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1. Introduction. We consider the scattering of the acoustic equation
by bounded obstacles. Let O be a bounded open set in R3 with sufficiently

smooth boundary. We set Ω=Λ3—0. Suppose that Ω is connected. Con-
sider the following problem

Γ ΓΊ u =®1L__ y« 82a
j θί2 >=ι Qx2j

(u(t, x) = 0 on (—00, oo)χΓ .

Denote by <S(z) the scattering matrix for this problem. About the definition
and the fundamental properties of the scattering matrix, see Lax and Phillips
[8], especially Theorems 5.1 and 5.6 of Chapter V.

On relationships between geometric properties of O and the location of
poles of <S(%) Lax and Phillips gave a conjecture [8, page 158] (see also Ralston
[16, 17]), that is, for a nontrapping obstacle the scattering matrix <S(z) is free
for poles in {#; Im s<α} for some constant αr>0, and for a trapping obstacle

<S(z) has a sequence of poles {#/}~=ι such that Im#y->0 as j-*°o. Concerning
this conjecture Morawetz, Ralston and Strauss [14] and Melrose [11] proved
that the part for nontrapping obstacles is correct. On the other hand, Bardos,
Guillot and Ralston [1], Petkov [15] and Ikawa [4, 5, 6] made considerations

on some simple cases of trapping obstacles. Among them the result of Ikawa
[4, 5] shows that the part of the conjecture for trapping obstacles is not correct
in general, namely for two strictly convex objects <S(z) is free for poles in {#;
Im#<α} (α>0). Yet it seems very sure that the conjecture remains to be
correct for a great part of trapping obstacles. In spite of the conjecture we
have not known even an example of obstacle O for which is proved the exist-
ence of a sequence of poles of the scattering matrix converging to the real axis.1}

The purpose of this paper is to show an example of O whose scattering

V Ralston [16] gives examples of the scattering by the inhomogeneity of medium such that the
scattering matrix has a sequence of poles converging to the real axis.



658 M. IKAWA

matrix has such a sequence of poles.

Theorem 1. Let Oj, j— 1, 2, be convex open sets in R3 with sufficiently smooth
boundary Γjy and let ̂  eΓy, /=!, 2, be the point such that \ al—a2\ =dis(O1, 02).

Suppose that the principal curvatures /£,•/(#)> /—I, 2 of Γ, at x^Tj satisfy

(1.1) Clx-ajl'^/Cj^x^C^lx-ajl* for all

for some

(1.2) oo>e>2

and OO. Then the scattering matrix for O=Oι (JO2 has a sequence of poles

fe/JT-i su°h that

Im Zj -> 0 as j -> oo .

In the proof of this theorem we start from a trace formula proved by Bar-
dos, Guillot and Ralston [1] :

cos t\/— Δ Φ O — cos t\/—Δ<ϊ)dt

for p<ΞC5-(2Λ, oo)
2, poles

(explanation of the notation will be given in §2). The main differences of the
treatment of this formula in this article from in [1] are (i) we substitute in the
place of ρ(t) a sequence of functions pq(t), q= 1, 2, ••• such that min fa; ίe
supρpj ->oo as q->oo, (ii) all the eigenvalues of the Poincarό mapping of
the periodic ray are 1, which is a consequence of the assumption (1.1) subject

to (1.2).
It should be remarked that the result in [4] can be extended to a case of

two convex objects such that the Poincarό mapping of the periodic ray has
not 1 as an eigenvalue. Namely, in this case all the poles of <S(z) have the ima-
ginary ρart># for some α>0. Therefore in order to find an example of an
obstacle composed of two convex objects with a sequence of poles converging
to the real axis we have to consider obstacles whose Poincarό mapping has 1
as an eigenvalue. Of course these differences give rise to an essential difficulty
in the proof, especially in the estimate of the left hand side of the trace formula
for large q. To overcome this difficulty we represent the kernel of cos t\/ — Δ
by a superposition of asymptotic solutions constructed following the process
in [2, 4], and apply Varcenko's theorem [19, 7] to an estimation of integrals
of asymptotic solutions.

2. On the trace formula and a reduction of the problem

We denote by Δ the selfadjoint realization in L2(Ω) of the Laplacian in Ω
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with the Dirichlet boundary condition and by Δ0 the selfadjoint realization
in L2(R3) of the Laplacian in R3. Bardos, Guillot and Ralston shows in [1]
that the following trace formula

(2.1) trL2(^3) I p(t) (cos t\/—Δ 0 0—cos t\/—ΔQ)dt
JR

1 ^

holds for all p^CZ(2R, oo)2>, where Λ=diameter of O,

and cos ί\/—ΔΘO is an operator in L2(R3) defined for /=/1+/2, f\
/2eL2(<2) by

' (cos ί\/—Δ/i) (x) for

for

Remark that an estimate of the right hand side of (2.1)

(2.2) Σ \pfri}\<C(T)\\p\\a*(K>, Fp<ΞC?(2R,T)
poles

is shown in §3 of [1], where C(T) is a constant depending on T.

Let p0(ί)eC?(-l, 1) and define pq(t\ q=l, 2, - by

where d=dis(Oίy O2) and / is a positive integer determined later.

Lemma 2.1. Suppose that all the poles {λy}~=ι of S(z) verify

(2.4) Im Xy ̂  α

/or Λ>W£ constant α>0. ΓAβn w^ Aαz;^

(2.5) Σ |/34(λ,) I <C(?+l)4'e-
2^ /or all q

where C is a constant independent of q and I.

Proof. Set

Fix q0 in such a way 2dq0—l^2R. Then we have pίj?0(ί)eCST(2Λ, Γ) (Γ
for all p. Applying (2.2) for ppiqo we have

l> Melrose [12] shows that (2.1) holds for all p<=C~(R+).
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Since /5ί,,(λ)=e'2<ί(ί~9o)λ/5ί)!IO(λ) we have, under the assumption (2.4), for all λy

Then

Note that P9(0=P«,?(0 Then we have (2.5) by setting p=q in the above
estimate. Q.E.D.

Concerning the left hand side of (2.1) we have the following

Proposition 2.2. Suppose that O satisfies the condition in Theorem 1.

