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1. Introduction. We consider the scattering of the acoustic equation
by bounded obstacles. Let @ be a bounded open set in R® with sufficiently
smooth boundary. We set Q=R’—(O. Suppose that Q is connected. Con-
sider the following problem

Ou=9%_19% _0 in(—co, c0)xQ
u(t, x) =0 on (—oo, o) XTI,

Denote by S(2) the scattering matrix for this problem. About the definition
and the fundamental properties of the scattering matrix, see Lax and Phillips
[8], especially Theorems 5.1 and 5.6 of Chapter V.

On relationships between geometric properties of @ and the location of
poles of &(z) Lax and Phillips gave a conjecture [8, page 158] (see also Ralston
[16, 17]), that is, for a nontrapping obstacle the scattering matrix S§(2) is free
for poles in {2; Im 2<<a} for some constant >0, and for a trapping obstacle
&(2) has a sequence of poles {2;}7.; such that Imz;—0 as j—>oco. Concerning
this conjecture Morawetz, Ralston and Strauss [14] and Melrose [11] proved
that the part for nontrapping obstacles is correct. On the other hand, Bardos,
Guillot and Ralston [1], Petkov [15] and Ikawa [4, 5, 6] made considerations
on some simple cases of trapping obstacles. Among them the result of Ikawa
[4, 5] shows that the part of the conjecture for trapping obstacles is not correct
in general, namely for two strictly convex objects S(2) is free for poles in {z;
Imz<a} (@>0). Yet it seems very sure that the conjecture remains to be
correct for a great part of trapping obstacles. In spite of the conjecture we
have not known even an example of obstacle @ for which is proved the exist-
ence of a sequence of poles of the scattering matrix converging to the real axis.”

The purpose of this paper is to show an example of @ whose scattering

1 Ralston [16] gives examples of the scattering by the inhomogeneity of medium such that the
scattering matrix has a sequence of poles converging to the real axis.
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matrix has such a sequence of poles.

Theorem 1. Let O;, j=1, 2, be convex open sets in R® with sufficiently smooth
boundary T';, and let a;ET;, j=1, 2, be the point such that |a,—a,|=dis(O,, O).
Suppose that the principal curvatures r;(x), I=1, 2 of T'; at xET; satisfy

(1.1) Clx—a;|*>k;(x)>C"|x—a;|*  forall x€T;
for some
(1.2) c0>e>2

and C>0. Then the scattering matrix for O=0O,UQ, has a sequence of poles
{2;} 7=y such that

Imz;—-0 a5 j—oo.

In the proof of this theorem we start from a trace formula proved by Bar-
dos, Guillot and Ralston [1]:

tl‘L’(Ra)SP(t) (cos tn/—A P 0—cos t\/—A,)dt

- % 5 60v) for pCy(2R, )
poles

(explanation of the notation will be given in §2). The main differences of the
treatment of this formula in this article from in [1] are (i) we substitute in the
place of p(t) a sequence of functions p,(t), g=1, 2, --- such that min{s; t€
suppp.}—>co as g—>oo, (ii) all the eigenvalues of the Poincaré mapping of
the periodic ray are 1, which is a consequence of the assumption (1.1) subject
to (1.2).

It should be remarked that the result in [4] can be extended to a case of
two convex objects such that the Poincaré mapping of the periodic ray has
not 1 as an eigenvalue. Namely, in this case all the poles of S(2) have the ima-
ginary part>a for some a>0. Therefore in order to find an example of an
obstacle composed of two convex objects with a sequence of poles converging
to the real axis we have to consider obstacles whose Poincaré mapping has 1
as an eigenvalue. Of course these differences give rise to an essential difficulty
in the proof, especially in the estimate of the left hand side of the trace formula
for large ¢. To overcome this difficulty we represent the kernel of cos t/—A
by a superposition of asymptotic solutions constructed following the process
in [2, 4], and apply Varcenko’s theorem [19, 7] to an estimation of integrals
of asymptotic solutions.

2. On the trace formula and a reduction of the problem

We denote by A the selfadjoint realization in L*Q) of the Laplacian in Q
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with the Dirichlet boundary condition and by A, the selfadjoint realization
in L*(R®) of the Laplacian in R® Bardos, Guillot and Ralston shows in [1]
that the following trace formula

(2.1) tr Lz(Ra)SRp(t) (cos t/—A D 0—cos t\/—A, )dt

= L)

2 poles

holds for all p€CF(2R, «)?, where R=diameter of O,

b0V = (evp(e)at

and cos v/ —A @O0 is an operator in L*(R®) defined for f=f+f, fieL Q).
f.€L*0) by ’

(cos tv/—Af) (x)  for xEQ
0 for x€O’

((cos tn/—A D 0)f) (x) = {
Remark that an estimate of the right hand side of (2.1)
(2.2) 3 160 <CDlellw,  FpEC52R, T)
is shown in §3 of [1], where C(T) is a constant depending on T.
Let p(2)€C5(—1, 1) and define p,(¢), ¢=1, 2, -+ by
(2.3) pd) = pil(g+1)t—2dg),
where d=dis(0Q,, ©,) and [ is a positive integer determined later.
Lemma 2.1. Suppose that all the poles {\;} 7., of S(2) verify
(2.4) Imn;>a
for some constant a>0. Then we have
(2.5) 51180, <Clg+1)e ™= for allg
where C is a constant independent of q and .

Proof. Set
Ps.a(t) = po((p+1)'(t—2dy)) .

Fix ¢, in such a way 2dg,—1>2R. Then we have p,,(t)€CF2R, T) (T
=2dqy+1) for all p. Applying (2.2) for p, ,, we have

1 Melrose [12] shows that (2.1) holds for all p C3(R*).
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,-Eﬂ 185,060) | < C(D)llpy,0llz*
<C(D)C(p+1)*.
Since p, (A)=€24"9*p,  (\) we have, under the assumption (2.4), for all A;
[B5.d(0;) | S 7@ty 5, (N))
S @D p, (M) -
Then
33 18140)] S 0710 53 18, 00|
<MW C(T)C(p-+1)¥
< C(T)Ceao*(p+-1)be2des

Note that p,(t)=p,,(t). Then we have (2.5) by setting p=q in the above
estimate. Q.E.D.

Concerning the left hand side of (2.1) we have the following

Proposition 2.2. Suppose that O satisfies the condition in Theorem 1.
Choose p(t)eCs(—1, 1) so that

(2.6) po(8) >0, Slp,,(t)dt =1

and

2.7) pl—k) = p(k)=0  for allkER .

Then we have

2.8) |trLz(Ra)S:pq(t) (cos 1/ A @ 0— cos 1/ —Ay)dt|

> cq(l—zleo)(l+l) -2__ Clq(l—Sﬂeo)l

for all g=>q, if 1>1,, where ey=e+-2 and 1, is a some fixed positive integer, ¢ is
a positive constant independent of I.

