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1. Introduicton

The topological entropy h(f) of a self-map f of a metric space is a measure of
its dynamical complexity (for the definition of topological entropy see section
2 below). In [T,] Thurston has shown that any homeomorphism f of a com-
pact hyperbolic surface is isotopic to @ which is either periodic, pseudo-Anosov,
or reducible (see alss [F-L-P], [H-T], [M]). We call @ Thurston’s cannonical
form of f. In section 2 we show that s(p) <h(f) i.e. @ attains the minimal entropy
in its isotopy class. Hence from the dynamical viewpoint Thurston’s cannonical
form plays an important role ([H], [K], [Smi]).

In this paper, we find a similar cannonical form of a homeomorphism of a
class of geometric 3-manifolds (for the definition and fundamental properties of
geometric 3-manifolds see [Sc]). We note that every self-homeomorphism of
a hyperbolic 3-amnifold is homotopic to a periodic one ([Mo]). In the following,

we consider homeomorphisms of an H2X R, SL,(R), or Nil 3-manifold M.
Then our main result is:

Theorem 2. Let f be a homeomorphism of an H?x R, SLy(R), or Nil 3-
manifold M. Then f is homotopic to @ such that either:

(1) o is of type periodic,

(ii) o s of type pseudo-Anosov, or

(iii) there is a system < of tori in M such that @ is reducible by . There
is a q-invariant regular neighborhood v(<) of < such that each @p-component of
M—Int n(9) satisfies () or (ii). Each component n(T;) of 7(d) is mapped to itself
by some positive iterate ¢"i of @ and @"i| .z, is a twist homeomorphism.

For the definitions of the terms which appear in Theorem 2, see section 4
below. We note that if M is sufficiently large, then ¢ is isotopic to f ([Wa]).

In section 5 we show that the above ¢ attains the minimal entropy in its
homotopy class, and k() is positive if and only if @ contains a component of
type pseudo-Anosov.
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2. Preliminaries

Let f: X —X be a continuous map of a metric space (X, d). In this section
we recall the definition of the topological entropy A(f) of f in [Bo], and show
that Thurston’s cannonical form of a surface homeomorphism attains the mini-
mal entropy in its homotopy class.

Let K (CX) be compact, £>0 a positive number, and 7 a positive integer.
We say that E(CK) is (n, &)-separated, if x, yEE, x=+y, then there is 0<<i<n
such that d(f*(x), fi(v))=€. Let sg(n, €) be the maximal cardinality of an (#, &)-
separated set in K. We say that E(CK) is (n, &)-spanning for K, if x€K,
then there is a y€E such that d(fi(x), f(y))<<€ for all 7 with 0<i<nm. Let
rk(n, €) be the minimal cardinality of an (#, £)-spanning set in K. Let §4(€)
:lim sup 1/n-log(sg(n, €)), and 7x(€)=lim sup 1/n-log(rx(n, €)). Then it can

be shown that lim §K(8)=£im 7x(€), and we denote this value by Ax(f). Finally,
>0 >0

we put A(f)=sup {(h(f)| K: compactC X}.
For the proof of the following theorem see [Bo].

Theorem A. Let X, Y be compact metric spaces, p: XY, f: X—>X, g:
Y — Y continuous maps such that fop=pog. Then h(g)<h(f)<h(g)-+ sup

ho-10(f)s yE YT

Let F be a compact hyperbolic surface. A measured foliation (<, p) on F
is a pair of a singular foliation on F and a transverse invariant measure p of &

&

3-pronged saddle
Fig. 1
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([F-L-P], [T}]). & may have a finite number of singularities a,, -+, a;, where
a; is an r,-pronged saddle with r,>3. If M has boundary, then each boundary
component is a leaf of the foliation and has at least one singularity. A self-
homeomorphism f: F—F is pseudo-Anosov if there is a pair of mutually transverse
measured foliations (7, u°), (£, 1*) and a number A>1 such that f preserves
two foliations F*, F* and fy(u’)=1/A p’°, fu(p*)=n-p"“. Then A is called the
expanding factor of f.  fis reducible by T" if T' is a system of mutually disjoint and
non-parallel loops, each of which is non-contractible, non-peripheral and f(T")
=T fis periodic if there is a positive integer n such that f"=id,. Let 4 be an
annulus, g: A—A a homeomorphism, A=[—1, 1]X R the universal cover of 4
where the covering translations are generated by (x, y)—(x, y+1). gis a twist
homeomorphism if there is a lift §: A—A of g such that g(x, y)=(4-x, h(x, y)) for
some map h.
Then the precise statement of Thurston’s result is:

Theorem B (Thurston [T}]). If f is a self-homeomorphism of a compact
hyperbolic surface F then f is isotopic to @ such that either:

(i) o is periodic,

(i) @ is pseudo-Anosov, or

(iii) there is a system of simple loops T" on F such that ¢ is reducible by T.
There is a g-invariant regular neighborhood w(T'). Each @-component of F—
Int 7(T) satisfies (i) or (ii). Each component, A;, of n(T) is mapped to itself by
some positive iterate @™ of @, and @"i| 4, is a twist homeomorphism.

Then we can show:

Proposition 2.1. Thurston’s cannonical form ¢ attains the minimal entropy
in its homotopy class. Moreover h(p)>>0 if and only if ¢ contains a pseudo-Anosov
component.

Proof. If @ is periodic then A(@)=0 for h(¢")=n-h(p). If @ is pseudo-
Anosov then by [F-L-P] Exposé 10, #(®)>0 and it attains the minimal entropy
in its homotopy class. Suppose that @ is reducible. Let 4,, -+, 4,, (m>1)
be the components of »(I') and F,, -+, F, (n>1) be the closures of the compo-
nents of F— U 4;. Let [ be a positive integer such that @/(4,)=4; (1<i<m)
and @'(F;)=F; (1<j<mn). By the definition of topological entropy we see that
I @')=max {h(®'| +;), M(@'|F,)}. It is easy to show that for each homeomor-

phism g of a circle we have 4(g)=0. By Theorem A we see that A(¢'| ,,)=0
for each 7. Hence h(p')=max {h(¢'| f,)}.

If each @[, is periodic, then A(@')=0. Hence (p)=0.
If @' contains a pseudo-Anosov component, then A(p')=log A;, where A,
is the expanding factor of some pseudo-Anosov component @'| . Since X(F;)
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<0, there is an essential, non-peripheral (not necessarily simple) loop a on F.
Then by [F-L-P] lim 1/n-log (L(¢™(ct)))=N;, where L(a) denotes the infimum

of the length of loops which are homotopic to a. By [F-L-P] if g is homotopic
to @' then A(g)>log Aji.e. @' attains the minimal entropy in its homotopy class.
Since A(@p')=1-h(p) we see that @ attains the minimal entropy in its homotopy

class.
This completes the proof of Proposition 2.1.

3. Homeomorphisms of 2-dimensional orbifolds

In this section, we give a classification theorem for homeomorphisms of
2-dimensional orbifolds. We assume that the reader is familiar with [T, §13]
or [Sc, §2].

By [Sc], [T,] every singularity on a 2-dimensional orbifold is either cone,
reflector line, or corner reflector. Throughout this paper we consider orbifolds

Singuralities of 2-orbifolds
Fig. 2

whose singularities are cones. Let O(O' resp.) be a 2-dimensional orbifold with
singularities ,, **+, &, (n>1) (%1, --+, x{» (n' >1) resp.), where the cone angle of
x; (x} resp.) is 2z[p; (2n[p} resp.).

Let f be a map from O to O’. f is called O-homeomorphism if f satlsﬁes

(i) fis a topological homeomorphism,

(ii) f(sing(O))=sing(O’), where sing(O) denotes the set of the singularities
of O,

(iii) if f(x;)=x] then p,=p}.

Let f, f': O— O’ be O-homeomorphisms. f and f’ are O-isotopic if there is a
topological isotopy F;: O—0O’ (0<t<1) such that each F, is an O-homeomor-
phism and F,=f, F,=f".