Choose p0(ί)eC?(— 1, 1) so that

(2.6)

and

(2.7) β0(

Then we have

(2.8) I tVαή PΛO (cos V=Δ0 0-cos ̂ ^

/or α// ί>ίo i/7 ^4> «Λβrβ ^0=^+2 αwώ /0 is a some fixed positive integer, c is
a positive constant independent of I.

The remaining sections of this paper will be devoted to the proof of this
proposition. Theorem 1 can be proved immediately by Lemma 2.1 and Pro-
position 2.2. Indeed, choose ρQ so that (2.6) and (2.7) are verified. Suppose
that there is no sequence of poles which converges to the real axis. Then
there exists a>0 such that

Im λy > a for all j .

Then we have (2.5) for all large q. By using (2.5) and (2.8) we have from (2.1)
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for large q if />/<,. Letting q tend to oo the above inequality shows a contra-
diction. Thus Theorem 1 is proved.

We would like to remark that if we use the result of Melrose [12] Theo-
rem 1 can be made better in the following form.

Theorem 2. Suppose that O satisfies the condition in Theorem 1. There
exists a positive constant γ such that for any 6>Q a region

contains an infinite number of poles o

Recall that Melrose [12] shows that

(2.9)

for some p>0 where N(K)=the number of λ, such that |λ, | *ζK. By using
(2.9) we have the following lemma, and Theorem 2 is derived immediately
from Proposition 2.2 and Lemma 2.3.

Lemma 2.3. Suppose that {2; Im #<£„(! Re z\ +l)"γ> (£0>0) has no
poles. Then it holds that

ifQ<7<Γl.

for all q

Proof. Let 0<γ<Γl. Choose α>0 so that 1—αγ>0, a>l. We classify
the poles into three groups:

Group I ={\j°, Im λ, >£} ,

Group II =(V, £>Im λy>£0(|Re M+l)-y, |Re λy |

Group 111= {λ, : £>Im λ, >£0( | Re λ; | +l)~γ, | Re λy |

By the same argument as Lemma 2.1 we have

λ Σ IWλΛKC ίί+l)^-2"".
λyeGroup I

From (2.9) the number of the poles of Group II is less than C(l +?*)*. Then

x Σ l/ί
XyeGroup II

/1# |\-#
Since an estimate | fiq (z) \ < CN( —γ~ J holds for any N we have

Σ
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and

Σ |/»,(λ, )|< ΛλyeGroupIII •=[**]

Then summing up these estimates, if we choose N so large that (—a-\-ϊ)N
+/>+2<0, it holds that

Σ |
poles

Q.E.D.

3. Program of the proof of Proposition 2.2

Denote the kernel distribution of cos£\/— Δ0 and cosZ\/— Δ by J?0(£ #, jy)
and E(t, x,y) respectively. Then the kernel distribution e(t\ x,y) of cos£\/— Δ
0 0— cos ί\/— Δ0 is written as

e(t\ x, y) = E(t: x, y)-E0(t: x, y)

where

θ

Set

cq(x, y) = ]_^pq(t)e(t; x, y)dt .

In order to show Proposition 2.2 it suffices to prove the following facts:

(3.1) supp

(3.2) cq(x,

and

(3.3) I f ,φ, xϊdx-c^-tW+v-2] <C;?

(1-5^«)' for all q
JR

where CQ is a positive constant determined by O and ρ0.

Since l?0(f Λ:, y) is well known the essential part of the proof is the con-
sideration of E(t\ x, y). To take out properties of E, first we construct an ap-
proximation of E as a superposition of asymptotic solutions, secondly we pick
out the principal behavior of E as Z— >oo. The construction of asymptotic
solutions is done by a method essentially same as in [2] and [4]. But the as-
sumption that all the principal curvatures of the boundary vanish at aλ and a2

gives rise to another behavior of asymptotic solutions than those in [2, 4]. Then
in order to pick up this behavior of asymptotic solutions we have to make other
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considerations than in the previous papers.
Fix δ2, δ3 so that Corollary of Lemma 3.3 of [2] holds. Let 5/δ/), j=ί9

2, 1=2, 3 be the ones introduced in §3 of [2]. Denote by ω(δ/) a domain
surrounded by Sy(δ/),y=l, 2 and {y\ dis^, L)=δ/}. Let

(3.4) ψ(#) e C~(Ω) such that supp <ψ> Cω(δ2) .

Then for/eC°°(Ω) we have by Fourier's inversion formula

(3.5) Ψ(*)/(*) - »(*)( /ω(°>^( rfy eik<*-' »>ψ(y)f(y) ,
J S JO J Ω

where w(x) is a function in CJΓ(ω(δ3)) verifying

(3.6) α>(#) = 1 on supp-ψ .

Let u(t, x\ k, ω) be the solution of an initial-boundary value problem

Ou = 0 in (0, oo)χΩ

u(t, x) = Q on (0, oo)χΓ

(3.7)

Then

satisfies

*) =
S Jθ

«(ί, *; k, ω)β-'*<'

(̂ί, x) = 0

0(0, Λ) = ψ(*)

in(0,

on (0, oo)χΓ

This means that α(ί, )=(cos ί\/— Δ -v/r)/. Therefore the kernel distribution

°f cos ^\/— Δ ψ is given by

(3.8) E(t; x, u(t, ̂  k,

here we interpret the integral as an oscillatory integral (cf. Kumano-go [8,
§6 of Chapter 1]).

As an approximation of u(t, x\ k, ω) we construct an asymptotic solution
of (3.7) in a way that we can make clear the reflexion of geometric properties of
O to the behavior of u. For the Cauchy problem with an oscillatory data
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Π h = 0 in (0,

A(0, x) = w(x)eik<*>ω> in R3

—(0, Λ?) = 0 inΛ 3

admits an asymptotic solution

, *; A, ω) = β«« .">-o Σ £,.(*, *; ω
y=o

= Aίf^ί, *; k, ω)+h^\t, *; A, ω) .

ί, *; k, ω) = A<">(ί, *; k, ω) | «,.,») x r

Set

Note that from the location of the support of A^, the support of m(+} is con-
tained in one of (0, oo)χΓχ and (0, oo)χΓ2. For example when α>3<0

supp m )χΓ2.