The remaining sections of this paper will be devoted to the proof of this
proposition. Theorem 1 can be proved immediately by Lemma 2.1 and Pro-
position 2.2. Indeed, choose p, so that (2.6) and (2.7) are verified. Suppose
that there is no sequence of poles which converges to the real axis. Then
there exists >0 such that

Imx;>a  forall j.
Then we have (2.5) for all large gq. By using (2.5) and (2.8) we have from (2.1)

cqi-Ue DU =2__ O g1=512e91 L O(g+-1)Me=2e
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for large ¢ if I>1],. Letting g tend to oo the above inequality shows a contra-
diction. Thus Theorem 1 is proved.

We would like to remark that if we use the result of Melrose [12] Theo-
rem 1 can be made better in the following form.

Theorem 2. Suppose that O satisfies the condition in Theorem 1. There
exists a positive constant vy such that for any €>0 a region

{z; Im 2<<&(|Re 2| +1)"%
contains an infinite number of poles of S(2).
Recall that Melrose [12] shows that
(2.9) NK)<C(1+K)y

for some p>0 where N(K)=the number of A; such that |A;]<K. By using
(2.9) we have the following lemma, and Theorem 2 is derived immediately
from Proposition 2.2 and Lemma 2.3.

Lemma 2.3. Suppose that {z; Im 2<&(|Re 2[+1)""} (&>0) kas no
poles.  Then it holds that

g [6,(25)] <Ceo,l for all ¢
if 0<oy<I™.

Proof. Let 0<y<. Choose >0 so that 1—av>0, a>I. We classify
the poles into three groups:
Group I ={\;; Im\;>¢},
Group II ={x;; €>Im \;>&(|Re X;|+1)7", |Re ©;| <q¢%},
Group IIT={x;: €>Im A;=>&(|Re A;|4+1)77, |Re A;| >4} .

By the same argument as Lemma 2.1 we have

2 18N <Cig+1)e™ee.

AjEGroup I

From (2.9) the number of the poles of Group II is less than C(1+¢*)*. Then
S RO S e 147y
< Cy(14g°)Pe20s ™,

Since an estimate |4,(2)| <C N(l:—ll)w holds for any N we have

18,0 | SCu(m4-1)(mg™")™" ,

#<ReA ;<(n+1)
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and
16.0:)1 < 3, Cog " (n-+1)tm~
< CNqIN(qa)—N+p+z .

Aj€Group III

Then summing up these estimates, if we choose IV so large that (—a+)N
+p+2<0, it holds that

30 18,0 | SCA+Ye 4 Cy < Ch.
QED.

3. Program of the proof of Proposition 2.2

Denote the kernel distribution of cosz\/—A, and cost\/—A by E(t; x, y)
and E(t, x, y) respectively. Then the kernel distribution e(¢; x, y) of cost\/—A
@ 0—cos tn/—A, is written as

e(t; x, y) = E(t: x, y)—E(t: %, y)
where

E(t; x,y) forx, yeQ
E(t; x,y) = .
0 in REBXRP—QXQ.
Set

e, ) = | _put)elts x, y)de .

In order to show Proposition 2.2 it suffices to prove the following facts:

(3.1) supp ¢,COXxQ,

(3.2) ¢ (%, y)ECFEX )

and

(3.3) |§R3c,,(x, x)dx—cog@ U2 < Cgt=D!  for all g

where ¢, is a positive constant determined by © and p,.

Since E(t; x, y) is well known the essential part of the proof is the con-
sideration of E(¢; x, ¥). To take out properties of E, first we construct an ap-
proximation of E as a superposition of asymptotic solutions, secondly we pick
out the principal behavior of E as t—>co. The construction of asymptotic
solutions is done by a method essentially same as in [2] and [4]. But the as-
sumption that all the principal curvatures of the boundary vanish at @, and a,
gives rise to another behavior of asymptotic solutions than those in [2, 4]. Then
in order to pick up this behavior of asymptotic solutions we have to make other
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considerations than in the previous papers.

Fix 8,, 8; so that Corollary of Lemma 3.3 of [2] holds. Let S;(3,), j=1,
2, I=2, 3 be the ones introduced in §3 of [2]. Denote by w(8;) a domain
surrounded by S;(8,), /=1, 2 and {y; dis(y, L)=8;}. Let

(34) Y(x)ECF(Q) such that supp Y Cw(d;).
Then for feC~(Q) we have by Fourier’s inversion formula
(3.5) W(@fx) = w(w)|_dol Kar( dy eop)1(5),
where w(x) is a function in C§(w(8;)) verifying
(3.6) w(x) =1 on supp+.
Let u(t, x; k, ») be the solution of an initial-boundary value problem

Ou=20 in (0, 0)xXQ

u(t,x) =0 on (0, 0)xT
(3.7) u(0, x) = w(x)e'* <=

ou

—(0,x) =0.

ot (0, )
Then

a(t, x) = Sszdwso kzdkgndy u(t, x; k, w)e" 1 (y)f(y)

satisfies

Oa=0 in (0, )X Q

a(t, x) =0 on (0, o) XT

&0, x) = Y(x)f(x)
0a .
57(0, x)=0.

This means that a(t, -)=(cos tn/—A )f. Therefore the kernel distribution
E(t; x, y)Yr(y) of cos tr/—A 4 is given by

(3.8) E(t; %, y)¥(y) = dews:kzdk u(t, x; b, w)e= (),

here we interpret the integral as an oscillatory integral (cf. Kumano-go [8,
§6 of Chapter 1]).

As an approximation of u(t, x; k, w) we construct an asymptotic solution
of (3.7) in a way that we can make clear the reflexion of geometric properties of
O to the behavior of . For the Cauchy problem with an oscillatory data
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Oh=0 in (0, o0)x R?
h(0, x) = w(x)e*<>*  in R®

%‘_(o, %) =0 in R?

admits an asymptotic solution

B, % k@) = 4= 52 g1, 35 ) (R

. N ;
- M0 $Y g1, 3 ) (i)
i=0
= (1, x; k, 0)+HE(, x5 k, o).
Set
mN(¢, x; k, ) = EN(t, x; k, ©) | (0,00) x
= "] ey x 0 H AL | (g o0y xp = ML+,

Note that from the location of the support of 4", the support of m{" is con-
tained in one of (0, oo)XT and (0, ©)XT,. For example when w;<0

supp m${"’ C(0, o0) X T, supp m¥ (0, o)X T,.

Since all the rays starting from supp 4+ and hitting S(8;) do not tangent to T'
in S(8;) and the Gaussian curvature does not vanish in the outside of S(3;),
the method of construction of asymptotic solution in [2] can be applied without
any modification. We see from Corollary of Lemma 3.3 of [2] that it suffices
to consider 2™ constructed in §8 of [2] when we consider the behavior in
w(8;) of asymptotic solutions with oscillatory boundary data m{". Let us
denote by z™M=u{-+y the asymptotic solution 2 constructed by the
process of Proposition 8.1 of [2] for boundary data m{". Now consider 2{.
For the simplicity of description we omit the suffix 4. Recall that w™® is

of the form
™ = 3y
q=0 ¥ )
U(t, x; by 0) = MOS0, (1, 3 ) (iR)
=

3.9)

and that y™ satisfies
(3.10) supp Y™ N((0, °)X w(3,)) = ¢ .

