4,(8)} —Si(¢, n) .
Then, for m=1,2, ---, |4;| <A (1<I<3), by (5.2)
Iim E| Ai(t, m)| "< palm, ),

Ba(m, n) = {(mTA"')"i}mMm .

where

By (5.2), after elementary computations, u, (m, n)—>0, as n—> oo, for any m>1.
By elementary estimations we obtain for any z

t-po0

—E {exp tuyx,(£)} -+ E {exp tuges(t)} | <c(pi*(3, n)+wua(1, n)),

lim I§I_I1£Al E{exp if[uey()+ - +usxs(2)]}

where ¢ is a constant depending on 4, but independent of #. Insert this into
the obvious inequality

| E(@i(x(8) £5((t))— E(gi((8)) -+ Blgoas(®) |
<TI0 {* o |7 1B expiunyt - +ugn(o)
—E exp tuxy(t)- - E exp tugxs(t) | du ,
where f;€S(R), g;=(f;)a» 1<j<3, to have
tim | E(g:((2)+ s(x5(6) —~ Bl@((0) - E(gs(w(e) | = 0.

Since g;— f; locally uniformly, as A—>co, and {dist X(¢), t>¢,} is weakly rela-
tively compact, (5.1) holds true for any f,&S(R). This completes the proof
of Proposition IX.

Let F,; be a limit point of dist x,(¢), as t—>oc0 (1<I<k), and a sequence
t, 1 oo, n—>oc0, be such that

dist x,(¢,) > F;, (weakly), n-—>oo.

Then there exists
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v, » = lim Ex7(t,) = S K"dF(x), m>1.
#-yo0

By (5.2), we can find a constant ¢;>0 such that a"—zl"<cl, n>1, for any a>0.
n:

This means that v3,/*">c,/n with some ¢,>>0, independent of #n. Since

2 vz—nl/zfzzc2 2 n!l= oo ,
n21 21

the Hamburger moment problem

o S &"dF(x), m>0

is determined.

Theorem 3. Take an arbitrary k>2 and define X’(T)=(}?,(T), ey X, WT)),

where

@) X(T) = 71;1,_(——17) g: X0dt, 1<T<oo,

in the notations of Theorem 1, or

1

(b) X’(T)ZVT/T—:F) | x@a, 1<Tere,

0<ri<T
in the notations of Theorem 2, 1< j<k.

Then, under the conditions of Theorem 1, Theorem 2, the components of X(T)
are asymptotically independent as T — oo,

Proof. Assume the conditions of Theorem 1 and deal with the case (a),
the other being done in a similar fashion.

Define
X =1 ST X\, 1<j<k
VV(T)Jo =N ’
X(T) = (Xi(T), -, XiT)),
and write

X(T) = X{(T)+AX(T).

For T—co, X(T), X*(T), AX(T)behave in the same manner as Y(T), Y¥(T),
AY(T)in Section 3. Thus, {dist X(7T), T >1} is relatively compact; for 1<j<k

(5.4) | S (XYT))| <c(v/EY'TH™B  if m>3,

where S,(+) is the mth cumulant (c.f. Section 2); dist X| (T) 1s equi-convergent
with X*(T), as T—>oo, for any £>0. (5.4) implies that
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(5.5) sup E|XYT)|"<oco, forany m>1.
<e<1
1<T

We will show that
(5-6) Lim S({X3,(T)}"™, -+, {X(T)}") =0,
2<I<k, my -, m>1, 1<ji<--<j;<k.

For this purpose, to obtain an expansion of {X (D", 1<q<k, into Ito’s mul-
tiple integrals, introduce P=||p;;l|, an mXm symmetric matrix with integer

entries p;;>0 such that p;=0, 0<p;<q (1<i<m), where p,-=§m}1’ij59» and

take m(m—1)/2 independent variables x;,E€ R?ij, 1 <i<j<m,p;;=d(x;;).

Let a;(\), -*+, au(N), AE R’ be such that qy(\)="+=a,A)=7,), 7.(A)=
ciMND(M)NV(T), »ER'. Choose p, arguments of @, and replace them by
X, =(Xy2) X3, ***y X1) € R?, choose p, ones of a4, and replace them by x,=
(%215 X33y ***5 X2s) ER?2, and so on, where x;; is defined to be —x;; if i<j, to get
successively 7, (X, Ay, oty Vo(Xmy Am)y MER™, -+, N, € R*m, with w;=q—p;
(1<i<m). By the multiplication rule for Ito’s multiple integrals (p. 53, [8], p.
388 [9])

(5.7.1) XYTH" = kot S #(P) S Cop(My 05 A)d'B
(5.7.2) Cop = S ¥ (X1 M) Y (A
r= ?;:P.-/Z, S =ty+ Uy,

where «, is non-random and the summation in (5.7.1) is taken over all the mat-
rices P satisfying s=wu+ - +u, >1 in addition to the above-mentioned re-
strictions, while the integration in (5.7.2) is over R" with respect to d'o =
Il <i<j<m d%iio(x;;). Those x;; for which p;;=0 are to be dropped out of the
above descriptions. Similarly only those A; (1<i<m) for which #;,>0 actually
appear on the right-hand sides of (5.7.1), (5.7.2), the others being fictitious.
The concrete expression of «#(P), which is immaterial for the present use, can

be shown to be given by (p. 53, [8])

k(P) = i{ill (Z)ﬁ_PI;:—;;} ls‘lgsmp,-j! .