Since all the rays starting from supp -ψ and hitting S(S3) do not tangent to Γ
in S(83) and the Gaussian curvature does not vanish in the outside of *S(δ3),
the method of construction of asymptotic solution in [2] can be applied without
any modification. We see from Corollary of Lemma 3.3 of [2] that it suffices
to consider #OT constructed in §8 of [2] when we consider the behavior in
ω(δ3) of asymptotic solutions with oscillatory boundary data m(^\ Let us

denote by <sr^
v)=«;^)+<y±V) the asymptotic solution #(Λ°

process of Proposition 8.1 of [2] for boundary data m(±\
For the simplicity of description we omit the suffix +•
of the form

constructed by the
Now consider z(^\
Recall that s

(3.9)
ι k, ω) = ω

and that ym satisfies

(3.10) supp yw Π ((0, ω(S2)) = φ .

The fact that the principal curvatures of Γj and Γ2 vanish at aλ and a2 brings
other behaviors of φq and vqj than those of [2, 4]. In this case {V9?

ί}Γ=o is not
bounded in C°°(ω(δ3)) and the sequences vqj, q=Q. 1, 2 ••• do not decrease
exponentially. Concerning their estimate we have
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Lemma 3.1. There exist positive integers l(jy m) depending on j and m
such that

(3.11) ,

(3.12) Σ |9^,X ω)L(ΛXω(81))<Cy+4t.?'«
 1 * »)

\β\<,h

hold.

There estimates are proved by induction of j, h, m by using Lemmas 5.2,
5.3 and their remarks of [2].

Taking account of the location of the support of #w the estimates (3.11)
and (3.12) give

supp#wc(0,

(3.13) Σa2«?°( > k,

(3.14)

(3.15) «w = Af) on(0, oo)χr.

). Then

9ί

and Π«(w) has an estimate of the type (3.14). Concerning the difference be-
tween the actual solution u of (3.7) and M(ΛΓ> we have from the above remarks

(3.16) Σ |9£(«-w(w>) (.,.;*, ω)L(ί, Ω)

We see immediately from Lemma 3.1 and (3.16) that

Jp(f)£(*; x> y)Ψ(y)dtζΞC°°(nxn) for any

Since supp £β(ί; , .)c{(Λ,y); |*-,y|

(3.17) cβ(*, x)ψ(x)dx = E(t, x, x)ψ(x)pq(t)dt dx
JR J J Ω

for large j. From (3.8), (3.17)
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J f f f°°αΛ?lαίl dcύ\ kdkpq(f)u(X) t\ k, co
Ω J Js2 Jo

ϋ_ (£, X) κt ύ))e *

+\~]k>iP,(t)(y^+y™)(t,X;k>«

' \ Pί(0 (u(t* x> k> ω)—um(t, x\ ky ω))e-ik<x'ω>Λlf(x)dxdtdωίfdk

JQ J Js2 ωJo q(t)u(t, x; k, ω)

Since we have for

|ιι(ί, χ-,k, ω)|<C in [0, oo)χΩ,

it holds that

From (3.4) and (3.10) the integrand of // vanishes identially. Thus 11 =0.
Next consider ///. Set

= //Λ+7//2 .

Since supp p^CfZdlg'— g~7, 2dq+q~l], by using (3.16)

1 77/2 1

Thus we have

Lemma 3.2. If we choose l>l(N+2, 0)— ̂ +3 it holds that

(3.18)

/or α// g.

Now we set about the estimation of 7+. Set

(3.19) I,j(t, k) = ( dω\
Js J
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(3.20) Φ,(tf, ω) == φr(x, ω)—<#, ω> .

Then we have

(3.21) /+ = \~Vdk Σ (ik)-^e-iktpq(t)I,j(t, k)dt.

Note that except r=2q— 1, 2y, 2^+1 supp pβΓ|supρ vrj(t, x\ ω)=φ. Since
forr=2q±l

\ QX3Φr(x, ω)\>\ for all (x, ω)GEω(δ3) X S2,

if vrj(ty x\ ω)ΦO, we have

\Irj(t, k) I ^CMk~Mql(M) for r = 2^1

where /(M) is an integer depending on M. Therefore we have

(3.22) 11+- Γtfdk Σ (ik)-j(e-iktI2qJ(t, k)Pq(f)dt\<C for all
J1 y=o J

if / is large. Set

Π 7^ 7 ί'v / ί\ -
{J.ΔJj »/9»A 3> ' / ~

Proposition 3.3.

Π 24^ I 7 ίΊk? /• k\~fc-ι-2/v'2^/r° Yr Λ{j.ΔΓΓj \Jq,j\. 3> > ^/ Λ icϊ.^\Λ3> */

+C3Σ23ΣI ii:y(«3, 0*"

w λtfrtf /! w α constant, cq'j (x3, f) are determined by Φ2q and vqj and they satisfy

ΣJ 18*4:/(*3, 01 < C ?Ί far all *3<Ξ(0, rf) am/ ί>0 ,

especially

for some fixed non zero constant c determined by the shape of Γy near a; and ωQ

=(0, 0, 1).

The above proposition will be proved in sections 4 and 5. Now admit
this result. To evaluate v2q^ we use (5.9) of [4]. For ω0 we see from Lemma
4.1 of [2] that the principal curvatures at a1 and a2 of the wave front of <pr are

zero for all r. Then we have Λ2g-./-SΓ-/(Λ?, V9>2ί))=l f°r all j when x'=Q.
Therefore we have for ω0

tf2g,o(*, °> °> ^35 ωo) = w(°> °> (2?^+Λr3)-ί).

Note that from (3.6) s0(0, 0, (2dq-}-x3)—i))=l holds for (0, 0, #3)esupρ ψ and
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t e supp pt C [2dq-q~l, 2dq+q~']. Therefore

(3.25) JΛr.J

= c jψ(0, *Λ, Λ 1 d k

ί
oo

kl~2/eo$Q(k)dk^FQ from (2.7). Next we shall show the following
o

estimate for A>1 and for ally, m

(3.26)
Jo Ji

Set

(«+!)'