The fact that the principal curvatures of I'; and T';, vanish at @, and a, brings
other behaviors of @, and v, ; than those of [2, 4]. In this case {V®} ;-0 is not
bounded in C*(w(3;)) and the sequences v, ;, ¢=0. 1, 2 -+ do not decrease
exponentially. Concerning their estimate we have
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Lemma 3.1. There exist positive integers l(j, m) depending on j and m
such that

@.1) 3310599, ) (0(30) < Cing ™
(312) lﬂ'2<h I 65’”4,1'(' > w) lm(R X w(al)) < Cj+h,mql(j+h'm)
hold.

There estimates are proved by induction of j, 4, m by using Lemmas 5.2,
5.3 and their remarks of [2].

Taking account of the location of the support of 2™ the estimates (3.11)
and (3.12) give

supp 2™ (0, )X Q

Bl oMy -  pmtn( L \iN+2thm
(13) S, <3 b o)lalt, O Cuymk (L) :

8 (. ..  p=N+m L \in+24hm)
(3.14) wghlﬁﬁ.(ljzi (+s *5 & o) ult, Q)<Cy,jmk (2{1) ’

(3.15) 2™ =1 on (0, w0)XT.
Set u™M=—(2{"+2%)4-A™). Then
u™(0, x; k, w)=w(x)e’<=*>

(N)
6’;: ©, %3 &, 0) = 0

and [(Ju™ has an estimate of the type (3.14). Concerning the difference be-
tween the actual solution % of (3.7) and ¥ we have from the above remarks

(316) 'Ehl ag(u—u(N)) (', *s k) w) lm(ty Q‘)

<Cyin k-—N+m+2<_2t_d)l(N+2+h,m)+l )

We see immediately from Lemma 3.1 and (3.16) that
S p()E(t; %, Y)(y)dteC=(@x )  for any peC3(R).
Since supp E(t; +, <) CA{(x, ¥); |x—y|=]|¢t|}
(3.17) S o Ry = SS E(t, %, 2y (x)p,(t)dt dx
R Q
for large q. From (3.8), (3.17)

[ oo, wpp)a
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-]
|

asfar| ok p s, £ B, @)e ()

Il

S,, p ()W, x; b, w)e o p(x)dndtdok?dk

>1

a2 b )R ydndtdotat
21

_.l_

+{ ds{ae] do| Ka po(eyutt, 53 b, @) (a)
= I, +1_+I1I4+11I+1V .

(] pu® 08199 (1, w5 B, w)em () vtk
1

jk po(t) (u(t, %; By @)—u™(t, x; b, w))e~ M (x)drdtdewkdk
21

Since we have for 0<k<1
|u(t, x; k, )| <C in [0, o0)xQ,
it holds that |
IV | <CS\lr(x)depq(t)dt<CS\]r(x)dx .

From (3.4) and (3.10) the integrand of IJ vanishes identially. Thus II=0.
Next consider IT. Set

Su-dedtde:kzdk{ } = S---dedtde:kzdk{ }+S---dedtdw5:k2dk{ }
— III,4-I11,.
|11, <CSpq(t)dtSﬂxp(x)dx§:k2dk< Cqlf<Cq™.
Since supp p,C[2dg—q~!, 2dg+q~*], by using (3.16)
| 111,] <C [y (1) q"N+2'°)S:k“”+2dk<C g D-N43

Thus we have

Lemma 3.2. If we choose I>I(N+2, 0)—N--3 it holds that
(3.18) [, e, xpr@de—(T,+1)1 <Cu,
for all q.

Now we set about the estimation of 7. Set

(3.19) Lt k) = Sszdcogndx Ay (1 v o)),
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(3.20) D,(x%, ©) = @,(%, 0)—<*x, @) .

Then we have

(3.21) I, = S“kzdk %(ik)" ge“'“pq(t)l,, ;(t, R)dt .
1 =

Note that except r=2¢—1, 29, 2¢41 supp p,Nsupp 7, ;(t, *; w)=¢. Since
for r=2¢+1

[8,,@,(%, 0)| =1  for all (x, 0)Ew(8;) X S?,
if v, ;(t, x; ©)*0, we have
|1, (¢ k)| <SCyk™g'™  for r = 2¢41

where (M) is an integer depending on M. Therefore we have

(3.22) IL,—S:kzdk fg (ik)-fge-fkfzzq, At B)p()dt| <C for all ¢
if 1 is large. Set
(323) Joiwsts )= | do| _dxeroutmn, i, v opp().
Proposition 3.3.
(3.24) | Jo. 1% 25 B)—R1"56240{cq (x5, £)
+°8573% cain(wy, 1 H(log Ry'Y | < gk

where 1, is a constant, ck:7(xs, t) are determined by ®,, and v, ; and they satisfy
fi [0ic.7 (x5 1) | <C g for all x,€(0, d) and t>0,
especially
cb, (x5 ) = ¢ v, i(t, 0, %35 w5) g%

for some fixed non zero constant c¢ determined by the shape of T'; near a; and w,
=(0, 0, 1).

The above proposition will be proved in sections 4 and 5. Now admit
this result. To evaluate v,,, we use (5.9) of [4]. For w, we see from Lemma
4.1 of [2] that the principal curvatures at @, and a, of the wave front of ¢, are
zero for all ». Then we have A;_;j(X_;(x, V@,))=1 for all j when x'=0.
Therefore we have for w,

V20,0(t, 0, 0, %33 wo) = w(0, 0, (2gd-+x3)—1) .
Note that from (3.6) (0, 0, (2dg+x;)—2))=1 holds for (0, 0, x;)Esupp 4 and
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tesupp p,C[2dg—q", 2dg+4q7"]. Therefore

(3-25) de‘gj.:kzdkj‘dt Cg'o(xa’ t)e‘iktk-1—2/e°eik2dqpq(t)l¢r(0, xa)
= CS‘\Il(O, x3)dx3S:okl_zleoﬁo(k/ql)q-l dk q‘l’zl‘o

d
= o 0, x40,

where co=cswkl"2/20ﬁo(k)dk#0 from (2.7). Next we shall show the following
[

estimate for 2>1 and for all j, m
(3.26) | S:dxsszdkge-f“k-l-f-<2+h>/=o(1og Rym1ch (e, £)p,()dE|
<C grgt-1ed!
Set
1= [ “Rarfem i pim-aii (log Ryw-ick(x, tp,(t)dt

oo

- S"’“"kdeS--- dt+S

1

=5L+1,.

Substituting an estimate |c%7| <C ¢ we have

(- dt

(g+1

e+t
1< g R og(g+1y)dk- [p )
1
< C ql1 (l 10g(1+9))m ql(l—j—(2+h)/eo) .

About I, we make integration by parts in ¢ variable two times, and we have

Izzgw

kdeS(ik)—ze-—iktk—l—j— @+h)/e
(g+1)’

m=1 0 2 h,m
- (tog By 2 Y (ckip(o ) putei
By using estimates of ¢# and the definition of p,(¢) we have

JI(2) s pdoyla<c a1y

Thus it follows that
L1 <Cgs(g+1)|
(g+1)
<C, gh(g+1) @ EHI (60)

lk—l—j—(2+h)/e0 (log ky"'dk

Taking account of #>1 we have
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|I| <C’ qllq(l—llﬂeo)l .