Generally speaking, the graph corresponding to P contains several connected
subgraphs each of which gives rise to a connected-kernel integral, thus
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scqp(xl, =y Ay)d°B contains these integrals as non-random factors. If we

denote by K(v,, P) the product of these integrals and take it outside the integral
sign, we have the representation

(5.7.1y XUDY" = et S e(P)K(,, P) { 20,

where €,p is obtained by dropping those 7, which have gone with K(v,, P) out-
side the integral sign.

For the aid of understanding here is exhibited a simple example. Let
g=2, m=6, and

011 010

P, 0
P=\OP P=101 P,=1{101
z 110 010,

then

K(vy P)= |, 7, 20—, 9)i—y, —)o

&p(N) = SR’ V2(% M)To(—%, ¥)V2(—Ys No)d’o,
A= (7\,1, XZ)ERZ .

A cumulant S(&, -+, ;) is multi-linear and identically zero if at least one
of &, -, &, is non-random. Therefore, in view of (5.7.1)’, the cumulant in
(5.6) is expanded into a sum of constant multiples of expressions of the form

(5.8) K ) Ki) | F@, o, 85 9)a(0),
where F(¢,, -+, ¢;; v) is a connected kernel composed of functions of the types
(5'9) Z‘l()") = S yil(xl? 7\‘1)'“71'1(“:”!) 7\'m)drla'; A= (7\41, Tty 7\‘;») ’

&) = | it 1) Y e, 1= (s s 1)

......

K,(7j) a product of integrals with connected kernels composed of 7;, and
similarly for the other K’s. Then SFd’o- in (5.8) results in an integral with

a kernel G composed of 7, -*+, 7;;, through a complete coupling of arguments
involved in 7’s. Resolve G into a product of connected kernels Gy, -, G,
composed of ¥y, «++, Vi
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(5.10) G=G, - G,.

Let d(G,), 1 < p<g, be the degree of G,, i.e. the number of ¥’s concerned
with G, (c.f. 2). On the right-hand sides of (5.9) one can find a 7; (1< k<))
which is concerned with G, and in its arguments contains a non-fictitious com-
ponent of some of A, , --+, otherwise G, would be absorbed in the kernel of
K (v;)-K)(vj;). With no loss of generality, assume that A; is such a non-
fictitious component; 7, (x, \,) is concerned with G,. Think of a coupling
procedure making a connected kernel G,, then one knows that there is a 7,
1<t<], such that ¢==1 and 7 is concerned with G,. Then, in order that G,
be connected, G, must be concerned with the other <. This means that
d(G,)=3.

By (5.8), (5.9), the cumulant in (5.6) is expanded into a sum of constant
multiples of expressions of the form

(5.11) K )+ Ki(1) (|Gido)(| Goavea)

Ki(v;)--K(vj) is represented as a product of integrals SG’d“o- with con-

nected kernels G’ each of which is composed of a single one of v, ---, v;. It
may happen that d(G')=2, and G’ is concerned with ¥;. Then

S G'd's = EXWT)<1.

If d, =d(G,) (1<p<g), then since dy>3, SG,,d’»o- is of the same type as a

connected-kernel summand of Syt (71(T), -+, 73(T)), with k(1)+---4k(n)=
dy, in Lemma 1. So that by Lemma 1 one obtains

L = | S({TH(DH™, -, (XD} ") | <ee,

where ¢>0 is a constant independent of &. The same is true with SG’d"a-

if d(G')>3. By the relative compactness of {dist X(T'), T>1}, equi-conver-
gence of X and X’(T), (5.5), and IV, one can find a sequence {T,} €9, such
that there exist

F = lim dist X(T,) = lim X%(T,),

L = lim| ST )™, -, LK5(T)F™),
and B _
lim SUXB(TIF™, -+, AXG(TF"™) = SEM, -+, E),

where (&, -+, &) is distributed according to F. Therefore L is independent
of & Since & 0<EL]1, is arbitrary, this implies that L=0. This completes
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the proof of (5.6).
By the known functional relations between cumulants and moments (c.f.
[5]) (5.6) implies that

(5.12)  lim {E({XI(T)} s {XK(T)} ") — E{X(D)} "+ EAXK(T)} "} = 0.