-t
(«+!>'

= Λ+/2

$ («+!)' f Γ~ f

Vdk\-dt+\ #dk\ dt
1 J J («+!>' J

Substituting an estimate | cj;* | < C q1* we have

(4+1)'5 (4

About 72, we make integration by parts in t variable two times, and we have

72 = Γ
J(«+ι)'

By using estimates of Cq'j and the definition of pq(t) we have

l(|-)V2:"(*3, t)pq(t))\dt<Cq'>(q+l)' .

Thus it follows that

)1 (1-

Taking account of h ~^ 1 we have
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Since C/ is independent of x3 the above estimate implies (3.26). Combining the
above estimates we have

(3.27) |/+-

if / is sufficiently large. For /_ we have the same estimate as /+. Then form
(3.27) and Lemma 3.2 it follows that

(3.28) I 9cq(x, x)^(x)dx-2c (0, x3)dx3 <
JR Jθ

for any ψeCS>(ω(δ3)) when / is large.

When Λ/reC;Γ(ω(δ3)US(δ3)) we have to modify the procedure of the
construction of the kernel of cost\/— Δ ψ . Namely, when supp t|r Π S(83) =1= φ
we cannot choose w(x) in (3.6) as a function in CJΓ(ίl). Therefore the solu-
tion of (3.7) is not smooth function, and ^(/} has discontinuities, which make
the argument more complicated. But as we shall show in §6 the same esti-
mate also holds in this case. Thus

Lemma 3.4. For any ψeCSΓ(ω(δ3)U*Sf(δ3)) the estimate (3.28) holds if
we choose I sufficiently large.

Next consider the case ψeCiΓ(Π) and

(3.29) suppψΓlω(δ,) = φ.

Suppose that in addition to (3.29) any ray starting from supp -v/r does not tan-
gent to Γ at *S(δ3). Then the procedure of construction of an approximation
of cq(x, y)^r(y) is same as before. In the representation of Irj(t, k) the am-
plitude function Φr(x, ω) has no critical point, that is,

I QxΦr(x, ω) I + I dωΦ,(x, ω) I Φ 0 for all (x, ω) <Ξ supp ψ X S2 .

Thus we have for any M

where /(M) is a constant depending on M. Therefore we have

1 1 fq(χ> x)^(x)dx I < C for all q.
J R

By employing the argument in §6 of [2] the additional condition may be re-
moved easily. Then

Lemma 3.5. Let ^eOS^Π) such that

supp Λ/Γ Π ω(δ3) = φ .
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Then an estimate

(3.30)

holds where the constant C depends of O and ψ but independent of q.

Note that for ψ of the form ψ(x) = Ψo(x—ξ) for a fixed ψ0

and some ζ^R3 the constant C in (3.30) is independent of i/r, namely C is
depends on O and ψ0 only. Since

, • < = * , ? ; ,

the estimate (2.8) is derived from Lemmas 3.3 and 3.4.

4. On the critical points of Φ2g(jc, α>)

Let φQ(x, ω)=<#> ω> and let φλ, φ2 •••, <p2ί ••• be the sequence of phase
functions in (3.9). For #eω(S3) set X0(x, ω)=x and, if {#+/<*>;

/O(Λ?, ω) = inf {/;

BI(ΛP, ω) = ω—2ζn(X1(xί ω), ωyn(X1(x9 ω)) .

Following the process of §3 of [2] define successively /; (#, ω), Xj(x, ω), Ξ/ΛT, ω),
Lj(x9 ω), -ΓX ,̂ ω) fory=l, 2, ••-. For ^eω(δ3) set

(Xy ω)) = inf {/;

(*, ω)) = x—l-λ(x, Vφ2q(x, ω))Vφ2q(x, ω) .

Define successively X-j(x, Vφ2q(
χ^ ω)) following §4 of [4]. For x^R* and

Let us denote by F2i(jc, ω) the point

^(Λr, ω)Π {X-2q(x,

Remark that, if we set y= Y2q(x, ω), we have

X2q-j(y, ω) = X-ι-j(x, Vφ2q(x, ω)) , j = 1, 2, — , 2j—l .

F25(^, ω)eρ(#, ω) means that

(4.1) <Y2q(x, ω), ω> = <Λ?, ω> .

Now we have by using (4.1)

(4.2) Φ2,(*, ω) = I ̂ (y, ω)-^ I + I X2(y, co^-X^y, ω) |
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+ - + \X2q(y, ω}-X2q^(y, ω)| + \x-X2<(y, ω)|

where we put y=Y2q(x, ω). Recall that the broken ray 3£(Y2q(x, ω), ω) is a
path starting from a point on a plane .£?(#, ω) and reach at x after 2# times re-
flexion on Γ according to the geometric optics. The path of the geometric
optics can be characterized as a path that has a minimal length among the ones
which start from on 3?(x> ω) and arrive at x after passing 2q times points on
Γ. Namely,

(4.3) Φ2q(x, ω) = inf {I*(1)-*(0) I +1χV-x™ \
_J μ|Λ;(2ί)_Λ;(2?-l)| + |Λ,_Λ;(29)|J

where the infimum is taken on #(0), x(1\ •••, #(2ff) running over

*<°>e5>(*, ω),

if ω3>0 (if ω3<0). Let us set

S+ = ι(fc>ι> ω2, i v 1—6>ι—6)2)5 6)ι~l~6)2<Cl}'

Lemma 4.1. Let ω^S2+ and x^ω(S3). Suppose that

(4.4)

Then for ω=ω(ω1, ω2)
:rzr(ω1, ω2, \/l— ωf— ωl)

(4.5) ****(*' m) = <;y-*,

forj=l, 2,

Proof. Let ω^ωίωj+Δωj, ω2) and y= Y2q(xy ω). Since X-j(x, Vφ2q(x, ω))
is continuous in x and ω we have

(4.6) $ -» j as Δα>! -> 0 .

Set

x = £>(*, ω) n

Then from (4.3)

Φ2q(x> ώ) = inf {\χW-χW \
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+ - + \X2q(y, ω}-X2q^(x, ω)\ + \X-X2q(y, ω)| .

Since we have \Xι(y9ω)— z\ = \Xι(y,ω)— y \ + \y— %\ if # is on the prolongation
of a segment Xι(y, ω)y it holds that

(4.7) Φ2ί(*, S)<Φ2ί(*, ω)+ 1 y-*\ .