Since C; is independent of x; the above estimate implies (3.26). Combining the
above estimates we have

d
(327) | LG (0, )y go-H0 02| < €y g5
0

if / is sufficiently large. For I_ we have the same estimate as I,. Then form
(3.27) and Lemma 3.2 it follows that

d

(3.28) ' sRch(x’ x);\l,\(x)dx._zc‘os ‘I,.(O’ xs)dxs q(l—z/eo)(H'l)—zl <C’ q(l—5/2¢o)l
0

for any Y& C§(w(33)) when [ is large.

When 4 €CF(w(8;)US(8;)) we have to modify the procedure of the
construction of the kernel of costn/—A+r. Namely, when supp VN S(8;)F ¢
we cannot choose w(x) in (3.6) as a function in C§(2). Therefore the solu-
tion of (3.7) is not smooth function, and 2 has discontinuities, which make
the argument more complicated. But as we shall show in §6 the same esti-
mate also holds in this case. Thus

Lemma 3.4. For any Y&CF(w(8;)US(8;)) the estimate (3.28) holds if
we choose [ sufficiently large.

Next consider the case Jr&C7(Q) and
(3.29) supp v Naw(d;) = ¢ .

Suppose that in addition to (3.29) any ray starting from supp +r does not tan-
gent to I" at S(3;). Then the procedure of construction of an approximation
of ¢, (%, y)Yr(y) is same as before. In the representation of I, ,(t, k) the am-
plitude function ®,(x, ) has no critical point, that is,

|0,®,(x, w)| +|08,®,(%, )| 0  for all (x, w) Esupp Y X S?.

Thus we have for any M
|1.(t, R)| <Cp '™ k=M

where /(M) is a constant depending on M. Therefore we have
|stc,,(x, X(x)dx| <C  forall g.

By employing the argument in §6 of [2] the additional condition may be re-
moved easily. Then

Lemma 3.5. Let & C5(Q) such that
supp v No(d;) = ¢ .
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Then an estimate
(3.30) 1§, ulw, vmyanl <C
holds where the constant C depends of O and ) but independent of q.

Note that for 4 of the form r(x) =r(x—¢) for a fixed Y, € CF(R?)
and some {ER? the constant C in (3.30) is independent of +, namely C is
depends on @ and 4, only. Since

supp(E(t; -, «)—Ey?; +, ) {(x 3); 12|, |y <R+[t[}

the estimate (2.8) is derived from Lemmas 3.3 and 3.4.

4. On the critical points of ®,,(x, )

Let @y(x, 0)=<x, ») and let @,, @, ---, @,, - be the sequence of phase
functions in (3.9). For xEw(3;) set Xy(x, )=« and, if {x+lw; >0} NT+¢

I(%, w) = inf{l; [ >0, x+lo<T},
Xi(%, w) = 2+l ,
El(x’ 0’) == m_2<n(Xl(x’ CD), a)>n(Xl(x’ w)) .

Following the process of §3 of [2] define successively /;(x, ), X;(%, 0), E;(%, »),
L (%, »), L(x, w) for j=1, 2, =-. For xEw(3;) set

I_y(%, Vo (%, 0)) = inf{l; >0, x—I V@ (%, 0)ET},
X (%, Vpou(%, 0)) = x—1_(%, VP (%, ®))VP2y(#, @) -

Define successively X_,(x, V@, (%, »)) following §4 of [4]. For x€R? and
wES? set

P, 0) = {y; <y—%, 0 =0} .
Let us denote by Y,,(x, ) the point
P, ©) N AX <208, Vg, ) —leo; 10} .
Remark that, if we set y=1Y,,(x, »), we have
Xog-1(9r 0) = X1 j(%, VPo (%, @), j=1,2,+,2¢9--1.
Y, (%, ©) Ep(*, w) means that
(4.1) Y, ), 0p = <x, ).
Now we have by using (4.1)
(#2) D%, ©) = | Xy, 0)—y |+ [ Xo(y, 0)—Xi(y; o)
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+ -+ Iqu(y, w)—ng_l(y, w)l -+ |x—X24(y’ “’)l

where we put y="Y,(x, »). Recall that the broken ray X(Y(x, 0), ») is a
path starting from a point on a plane L(», ») and reach at x after 2q times re-
flexion on T according to the geometric optics. The path of the geometric
optics can be characterized as a path that has a minimal length among the ones
which start from on P(x, w) and arrive at x after passing 2¢ times points on
T'. Namely,

(4.3) Dy, (%, ) = inf {|x®—x@ | 4 |x® —x® |
4= .. +]x(z")—x(z"'l)l—l—lx—x‘z")l}
where the infimum is taken on @, x®, ..., ¥®® running over
O eP(x, w),
x®, 1@, .. xG-DeT, (TY),
2@, x®, oo, x@PET (Ty),

if w3>0 (if w3<<0). Let us set
82 = {(o @ +vI—0i—0}); of+wi<l}.
Lemma 4.1. Let €55 and x=w(8;). Suppose that
(4.4) Y (%, ) exists.
Then for o=0(wy, 02)=(wy, 0z vV 1—0i—ol)
(+5) 2P0 = ¢y, 22
= (yi—#)—o;(1—oi—w)) ™ (y:—x)
Jor j=1, 2, where y=(y1, Y2, ¥3)= Ya,(%, o).
Proof. Let 8=w(w,+Aw;, ) and J=Y, (x, &). Since X_;(¥, VP2, (%, ))
is continuous in x and o we have
(4.6) Foy as Aw,— 0.
Set
2= P(x, )N {y-+lo; IER}
Z2=P(x, 0)N{¥+Il5;IER} .
Then from (4.3)
Dyy(%, @) = inf{|a®—x@| 4 oo +|x—x@ |}
SUX(D 0)—2] 4| X9, 0)—Xi(y, o)
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4 e lXZq(y’ w)_XZq—I(x’ CO)I+ lx_XZq(y’ w)l .

Since we have | X,(y,w)—2|=|X,(y,0)—y| +|y—=] if 2 is on the prolongation
of a segment X;(y, o)y it holds that

4.7) Dy (%, B) KDy (%, 0)+|y—2] .

If z is on the prolongation of X,(y, w)y Z must be on a segment X (¥, &)53,
and we have

| X\(3, 8)—2| = | X\(3, &)—F|—|5—2] .
Then similarly we have
(4.8) D%, ) < Dyy(x, &)— |7 —2] .
Taking account of X,(y, o)y | P(x, ») and X,(3, &)7 | P(x, &) we have

ly—2z| =<{y—x, 6—ow)+o(|6—o0])
|J—2| =<J—x, 6—wr+to(|6—wl).

Thus from (4.7), (4.8) and (4.6) it follows that

lim qJZq(x: ‘7’)"“@2«;(-"': m) — <y_x’ %_> . Q.E.D.