As we have seen in the proof of Theorem 1

lim S,(XY(T)) =0, for m>3, 1<j<k.
T>00
Then again by the relations between cumulants and moments

= e« 2! = cpenz(2n)!

im {X}(T)}* < ] Lim {X3(T)} S5l
Appealing to IX, the components of X*(T) are asymptotically independent,
so are those of X(T'), as T—>o0. This completes the proof of Theorem 3.

At the final stage of this section, we will describe sufficient conditions
of practical use which guarantee the realization of some of assumptions in Theo-
rem 1, Theorem 2. Although those conditions are confined to the frame work
of Theorem 1, it is an easy task to modify them to be adapted to Theorem 2.

In the notations of 1 define

W) = k1 [ S0u) ) dra

x+

13
X Sl;lp S |ck(7\‘r 7\'1’ ttty M_l)lzf(h)d)» ) h>0 ) kZZ .

x

Then obviously
D(|ci|*; B)<Wy(h) .

Applying the first inequality in (2.8) with X(¢) replaced by R,(f) one obtains:
In order that the assumption (iii), Theorem 1 be true it is sufficient that

(A) lim fm 4 S ®([cs % k) = 0

nyoo 30 B=n

or more strongly

o1 -
(B) 12}3 lhlg)l " E\If,,(h) =0.

Let a, >0, and suppose x satisfies —(a+b)<<x<<a+b. Then one can find
a y such that —b<y<b, —a<x—y<a.

Define C,5(R) to be the set of real even bounded continuous functions on
R, and for non-negative g & C,4(R) define 2(g)=inf (x: x>0, g(x)=0). If
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g, heCus(R)NLY(R), are non-negative, 2(g+h)>=2(g)+=(k). This is a conse-
quence of addition of independent random variables with constant multiples
of g, h as their density functions, or the above algebraic fact combined with
the convolution gsh.

Put
= k! i 2 .
Ii(a) km?f-s--w},fllialch(x)l , a>0, k>1
Then
(5.13) o(lal’ M=W@fiy), AM<a, fi=f"*.

¢, (k>1) is said to satisfy (L) if there exists @,>>0 such that [,(¢,)>0. Since
fi€Cx(R) for k=2, and f,(0)=||f|15>0, 8,=2(f2)>0, 8,==2(fu)=kS,. Sup-
pose that ¢;= 0 and it satisfies (L), then by (5.13)

o(lexl®); M) =a  for M8,

where

a= inf fuMe(@x)>0, B=aul82.

Then, since
lim &(|¢i’|; B)/h=za

by (2.7)

}'i_m o(T)/T>0,
whence

EAI V(T)|T>0.

There exists a Ay>0 such that f;(A,)>0. Suppose that c¢,,33F0 (k=>1),
(L) is satisfied for cy45 and % is so large that k8,—2,>>0. Then arguing as
above fy.3(x) is positive on I=(—k8,—N, kS,—N,) and, since one can find
out £>0 such that ID[—¢, €],

o= '}‘flsfszk+3(7\')lzk+3(a2k+3)>0 .
Therefore having
P(leassl’s M) = for M| <auisAE

one obtains as above
lim V. o(T)/T>0,
Tyoo

whence also
11_'ir_n V(T)|]T>0.
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¢, (k=>1) is said to satisfy (U) if there exists a §,>>0 such that

u, = k! ess sup |g(\)|3<oo.

A+ +A,1<by
If this is the case
¢(|Ck|2; 7\)Sule”fle”eo y N Ly,
I (|| Bh<oo
h

whence by (2.8)
T o(T)/ T <o,

and moreover ®(8[|c,|?]; £)=0 for all sufficiently small %, because 8[|c;/?J(A)=0
for |N\;j+-+++n,| <b and sufficiently small A=1/T. If all ¢;,, 1 <k< oo, satisfy
(U) in such a way that there exists a ,>>0 such that b,>b, for all k>1, then

— Be(lals N Sullhl-.

Summarizing these we are led to the conclusions:
(C) 1If the expansion of X(t) contains a summand of even degree whose kernel
satisfies (L), or it does infinitely many summands of odd degrees whose kernels
satisfy (L), then

lim V(T)/T>0.

Ty
(D) If every ¢, 1<k<m, satisfies (U)
Eﬁ Vu(T)|T<oo .

(E) If all ¢, 1<k<<oo, satisfy (U) in such a way that there exists a 5,>0 such
that b,>b, for k>1 and moreover

Sullfille<oo,
then the both conditions
(A) and }'lTn V(T)|T<oo
>0
are satisfied.

(F) If (C), (E) in the above are satisfied, the conditions (ii), (iii), and (iv) of
Theorem 1 are satisfied.
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