If # is on the prolongation of Xι(y, ω)y % must be on a segment X0, ω)5,
and we have

Then similarly we have

(4.8) Φ2q(X, ω)<Φ2q(x, ω)- I Jf-*| .

Taking account of ̂ (y, ω)^ J.̂ ,̂ ω) and X^, ω)yA_3?(x, ω) we have

\y—X\ =<y—x9ώ—ω

Thus from (4.7), (4.8) and (4.6) it follows that

Um Φggfo <5)-<M*, ω) = < 9ω > Q

Δωι->o Δωι 3ωx

In the rest of this section we shall use the notation as in §3 of [2].

Lemma 4.2. Let y= Y2q(x, ω). Suppose that \ x'—y' \^\x'\!2and

(4.9) / ω'>0.

Proof. First note that from the assumption on the principal curvatures
we have

\n(xγ\>c\x'\ <+1 for x<= S(S3) .

Since d\x'(s)\2lds^d\x'(s)\2lds\s=0=y' ω'>Q for all s>0 we have

-
as

Therefore

from which it follows that
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\X'\-\y'\>2dqc\y'\' .

By using \y'\^\x'\/2, which is a consequence of the assumption, the assertion
of Lemma follows. Q.E.D.

Lemma 4.3. Suppose that

(4.10) !*'-/!< |*'|/2 andx' B^ty, ω)<0 .

Then it holds that y' ω < — qc \ x' \ e+1 and

\*'-y'\>cq\x'\ .

Proof. Since d \ x'(s) \ 2//ώ is an increasing function and

-\xf(s)\2<-2(\-$)c\x'\e+l . for all s<s2q ,

we have

as

which implies

Thus we have

\y'\-\X'\>2dqc(ί-8)\X'\'.

Lemma 4.4. When

holds for some constant C independent of q, we have

\x'-y'\>dq\ω'\ andx'-B2q>2dq\y'\<+1.

Proof. Since |Λ?'(ί)|2 is a convex function we have |#'(s)| <max(|#Ί,
Ij ' l ) for all s. Denote the right hand side by M. From the law of reflexion

SXj> ω)— By-!(y, ω) = 2(Xj(y, ω), n(Xj(y, ω))n(Xj(y9 ω)) ,

we have for/=l

|B!(y, ω)'-ω'| <2\fi(Xl(y9 ω)Y\

Similarly we have for all j ^ 2q

Then by using the assumption we have
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\(BJ-ω)'\<2gCMt+l<\ω'\l2 for all ;<2?.

> |(Σ/y«)ΊHΣ//By-ω)'|

>2dq\ω'\-dq\ω'\>dq\ω'\ .

Q.E.D.

Lemma 4.5. Let x=(Q, 0, x3), 0<x3<d. Iff\ω'\<\ίt holds that

(4.11) \(x-Y2ί(x, a>)y-2dqω'\*ζCq2\ω'\*

where C is a constant independent of q.

Proof. Let us set y= Y2β(x, ω), — Ξ2ί(j, ω)=δ. Then we have

Xj(x, ω) = X2q-j(y, ω), Sj(x, ω) = —Ξ2t-j(y, ω) .

First we show that

(4.12) I X^x, ω)'| < Cj I ω'| , I By(*. &)'-&' \ < Cj \ ώ'\ 2

holds for all ;<2?. Suppose that f\ω'\<\ and (4.12) holds for;</z. Then

I ̂ »+ι(*, δ)'| < I Xt(x, 8)' I +4 1 B4(*. δ)' I

<Ch\ω'\+C(2d+S3)\ω'\<C(h+l)\&'\,

\Bh+l(x, δ)'-δ'|

Thus (4.12) holds for /=A+1. By induction (4.12) holds for all j <2g. Since

J?; +I(Λ;, δ)— J?XΛ, ώ) = /,-(*, δ)BX*, 5) ,
2ί

(^(Λ, ω)— x)' =

2« 2ί

= Σ /X*, δ)ω'+Σ /X*, «) (EX*, δ)— δ)' .

Note that | l}(x, &)-d\<C\ Xj(x, δ)'| 2< Cq2 \ δ ' | 2.
Then

(4.13)

Now from (4.12) and H2q(x, δ)=ω

which implies |(ω— ω)'| <Cf2~1|ω'| for large q. From (4.13) and the above
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estimate (4.11) follows immediately.

Corollary. On the assumption of Lemma 4.5 we have

I *£* (0, *„ ω)-2dj»y I < C<f I ω'| 2 .

Proof. Since x and y are on £P(#, ω) 1#3— jy3| < \(x— y)'\ |ω'|. From

(4.11) *y-yy=2<^α>y+0(ί1|ωΊϊ)ι and from (4 5)

Combining these relations we have the assertion.

Lemma 4.6. Suppose that (f\x'\<l, \ω'\<\x'\3. Then

hold for allj^2q, where C is a constant independent of q.

Proof. From (4.11) we have

|B1(*,ω)Ί<|ωΊ+σ|*Ίϊ<(C'+C1

1)|*T,

\X,(x, ω)'| < |*'| +2(d+S3) I α>'| < |

Suppose that

(4.14) |*/*, ω)'| < k'Kl+yO. i

holds foTJ^h. Then by the same reasoning as the above

l**+ι(*, ω)'.| < \Xk(x, ω)' I +2(d+S3)C2h \ x'\

i{2(d+83)C2q-2<l, and

(*, ω)'|3

if C23< C2. Thus (4. 14) holds for all j < 2q. Therefore

I (X29(x, ω)-*)' I < Σ I, I BX*. ω)' I

Q.E.D.