A®>0 Aw, 0w,
In the rest of this section we shall use the notation as in §3 of [2].
Lemma 4.2. Let y=Y,, (%, w). Suppose that |x'—y'|<|x'|/2 and
(4.9 y'0'>0.
Then it holds that
|2 —y'| Zeql'|”.

Proof. First note that from the assumption on the principal curvatures
we have

|n(x)' | =c|x' | for x€.5(3;) .

Since d|x'(s)|?/ds=>d | x'(s)|?/ds| cp=Y"*w' =0 for all $>0 we have
%Ix'(sﬂz}cly'l‘“ for s>, .

Therefore
['|2—|y'|?>2dge| y' |,

from which it follows that



TRAPPING OBSTACLES 673

['|—1y"| >2dge|y’|*.
By using |y’| > |x’|/2, which is a consequence of the assumption, the assertion
of Lemma follows. Q.E.D.

Lemma 4.3. Suppose that
(4.10) 2" —y" | <|x'|[2 and %" +E,,(y, 0)<O0.
Then it holds that y'+w<—qc|x'|*** and
|#'—y'| Zcql2"|".
Proof. Since d|x'(s)|?//ds is an increasing function and
0 5/(5) /S | s-ugg 0> d | '(5) |/ | y-ugy -0+ 26(1—8) |~
we have

%lx’(s) [P<—2(1—8)c|#' |, for all s<s, ,

which implies
Ly 12— 1217 = |2"(0)]*— | &"(5,) | > 2dge(1—8) | x" | .
Thus we have
[y — %] >2dge(1—38)]x"| .
Lemma 4.4. When
lo'| ZCq(lx"|*41y"] )
holds for some constant C independent of q, we have
|#'—y'| >dqlo’| and x"~E,>2dq|y"|** .

Proof. Since |x’(s)|? is a convex function we have |x'(s)| <max(|x’][,
|y'|) for all s. Denote the right hand side by M. From the law of reflexion

Ei( 0)—E;-(9) @) = 2X,(3, 0), Xy, o)Xy, @),
we have for j=1
|Bi(3) 0)' —o'| <2|n(Xy(y, 0))"| <2eM**.
Similarly we have for all j <2¢
[(Ei(, ©)—E;j(9, 0))| S2CM*.

Then by using the assumption we have
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I(B,—o0) | <2qCM*'<|o'|j2  forall j<2q.
=)' | = 1 )|
> 1 o) |- 1 5 (B —o)'|
> 2dglo’ | —dglo’ | >dglo’| .

(4.11) [(x— Yao(%, 0))'—2dg 0| <CF|0"|?
where C' is a constant independent of q.
Proof. Let us set y=7Y,,(%, »), —E;(y, ®)=&. Then we have
Xj(%, 8) = Xp- /(¥ 0), BEj%, &) = —Eay-5(9 0) -
First we show that

(4.12) | X(x, ) | <Cjlo’l, |Ejx, &)'—8"|<Cj|a’|*

holds for all j<2g. Suppose that ¢*|&'| <1 and (4.12) holds for j<k.

| Xiia(x, 8)'| < | X%, &) | 41| Ea(x, &)
<Chla’|+CQA+8) o' | <Ci+1)|5'] ,
IEh+1(x9 55)'—‘7”| <C|Xh+l(x1 CT’)IVH
<C(h+1)3|&')'|3<0(h—i—1)]i5'|2 .

Thus (4.12) holds for j=#k+1. By induction (4.12) holds for all j<2gq.

Xi+1(x’ B)—X(x, &) = li(x’ é?’)Ei(x» &3) ’
(Kaaloy 8) =)’ = 33 L, @) (x, B
= 31w, )5+ 2 (v, &) (B, 5)—a)' -

Note that |l(x, 8)—d| <C|X;(x, ) |?°<C¢*|&'|%
Then

4.13)  [(Xp(x, ®)—x)' —2dga’ | <2dg|&'|*+C¢|&" |’ <C'¢la'|?.
Now from (4.12) and E,,(x, &)=0

l(0—8)'|<C2q|&'|*<Cq™*|&’] ,

Q.E.D.
Lemma 4.5. Let x=(0, 0, x,), 0<x,<d. If ¢|w’| <1 it holds that

Then

Since

which implies |(0—&)'| <C¢7'|w’| for large q. From (4.13) and the above



TRAPPING OBSTACLES 675

estimate (4.11) follows immediately.

Corollary. On the assumption of Lemma 4.5 we have

I%%i (0: X3 w)_quwil <qulw'lz .
i

Proof. Since x and y are on P(x, o) |x3—y;s| <|(*—»)'||w’|. From
(4.11) x;—y;=2dqw;+0(¢’| ' |?), and from (4.5)
9u (0, 5, 0)—(9,—) = O’ 1.
Gco,-
Combining these relations we have the assertion.
Lemma 4.6. Suppose that @*|x'| <1, |o’|<|x'|3%. Then
[(Xj(x, 0)—2)'| <Clx"|?,
|Ei(x )| <Cjlx"|?
hold for all j <2q, where C is a constant independent of q.
Proof. From (4.11) we have
[Ey(x, 0)'| <o’ | +C " P <(CH+Cy) %2,
| X%, 0)' | <[%'|4+2(d+-85) || < [#"|(1+Cq~) < [ &' | (14477 .
Suppose that
(4.14) | X%, 0)'| <1o"[(14747%), |E(x o) | <Coj|a’|?
holds for j<k. Then by the same reasoning as the above
| Xya(, ©)' | < | Xi(%, @) | +2(d+-85)Coht | ' |2
< &' |(1+-hg724-2(d+85)C ™)
<|*'|(1+(k+1)g™?)
if 2(d+8,;)Cyg~?<1, and
[Epn (% @) | < |Eu(x, @) | +C| Xpn(x, )
SCh|2' P +C " [P(14-(h+-1)g7%)
<Cyh+1) 2" |?
if C23<C,. 'Thus (4.14) holds for all j<2g. Therefore
29
| (Kool 0)—2)'| < 2 B, @)’
<243 °C, 2 <Cl+'|*.
ji=1
Q.E.D.
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Lemma 4.7. Let x and y="Y (%, 0)Ew(8;). Then we have
(4.15) [grad,s ,@u(x', #3,; ®)| =>c¢ min(|2'|**, ¢7'|o']) .
Proof. When |o'| >Cq(|x’|***+ | y'|**") Lemma 4.4 shows
18,D2(%, @) | >(1=Clo’|) |(x—y)'| >(1—Clo’|)2dg| "] .
Thus (4.15) holds. Now let
(4.16) lo"| <Cq(l#"|**'+]y'|“)<1.
If |[(x—y)'| >%|x’|, (4.15) follows immediately from (4.5). Then hereafter

we suppose |x'—y’|<1/2|x'|. Note that from the above inequality |y’|<<
3/2|x'|. When |x(s)'|? is monotonically increasing or decreasing Lemma 4.2 or
4.3 can be applied and we have |9,P, (%, »)|>(1—Clw’|)|2'|‘, which implies
(4.15). If |x(s)’|? is not monotone, set

| Xi(3, ©)’|* = min|x(s)"|*.

Suppose that |X}|>1/2|x"|. Under the condition (4.16) applying Lemma
4.3 to a broken ray y— X, we have

-0’ S—Cj| X, 1< —Cj |« | 1.
Similarly applying Lemma 4.4 to a broken ray X; — x we have
E2q(y1 w)-x'}c(Zq—j)|x’ [+,
Therefore

(*') (0—VPz(%, ©))") = (%, &' —Eize(y, »)")
= (x—y, @)+ (3, 0")—(¥', VPu(, ),

from which it follows that

|%'] |o'— Ve (x, w)'| = ~—|L2,| cq(1x" |+ ' | “)+2g] " |+
>cq|x'|e.
Then |8,y (%, 0)| = |’ —(V@u(%, ©))'| >cq| x|, which implies (4.15).
Consider the case | X} <%lx’ |. Since
A1 2(5)" |/d5| 4y 100, d|2(5)" |*/d5 | ymgye <O
we have y-»'<<0. Suppose that j<g.

2B (9, w) &' = d|x(s)"|?|ds -

$2¢
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1 1
>=(|*'[*— | X3 > —|*"|?,
g g

Ziqlx'|=< Eaes( 0)'* X3y @) —'+0’
= (Bae(9, @) —00') &' +(x—3) o’
<IEu( o) o'l 1] —1Z] oglar| .
Then we have
|Eu(3, @)’ o' > L[, or |Ealy, @) —o'| >1E L.
This shows (4.15). Q.E.D.

Corollary. For any fixed 0<x3<d, @y (%', %3; ®) as a function of x' and
w, the critical points of D,, are (x', w) such that x'=0, 0=(0, 0, £-1).

Lemma 4.8. For w=(0, 0, 4-1) it holds that for ¢’|x'| <1

(+.17) Cy ' |43 Dyy(w, @) —2dg>cq 2’|+
(+.18) 120 (1, 0) | <Cqls'17.
(O]

Proof. Letw’=0and ¢’|x'|<1. For a broken ray X(y, ), y=Y,,(x, »),
since y"+w’=0 |x(s)’'|? is increasing. Therefore |x'|>|y’|, which implies
¢|y'|<1. Apply Lemma 4.6 to » and y and we have

[(Xi(y, @)—2)' | <Cly'|I’<C|a’|".
Setting j=2q we have |x'—y'|<C|x'|* which shows (4.18). By using the
above estimate we have
| X;(y, 0)'—x'| <C|x'|2.
Therefore we have

Cl2' "> | Xjn(y) 0)—Xi(3) @) | —d>c|x"|*.

Summing up this inequality from j=0 to 2¢g—1 and we have (4.17).

5. Proof of Proposition 3.3

From Corollary of Lemma 4.7 it suffices to consider the integration (3.23)
near x'=0, ®=(0, 0, 4-1). Since x; and ¢ are fixed we shall omit in the rest
of this section to write them in the expression of calculus. First we apply the
stationary phase method to the integration in  variables. Let us set

w(wl) = (wl’ @32y \/l_mf_wg), w, = (wl, (02) ’
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—a% (', %3 0(0) = fo.i(%', ), j=1,2.
J
From Corollary of Lemma 4.5 we have
(5.1) f2.i(0,0)=0, j=1,2,
(5.2) 9f0i (0, 0) = 24d5,, j,h=1,2.
8&);,
Concerning Lemma 3.1 we can easily verify from Lemmas 5.2 and 5.3 of [2] that
12, 0)=2, i.e.
(5.3) 190 (x, ') ,<CFP -
aco,,

Then the implicit function theorem assures the existence of solution of the
equations

(54) fuix0)=0, j=12 for |x'|<qg?.
Let us denote this solution by wy(x’). Then from (3.11) we have
(5.5) [0%wi(x") | S Cug'™ for |x'| <q~?

where /(a) denotes an integer depending on «. In the rest of this section we
shall use notation /(«t) for various integer depending on . For the phase func-
tion we have

o, @) = Pus, (oM 5 3,

1 ’ n\o ’ ’
; (“’ —w;(x )) q.w(x y @ ) ’

where

1 :
Fogn(s o) = | 2o (v, i) +(1—-0)0)a0
h

Then from (5.2) and (5.3) it holds that
Fo(*'y o) = [Fo,n@', @ )]jum1.>dql .
By making a change of variables
£ =T (¥, o) (o' —wy(x")
we have
(56) P, 0(0") = Dyl a(wi@ )+ £
and an estimate

G.7) (0281 <Cug'® .
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Let X be a C* function verifying

1 lo'| <1
0 lo'| =2.

X(w) = {

Lemma 5.1. Let |x'|<q™? and g(x', o')EC"(R*X R?). An oscillatory
integral
H(k, %) = Snze"’“’zv(”""(“"”g(x’, ©)X('[8)do’ (5>0)
has an expansion

H(k, ') = &5 {53 k13, (5)+K -0y, B)}

where

(5.8) W (") = Dyo(%, w(wg(%))) 5

(5.9) [0%hg, (%) | SCag' @ | 8| 1at42s »

(5.10) [0%hy(x"; k)| <Cag' @ glratee  for all k.

Especially for j=0
’ 1 ’ ’ - ’ ’
by o(%") = Zt (det F (%', wy(x"))) Vig(x', wo(x')) .
Proof. By (5.6) we can write
’ i % ihe* ’ ’ D !
H,(k, x") = ¥ >Skze AT {C )D—cz dg .
By using (5.7) we have the assertion by a standard argument.

Then the proof of (3.24) is reduced to obtain an expansion of an oscillatory
integral

(5.11) H,, (#) = [e#=eh, (')
To this end we apply Varcenko’s theorem [18, 7]. First consider properties
of W (x).

Let x;=—(x") be a representation of I"; near 4, and x;=d+J(x') be a
representation of T', near a,.

Lemma 5.2. It holds that
(5.12) |, (") —2g(d+7(x")+7(x") | <C (7(x")+F(x")) ' ]?,

where C, has an estimate C,< Cq* for some a>0.
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Proof. Let x(s) be a representation of X(x, w(wj(x’))). Setting |X}|
=min|x(s)’| we have E;X;>0, E; - X;<0. Note that we have x=2X;(x,
w(wy(x"))) from the definition of wj(x'). Since E;—2(E;, n(X;)n(X;)=0 it
holds that

IB;| <Cly'|*" = Cla'|*"'<Cla"|?.

Applying Lemma 4.6 to broken rays X; to X,, and y=x to X; we have, if
¢lx'| <1,

(5.13) | X,(x, ©)'—x'| <C|a'|?,
[Eu(x, 0)' [ =Cqlx"[?

for all 2. Evidently we have
—Y(X7) if X,eT,

(Xa)s = {d+'7(X,’,) if X,eT,.

Thus we have

(Xi1)s—(Xn)s)* = {(d+7(x")+7(*")+((Xns1)s—(—V(x"))
—((Xa)s—(d+¥(x")}?
= (d+7(x")+7(x") (1+(O(grad(v+7) (x") | *'|?)?) .