676 M. IKAWA

Lemma 4.7. Let x andy= Y2q(x, ω)eω(δ3). Then we have

(4.15) |grad^,ωΦ2ί(*', x3>; ω)\>c min( | *'| •« g-'|o>'|)

Proof. When | ω '| > Cq( | x'\ t+1+ \ y'\ e+1) Lemma 4.4 shows

Thus (4.15) holds. Now let

(4.16) l

If \(x—y)'\>\\x'\, (4.15) follows immediately from (4.5). Then hereafter
Li

we suppose \x'— y'\ <1/2|#'|. Note that from the above inequality |.y'|<
3/2 \x'\. When | x(s)' \ 2 is monotonically increasing or decreasing Lemma 4.2 or

4.3 can be applied and we have \9ωΦ2q(x9 ω)| >(1 — C l ω ' D I ^ Ί Ί which implies
(4.15). If !#($)' 1 2 is not monotone, set

Suppose that \Xj\^ll2\x'\. Under the condition (4.16) applying Lemma
4.3 to a broken rzyy-+Xj, we have

Similarly applying Lemma 4.4 to a broken ray Xj —* x we have

Therefore

(xr, (ω-Vφ2q(x, ω))') = (x, ω'—B2q(y, ω)')

= (x—y, ω')+(y, ω'}—(x'y Vφ2q(y> ω)) ,

from which it follows that

(*, ω)'| > — L i cq( \ x'\ '+1+ | y> \ '»)+2q \x'\ «

Then |3,'Φ2ί(Λ;, ω)| = |ω'— (Vφ2g(x, ω))'\ ^cq\x'\e, which implies (4.15).

Consider the case | X'j \ < — | x'\ . Since
Ll

we have j ω ' < 0. Suppose that j < g'.
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Then we have

q 2q

, , ^J^-iCy, ωJ' -XiβCV, ω)'— / ω'

—_ icy /ιj ^\ i j-\ i v^ I (v iίi' ^%'IO2/7\_X) ^/ —W' I Λ ^—IΛ VI CO

<|Hίf(y,ω)'-ω'| |*'|—^

|*T+1, or |B
2

This shows (4.15). Q.E.D.

Corollary. For any fixed 0<x3<d, Φ2ί(#', #3; ω) as a function of x' and
ω, the critical points o/Φ2j are (x', ω) such that x'=Q, ω=(0, 0, ±1).

Lemma 4.8. For ω=(0, 0, ± 1) it holds that for q2 \ x'\ < I

(4.17) Cq\x'\'+2>Φ2q(x, ω )-

(4.18) l ^

Proof. Let ω'=0 and <f\x'\<l. For a broken ray 3?(y, ω), y= F2ί(^, ω),
since y' ω'=Q I^)Ί2 is increasing. Therefore l ^ ' i ^ l ^ Ί * which implies
ff2 1 y'. I < l Apply Lemma 4.6 to ω and j and we have

Setting j=2q we have \xf— y'\ <*C\x'\2 which shows (4.18). By using the
above estimate we have

Therefore we have

C\x'\<+2> \Xί+1(y, ω)-

Summing up this inequality from/=0 to 2q—l and we have (4.17).

5. Proof of Proposition 3.3

From Corollary of Lemma 4.7 it suffices to consider the integration (3.23)
near x'—Q, ω=(0, 0, il) Since x3 and t are fixed we shall omit in the rest
of this section to write them in the expression of calculus. First we apply the
stationary phase method to the integration in ω variables. Let us set

ω(ω') = (ωx> ω2, \/l— ωf— ωl), ω' = (α>ι, ω2) ,



678 M. IKAWA

Ά. (x', *»; ω(ω')) =Λ>', ω'), / = 1, 2 .
OCύj

From Corollary of Lemma 4.5 we have

(5.1) Λ.,(0,0) = 0, , =1,2,

(5.2) ^(0,0)==2ίrfδΛ, ;,*=!, 2.
9ω4

Concerning Lemma 3.1 we can easily verify from Lemmas 5.2 and 5.3 of [2] that

1(2, 0)=2, i.e.

(5.3) I ̂ (a', «,

Then the implicit function theorem assures the existence of solution of the

equations

(5.4) Λ,Λ*',ω') = 0, j=l,2 for |*'|

Let us denote this solution by ω'q(xr). Then from (3.11) we have

(5.5) IQ^MKC^W for |*'|

where l(ά) denotes an integer depending on α. In the rest of this section we

shall use notation l(ά) for various integer depending on a. For the phase func-

tion we have

Φ2?(*, ω) = Φ2q(x, ω(ωί(*')))+-| Σf ̂  (a'-aίί*'))'̂ ...̂ ', ω') ,

where

(̂  θω'9(x')+(l-θ)ω')dθ .

Then from (5.2) and (5.3) it holds that

#,(*', ω') - \F<u

By making a change of variables

ζ - &,(*', ω

we have

(5.6) Φ2ί(*. ω(ω')) - Φ2ί(

and an estimate

(5.7) \
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Let % be a C°° function verifying

Lemma 5.1. Let \x'\<q~2 and g(x', ω')&C°°(R2xR2). An oscillatory
integral

Hq(k, x') = 9e» »W»g(χ', ω')%(ω'/δ)</ω' (δ>0)
JR

has an expansion

Hq(k, x') = eik*<V>{Σ k-l-'*hq9J(x')+k-*hq(x', k}}
j = 0

where

(5.8) Ψ,(*') = Φtf(», ω(β{(*'))) »

(5.9) |3?Λ,χ^)l<C β3'<»>||Ίul+W)

(5.10) 1 8J/A, (*' ft) |< Ctfw I ̂  I u,+12 /or α// ft .

Especially for j=0

Proof. By (5.6) we can write

/f, (ft, *') = ̂ .

By using (5.7) we have the assertion by a standard argument.

Then the proof of (3.24) is reduced to obtain an expansion of an oscillatory

integral

(5.11) HqJ(k) =

To this end we apply Varcenko's theorem [18, 7]. First consider properties

ofψf(*')
Let x3=— Ύ(X') be a representation of T1 near a1 and x3=d+fγ(xf) be a

representation of Γ2 near a2.

Lemma 5.2. It holds that

(5.12) \Vt(x')-2q(d+7(X')+7(X')) I <C,(7(*')+?(*')) I*'!1 >

where Cq has an estimate Cq^Cqa for some α>0.
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Proof. Let x(s) be a representation of 3ζ(x, ω(ω't(x'))). Setting \Xf

}\
=min|Λr(ί)'| we have BjX'j^O, Bj-^Xj^O. Note that we have x—X2t(x,

»(«ί(*'))) from the definition of ω{(*') Since Sy-2(Sy> n(X,))n(X,)=Q it
holds that

Applying Lemma 4.6 to broken rays Xj to X2q and y=x to .XT,- we have, if

f\x'\<l,

(5.13) I .*»(*, ω)'-*'|<CΊ*T,
|B4

for all A. Evidently we have

^^=

( d+f(Xi)

Thus we have

((Xh+1)3-(Xh)3)
2 =

=

On the other hand

\Xin-X

Then taking account of (1.1) we have

For x' such that <f|#'|>l (5.12) holds for Cq=qα if we choose α sufficiently

large. Q.E.D.