On the other hand
[ Xin—Xi| <Cq|x'|**.

Then taking account of (1.1) we have
29-1
531 X1 Xl —2(d 7 ) () | < Cy [ 20000

For x' such that ¢*|x'|>1 (5.12) holds for C,=¢" if we choose a sufficiently
large. Q.E.D.

Let X, and X, be functions in C~(R?) such that
X+X% =1 onR?,
supp X, C {x"; |x'| <2}, X, =1 for |x"|<1.
Set
HP®) = [, (@Yo (', p =1, 2.
From (5.12) it follows

V@ ()| > 7 I grad (v(&)+v (@) | = x|
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Therefore on the support of X, we have |V, ¥ (x")| >cq~ for some a>0. Then
using (5.9) we have

(5.13) |H®(k)| <Cyg"™EY |

When we apply Varéenko’s theorem to H{; we have to pay attention to para-
meter ¢, in other words, we have to obtain an expansion in & of H{"; which is
uniform in g—>oco. To this end first we consider the Newtonian polyhedra of
W,. Here we use freely the notation in [7]. (5.12) implies

Y,r=q7+9)r for large g.
Let Y and z be an analytic manifold and a projection constructed following
Chapter II of [7] for (v+#), that is,

m: Y—=U

(T+9)er(y) = +yny

JO) = 11552 y), JL0)F0.
Then it follows that

Wpon(y) = +qyiya(l+¢,(9)) »

where ¢,(0)=0 and [0,4r,(¥)| <Cug'®™. Then we can find a change of vari-
ables 7z,: y=y,(2) for | 2| <Cq¢® such that

W omor,(2) = +qzirzie,
0
340) =0,

Ya(0)=1
B 0)=1,
18,5,] <Cag'™ .

Then H{" may be represented in finite sum of integrals of the form
[erosestin jomomy) (2)Tu(2)s

Then Proposition 3.3 follows from Theorem 3.23 of [7] beside the representa-
tion of ¢j,;. Note that W, verifies the condition 3) of Theorem 3.23 of [7]
because 9%/, (0)=0 for |a|<4, and ¥, (x")>¥,(0) for »'+0. In Lemma
5.1 when we set g=v,, ; we have

1 _ ’
hao = 5- 07704, (% w(wi(x)) -
74

Then we have from Theorem 3.23 of [7] the desired relation.

6. Representation of the kernel of cos £\/—A near a, and a,

Let +r(x) be a C* function with support contained in a small neighbor-
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hood of @;. We consider the behavior of

[(ee0B@ = ypengs s g—eo.

In this section we denote by s a point of I'; and by n(s) the unit outer normal
of Ty at s. Correspond (7, 5s) to x near @ by x=s+rn(s). First we state a
result on the propagation of the solutions for oscillatory boundary data.

Lemma 6.1. Let m be an oscillatory boundary data on R X T, of the form
m(t, s p, p') = € HOTION(t, 5; p)
satisfying supp hC (0, 1)X Sy(8;) and
(6.1) |87 k| < C,pt/2-c01%l (&>0).
If | pVEl]1p'| =4 85/d, the solution of

Ou=20 in RXQ
u=nm on RXT,
u=20 on RXT,
supp uC {t>0}

(6.2)

verifies an estimate for any N
(6.3) |07 cu(t, x; p)| SCung'@p™  on [2d, 2dg] X (83) .

Except the case that | pv.f|/]|p’| is near 1 an asymptotic solution of (6.2)
can be constructed by a usual manner and checked the propagation of solutions.
For exceptional case we make use of the result of Melrose-Sjostrand [13] on
the propagation of singularities. We omit the proof.

As in §3 denoting by u(¢, x; &, w) the solution of

Ou=20 in (0, )X Q

u=20 on (0, o)XT
(64) u(0, x) = e**Py(x) in Q

% 0,x)=0 in Q

where w(x)=1 on supp Jr, we have

E(t; 2 9 0) = [ Fak|  doult, 53 B @) *00p().

lo

In consideration of the behavior of u(¢, x; k, ») the difference of the case (6.4)
from u of §3 is that the initial data w(x)e*<**> does not verify the compati-
bility condition of an initial-boundary value problem at {t=0} XTI". There-
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fore the solution of (6.4) is not regular, and this fact gives rise to difficulties.
Let X,, X,=C>(R) such that

x._{l Ir] <1
YV lo gr>2

and X,(r)*+X,(r)’=1 on R. For £>0 we have in Q
w(x)e *<xe?

= Y(r)e™ =X, (B2 *r)w(x) + Y (r)e™ <> X (B>~ *r) 2w ()

=fitf;

where Y(r)=1 for r>0 and =0 for r<<0. For u,(t, x; k, w)=cos t—Af,
we can use the method in §3~5 without large modification and we have

Lemma 6.2. It holds that
| as{ war] ~doxem-one e (o eyuts, 53 b, w)it)
0 wl=1
—Coq(l_"’/”o)(1+1)‘zgd1lf(0: xg)dxcs| < Cp g0t
0

Hereafter we consider the behavior of u(x, ¢; k, w)=cos tn/—A f;. The
asymptotic solution %, for Cauchy problem

Ou=20 in RxXR?
(0, x) = e*<=OK (B *rWp(x)  in R®
%, 4)=0  in R?
ot
is obtained in a form
ity %3 By w) = €D S 03, w5 B) (i)

N
- gime> D > 05 (t, x, k) (k)™

= us+uy .
Then m*=ug | g =) xp is of the form
(6.5) m=(t, 53 k) = eHCIERE(L, 3 B)
(6.6) |62 hE(2, 53 k)| < CLh2-21%1

+

Extend m* to a function on RXT by setting m*=0 for #<0. Denote by u*
the solution of

Ou=0 in RXQ
(6.7) u=m* on RXT
supp #C {t=>0} X Q.
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Then we have uyy;=—u"—u" on w(§;) for £>2R. Then it suffices to consider
u*

Since m* | ) xr,EC5 we can apply the method in §3~5 for m* on T%.
Therefore we consider only the solution for m* on T',. First consider the
case |w’|>1/2. Since there is no difference for m* and m~ we consider the
solution for m* and omit +- for brevity. By Fourier’s inversion formula

(6.8) m(t, s; kR, w) = w(t)SSe"”("’/)m’“(t’, s; k, w)dt'dk’
— Sw(t)e"‘"ei"<s"”>fz(k'—k, 53 b, o)dk’

for w(t)€ C7(R) such that w(¢)=1 on supp m*. Let us denote by b(t, x; &, o,
k') the solution of (6.7) whose m* is replaced by w(t)e™* *e™*<=*>h(k'—Fk, s; k, o).
For |k'| <2|k| we have

|kV s, o ||k >485/d,
from which
(6.9) [o(t, x5 k, 0, ') | SCyg' @k~ in [2d, 2dg] X o(85)
follows by an application of Lemma 6.1. For |&'| >2|k]|
|h(k'—k, 53 k, )| <C |k —k|'<C'|k'| L.
As an approximation of b we have an asymptotic solution of the form
b= 5} 31 e ety (1, 33 k, , K) (#)
where
(6.10) 190,51 SCRY | B —k| .
Since |9g,/0x;| =1—C8; on w(8;) and |ws| </ 3 /2, we have
lSﬂ(Spq(t)b(t, v; k, w, R)dE)X, (R r)e*<=? dx |

<CBE |g)+q7'CIER (g7 ) | k' —k | ~°RY-®

by using (6.10) and the fact 5'=0 on T, where § is a rapidly decreasing func-
tion. Thus we have

” / 1/2-2, )\ ik{x,0)
|Sgdx§mq>mdmg kdeSlklwdk (Spq(t)bdt)xl(k r)eit<e |

0
<cff Ko g +a R gk dk
1k’ 1 52k
<qu(l/2—!) .