Let %! and %2 be functions in C°°(Λ2) such that

=1 on R2 ,

2},%1= 1 for |*'|<1

Set

From (5.12) it follows
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Therefore on the support of %2 we have | VΛ'Ψβ(tf') \ ̂ cq~a for some #>0. Then
using (5.9) we have

(5.13) \Hfi(k)\^CNq<™k-» .

When we apply Varcenko's theorem to H(

q\} we have to pay attention to para-
meter q, in other words, we have to obtain an expansion in k of Hfy which is

uniform in q-+°° To this end first we consider the Newtonian polyhedra of
Ψq. Here we use freely the notation in [7], (5.12) implies

ψίr = q(7 +7)Γ for large q .

Let Y and π be an analytic manifold and a projection constructed following

Chapter II of [7] for (7+7), that is,

π: Y-*U

Then it follows that

Ψf o,r(y)

where ^(0)=0 and \dy^]rq(y)\^CΛgf^. Then we can find a change of vari-

ables πq:y=yq(ss) for \st\ <C<?β such that

Then Hfy may be represented in finite sum of integrals of the form

(*)JJ(z)d*.

Then Proposition 3.3 follows from Theorem 3.23 of [7] beside the representa-
tion of cΌ

gJ. Note that Ψq verifies the condition 3) of Theorem 3.23 of [7]
because 9?/Ψ?(0)=0 for |α|<4, and Ψq(x')>Ψq(Q) for #'ΦO. In Lemma
5.1 when we set g~vqij we have

*«.o = 7Γ flvqtj(x, ω(ω',(x'))) .
£π

Then we have from Theorem 3.23 of [7] the desired relation.

6. Representation of the kernel of cos t\/— Δ near αx and α2

Let ^r(x) be a C°° function with support contained in a small neighbor-
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hood of tfj. We consider the behavior of

as

In this section we denote by s a point of Tl and by n(s) the unit outer normal
of F! at s. Correspond (r, s) to x near aλ by x=s+rn(s). First we state a
result on the propagation of the solutions for oscillatory boundary data.

Lemma 6.1. Let m be an oscillatory boundary data on RxTl of the form

satisfying supp &C(0, l)X*SΊ(δ3) and

(6.1) |8?..Λ| <CΛpW-W\ (£0>0) .

If I PVsζ \/\P'\>4 S3/^, ίfe solution of

^ = 0 in

= m on

= 0 on

supp we {*>()}

verifies an estimate for any N

(6.3) 1 8?.Xf, *; j>) I < CΛtNq"*>p-N on [2d, 2dq] X ω(δ3) .

(6.2)

Except the case that | pVsζ \l\p'\ is near 1 an asymptotic solution of (6.2)
can be constructed by a usual manner and checked the propagation of solutions.
For exceptional case we make use of the result of Melrose-Sjϋstrand [13] on
the propagation of singularities. We omit the proof.

As in §3 denoting by u(ty x\ k, ω) the solution of

(6.4)

0 in (0,

M = 0 on (0, oo)χΓ

u(0, x) = eik<*'">ιo(x) in Ω

(U = 0 in Ω

where w(x)=ί on supp ψ , we have

E(t; x, yWy) = k2dk dω u(t, x; k, ω)e-"<J

Jθ Jlωl=l

In consideration of the behavior of u(t, x\ k, ω) the difference of the case (6.4)
from u of §3 is that the initial data w(x)eik<^Xtϋ!> does not verify the compati-
bility condition of an initial-boundary value problem at {ί=0}χΓ. There-
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fore the solution of (6.4) is not regular, and this fact gives rise to difficulties.
Let %!, %2eC°°(/?) such that

Y - ί 1 |r|<1

X l ~ l O |r |>2

and %i(r)2+%2(r)2= 1 on R. For £>0 we have in Ω

w(x)eik<x ω>

= /!+/.

where F(r)=l for r>0 and =0 for r<0. For u2(t, x\ ft, ω)=cos t\/—Δf2

we can use the method in §3~5 without large modification and we have

Lemma 6.2. It holds that

I f dxΓ#άk\ d
JΩ Jo Jiωi=ι

, *; k, ω)dt)

Hereafter we consider the behavior of uλ(x, t; k, ω)=cos i\/—Δ fλ. The
asymptotic solution u0 for Cauchy problem

n

n

Qu (0, *) = 0 in Λ3

is obtained in a form

+ eik«*'">+» ΣJ ϋj(ί, Λ?,

Then m±=u& \ (0,oo)XΓ is of the form

(6.5) «*(*, j; ft) =

(6.6) lar^ft^
Extend m* to a function on RxT by setting jn±=0 for t<0. Denote by u±

the solution of

Ou = 0 in JβxΩ

(6.7) u =

supp
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Then we have ul=— u+— u~ on ω(S3) for t^2R. Then it suffices to consider
u±.

Since /w± |(0 j C«)xΓ 2eCSΓ we can apply the method in §3~5 for rnr on Γ2.
Therefore we consider only the solution for m± on iγ First consider the
case |ω'| >l/2. Since there is no difference for m+ and m~~ we consider the
solution for m+ and omit + for brevity. By Fourier's inversion formula

(6.8) m(t, si ft, ω) = w(eik/^^m+(tf

9 s; A, ω)Λ'Λ'

'-k, s\ ft, ω)dk'

for w(t)&C%(R) such that zϋ(ί)=l on supp m+. Let us denote by i(£, #; ft, ω,
ft') the solution of (6.7) whose m+ is replaced by to(t)eikfteik<ttφ>h(kr—k9 s; ft, ω).

For | f t ' |<2 | f t | we have

from which

(6.9) 1 6(ί, Λ; ft, ω, ft') I <CNql^k-N in [2J, 2 ]̂ X ω(83)

follows by an application of Lemma 6.1. For | ft' | >2 1 ft |

|A(ft'-ft, *; ft, ω)| <C|A / -A|- 1 <C / |ΛΊ" 1

As an approximation of i we have an asymptotic solution of the form

b' = ΣΣ e^^ W'^v^t, *; ft, ω, ft') (/ft')"y

g=o y=o

where

(6.10) I υtιi I < C(̂ -β)y I k'-k I -1 .

Since | dφjdx3\ > 1 — Cδ3 on ω(δ3) and |ω3| <χ/"3~/2, we have

I JQ(Jpf(ί)ft(ί, f *, ω, ft'^^Λ^V)^'-"

by using (6.10) and the fact i'=0 on Γ^ where f is a rapidly decreasing func-
tion. Thus we have

dx[ dω[~#dk[ d
Q Jiω^M/2 Jo Jι*Ί>z*

\k'\>2k

Combining this estimate and (6.9) we have
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Lemma 6.3. It holds that

dx[#dk[
Ω J J|α/l>l/2

Next we consider the case of |ω'| <l/2. In this case in addition to (6.6)

another estimate

(6.11) \Qΐ,th
+(t, si k}\ <CΛ for (f,

holds if we choose *0>0 small. Let us set

= mf+mf .

Denote by bj, p=l, 2, the solution of (6.7) replaced rrir by mj. Concerning
bf we can apply the method in §3~5 for construction of asymptotic solution
and acheive the parallel argument.

Lemma 6.4. We have an estimate

dx\
Q J|ω/Kl/2

Note that mf is of the form

»f = eik«s-»™hf(t, *; A, ω) ,

(6.12) 1 8TΘ?Aι(ί, ί; A, ω) I <Cβ,p^1/2-e)Λ for ί>0 .

We consider only for mϊ , and hereafter we omit the suffix + and 1 for brevity.
In a same way as (6.8) we have

m(t, s; k, ω) = \w(t)e-
ik'tei*<s"<'>h(k'-k, s; k, ω)dk'

where

(6.13) h(k'-k, s; k, ω) = e-'̂ ''-"'̂ /', *; k, ω)dt' .

Denote by b(t, x; k, ω, k') the solution of (6.7) replaced m* by w(t)eil>'te<'><s '0>
h(k'—k, s; k, ω). Then

(6.14) bϊ(t, X] k, ω) = δ(ί, *; k, ω, k')dk' .

Taking account of (6.12) we have for all k'

(6.15) I %h(k'-k, s k, ω) I
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and for k'φk we have by integration by parts in (6.13)

(6.16) \9&(k'-k,s ,k,ω)\*ζClt\k'-k\-

For small γ let ψι(x\ ω, 7) be a function verifying

Pi = (1 +•/)<*>»> on Γj

^>0 on Γ,
8n '

Then for 9^ we can define a sequence of phase functions <PJ(X\ ω, Ύ),j= 2, 3,
following the process in §3. Set

<M*; ω, 7) = φ2q(x; ω, y)— <#, ω> .

As a modification of considerations in §4 we have

Lemma 6.5. Let y0 and r0 be small positive constants. Then there exists
ω(x, y) satisfying

Vω'Φ2ff(#; ω(*ι Ύ)ι 7) = 0 /or |Λ— ΛI | <r0

α/zJ /Aώ critical point is non-degenerate. If we set

ψq(xy y) = Φ2ί(Λ:; ω(Λ?, y), y) ,

the critical point with respect to x' is only x'=Q and concerning the Newtonian
polyhedra of ψq we have the same assertions as in §4 for all |y | <y0.

For Λ'e[(l— y0)Λ, (l+y0)£], with the aid of the above lemma we estimate
an oscillatory integral following the process of §5. Applying Varcenko's
theorem we have

(6.17) /(/, r; *, k') = [ds{ dωb(t, jc; Λ, ω, k'^^X^^r)
J Jlω'Kl/2

where

holds because of (6.15). Then

(6.18) I dr#dkPq(t)dt_ιl2J(t, r; k, k')dk' \
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For k'&[k+k1/2+*, (l+70)k] use (6.16) and make an integration by parts
with respect to r in the left hand side of (6.18). Then since £0(0; k, k')=Q
we have

(6.19) \dkPq(t)dtdrzJ(t, r; k, k')dk'\

3+* \ql/\k'— k\z

We have the same estimate for &'e[(l— γ0)&, k— k1/2+*]. Thus it remains us
to consider for |ω'| <l/2 and \k'— k\ ^7<>k. For &'>(!+%,)& set

and we have from (6.16)

where ξ<=S(R). Thus

(6.20) I (tfdkΓ J(k, k')dk' I < C, qM-')' .
J J (ι+τfo)k

Suppose I k'\ < (1 — 70)k. When | kω'\ <Λβ, | k' |<feε we have immediately

from the energy estimate of solution of (6.7). Thus we have

from which it follows that

r> k> k>)

for all q. Let us suppose \ka>'\ >k*, \k'\^k\ If \km'\l\h'\>^d an
application of Lemma 6.1 gives

\J(t,r;k,k')\<CNk-tN.

Thus

(6.21) \{tfdk{ dk'{ dω{dr{pJt)J(t,r ,k,k')dt\*ζC.
V ; J J(l-Vo)t>l*'l>*8 Jl*»Ί/l*Ί>i0 J J^«V^V ^Ί>i0

Let \kω'\l\k'\^da=ΛStld, (l-Ύ0}k^ \k'\^k\ Then we have



688 M. IKAWA

Therefore

(6.22)

< C Γ ζ(k'q-')k'2-3'2-tdk'
J — oo

Then the estimates (6.18)~(6.22) imply the following

Lemma 6.6. We have

I ( dx\ rfωί^έflfeίίp.WftίΛ^A^-Vy*^^ I < C/?

(1/2-e)/ .
JΩ Jlωl<l/2 J J

From Lemmas 6.2~6.6 we have

Proposition 6.7. Let ψ(x) be a C00 function with support in a small neighbor-

hood of a±. Then an estimate

Ω

holds.

(\pq(t)E(t, x, ^)ΨW^-^o?(1"2Ao)(/"1)(V(0, *
J Jo
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