Combining this estimate and (6.9) we have
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Lemma 6.3. It holds that
G 1/2~2,\ ik<x,0)
ISdeSkzdksmwzdcoSdk (Spq(t)bdt)xl(k P)eitceo) |
< C’(ql)lﬂ—! .

Next we consider the case of |»’|<1/2. In this case in addition to (6.6)
another estimate

(6.11) |05 A7 (2, 55 R) | <C, for (¢, s)E[0, to™ 2] X S(85)
holds if we choose £,>>0 small. Let us set

m* = Y(E)Xy( TR t)m* -+ Y (£) X TRt

= mf-+mz .

Denote by b5, p=1, 2, the solution of (6.7) replaced m* by mis. Concerning
bF we can apply the method in §3~5 for construction of asymptotic solution
and acheive the parallel argument.

Lemma 6.4. We have an estimate
2 + 12—\ jik{z,0)
ISﬂdx&w/KUZdek dk(S p (D AE)X, (RS eih<xo? |
<C g9t

Note that mf is of the form

mi = e*CDFORE(L 55 R, w),
(6.12) |6%08M(t, 5; b, )| <Cagk@9°  for 1>0.

We consider only for m{, and hereafter we omit the suffix 4+ and 1 for brevity.
In a same way as (6.8) we have

m(t, s; k, w) = Sw(t)e‘”‘"e‘"“-“’%(k'——k, s; k, w)dk'
where
(6.13) h(k' —k, 53 b, ) = Se“‘("""”')h(t’, 53 b, w)dt’ .

Denote by (¢, x; &, o, k") the solution of (6.7) replaced m* by w(f)ef* *ei*<**>
h(k'—F, s; k, ). Then

(6.14) bi(t, %3 b, ) = Sb(t, x; b, o, K')dk' .
Taking account of (6.12) we have for all &’
(6.15) [0%h(k'—F, s; k, )| <Cuk~ 29,
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and for &’k we have by integration by parts in (6.13)

(6.16) |0%h(k'—k, s; k, )| <C, |k —k|™.

For small 7 let @,(x; w, 7) be a function verifying
pr=(14+7)<s, 0» on I

Qﬁ>0 on T}
on

[vel =1.

Then for @; we can define a sequence of phase functions @;(*; », 7), j=2, 3, ***
following the process in §3. Set

q)le(x; @, (Y) = ¢2¢1(x; (O 7)_<x) CO> .
As a modification of considerations in §4 we have

Lemma 6.5. Let v, and ry be small positive constants. Then there exists
o(x, ) satisfying

V«)'(I)Zq(x; w(x, 'Y), ')’) =0 fOf lx_all <r0
and this critical point is non-degenerate. If we set
Yo (%, 7) = Dy (x5 w(x, ¥), ),

the critical point with respect to x' is only x'=0 and concerning the Newtonian
polyhedra of r, we have the same assertions as in §4 for all |7 | <,.

For k' €[(1—,)k, (1+7,)k], with the aid of the above lemma we estimate
an oscillatory integral following the process of §5. Applying Varcenko’s
theorem we have

(6.17) J@, ik E) = Sa'SS dob(t, x; k, o, k')e*5X (R~%7)
lo’1<1/2
— xl(kllz—Er)eik’(l—(2d11+‘lr)) {co(r; k, kz)k;-l—z/eo+0(k/—1-5ﬁeo)}
where
leors &, B')| <CR™V2**
holds because of (6.15). Then

(6.18) | Sdrgkzdkg pq(t)dtg

<C§S. oo F NG OR T CR Ok 0O dRd R
¥ -klgkl/2te

<C, q(1/2—2/e°+!)1 .

J(t, 73 by B)dE'|

|k,—k|<k1/2+e
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For k'&[k+k2*, (147,)k] use (6.16) and make an integration by parts
with respect to 7 in the left hand side of (6.18). Then since ¢,(0; &, £")=0
we have

11k

(6.19) |jk’dkgpq(t)dtS:odrSHklm' Jat, v by KK |

atvk (B! 1 rm1=Se LAt ,
<ngkslﬁl;l/z*eﬁ(ql)lk'_klak ok k2dk

<C, q(l/2+8-2/¢o)l .

We have the same estimate for k' &[(1—7,)k, k—k'***]. Thus it remains us
to consider for |w’| <1/2 and |k'—Fk|>vk. For k' >(14-7,)k set

Tk, k) = Sdtgdr D))t 73 B, )
and we have from (6.16)
Tk, B)<E(R' [g') | B —k| 2 R*
where {&S(R). Thus
(6.20) | Skdegzwk J(k, B)dR'| <C,q0R-9".
Suppose |&'| <(1—Y)k. When |ko'| <k%, |k'| <k® we have immediately
| 0% .:b(x, t; &, o, k)| SC k1#112¢
from the energy estimate of solution of (6.7). Thus we have
|t 73 b myar <o,

from which it follows that

2 ’ . ’ <
[ dkSWKk_mdequ‘kedk fatestrye, v b BY <C

for all ¢. Let us suppose |ko'|=K%, |R'|=k. If |ko'|/|kR'|>48;/d an
application of Lemma 6.1 gives

| J(t, rs &y B')| <Opk~V .
Thus

’ . ’ < .
(6.21) ISkdeS(l—yo)»lk’l»?dk Sllm’l/lk'l>dodwsdrqu(t)](t’ vk KA <C

Let |ko'|||k'| <dy=48;/d, (1—7o)k> |k'| >k°. Then we have
L J(t, 73 &, k)| <CESRC
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Therefore
(6.22) (fral ] aofararagnse v kK]
a-1ph 2
<c[wal ™ a g( Yetn-o(K)
<cf” ewew | p-tanar
<¢ S lé‘(k'q ~NR'232t R L Cqa-

Then the estimates (6.18)~(6.22) imply the following
Lemma 6.6. We have

2 + V2-8) ikred | az-or
ISdeSIMKUdeSk dk(gpq(t)bl d)X, (R *)e=o | < Cyg

From Lemmas 6.2~6.6 we have

Proposition 6.7. Let r(x) be a C* function with support in a small neighbor-
hood of a,. Then an estimate

d
(et %, x)deppx)dn—cogt=00-{ 30, )| < € -0
Q ]

holds.
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