The definition of a measured foliation (&, w) on O is the same as
the definition for surfaces in section 2 except the fact that if x is a singularity of
O then & may have 1-pronged saddle at x. A self-O-homeomorphism f:
0—0 is pseudo-Anosov if there are a pair of mutually transverse measured
foliations (<°, x°), (¥, u*) and a number A>1 such that f preserves the two

foliations, and fy(u*)=1/A+p’, fu(u*)=nr+pu".
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)

1-pronged saddle
Fig. 3

Let a;, a,C O be simple loops which do not meet singularities of O. &, and
a, are parallel if a,U a, bounds an annulus which does not contain singularities.
a, is peripheral if a, is parallel to a component of d0. a, is essential if a, is not
peripheral and &, does not bound a disk on O which contains at most one singular
point.

A self-O-homeomorphism f: O— O is reducible by T' if T" is a system of
simple loops on O each of which does not meet a singular point and is essential,
which are mutually disjoint and non-parallel, and f(T")=T".

Then we have:

Theorem 1. Let O be a compact 2-dimensional orbifold whose (possibly
empty) singular points are all cone type and f a self-O-homeomorphism of O. Then
f is O-isotopic to @ such that either:

(1) o is periodic,

(i) o s pseudo-Anosov, or

(iii) there is a system T of simple loops on O such that @ is reducible by T'.
There is a @-invariant regular neighborhood n(T") of T' such that each q-component
of O—Int n(T") satisfies (i) or (ii). Each component, A;, of n(T') is mapped to
itself by some positive iterate @i of @ and @"i| 4, is a twist homeomorphism.

Proof. First, suppose that O contains no singularities i.e. O is a surface.
In case of X(0)<<0 Theorem 1 is just Theorem B in section 2. There are four
distinct compact surfaces with Euler characteristic zero, say annulus, Mobius
band, Klein bottle, and torus [Sc]. It is easy to see that every homeomorphism
of an annulus or a Mobius band is homotopic to a periodic one, and then is
isotopic to a periodic one [E]. By Lickorish [Li] every homeomorphism of a
Klein bottle is isotopic to a periodic one. Let O be a torus, 4 a 2X2 matrix
representing fy: (O)m—m(O) for a fixed basis of #,(0). Then f is isotopic to
a reducible, periodic, or (pseudo-)Anosov map according to whether A is con-
jugate to (§ 1) =1, n%0), 10 (J* ) with Pl =[hal=1, or t0 &)
with || =% || [F-L-P, Expose 1]. There are three distinct compact surfaces
with positive Euler characteristic say sphere, disk, and projective plane. By
Smale [Sma), [F-L-P, Exposé 2] every homeomorphism of them is isotopic to a
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periodic one.

We suppose that O has singularities xy, -+, #, (#>1) which are cone type.
Let S be a surface obtained from O— {x,, -, x,} by adding a circle to each non-
compact end. By moving f by an O-isotopy we may suppose that f|o_is,,...,
extends to f: S—S.

If X(S)=0, then by the above f is isotopic to a periodic map @. Let @:
O—O0 be the projection of @. Then @ is O-isotopic to f, and periodic.

If X(S)<O, then by Theorem B f is isotopic to Thurston’s cannonical form
@. Let @: O—O0 be the projection of @. Then ¢ is O-isotopic to f, and we
easily see that @ satisfies the conclusion (i), (ii), or (iii) of Theorem 1 according
to @ is periodic, pseudo-Anosov, or reducible.

This completes the proof of Theorem 1.

4. Homeomorphisms of H?x R, SL,R) and Nil-manifolds
Throughout this section let M be a compact, orientable 3-manifold with an

H*XR, S/LT(E), or Nil structure. In this section we prove Theorem 2 and
investigate some properties of homeomorphisms of type periodic and pseudo-
Anosov. By [Sc] M admits a Seifert fibration p: M —O where O is a good
2-dimensional orbifold whose (possibly empty) singularities are all cones and
by moving f by a homotopy we may suppose that f is fiber preserving. We note
that this deformation can be realized by an isotopy if M is sufficiently large [Wa).
Then we have an O-homeomorphism +r: O— O which satisfies:

M—i—aM

| s

O——O0

A fiber preserving self-homeomorphism f is of type periodic if +r is periodic.
f is of type pseudo-Anosov if + is pseudo-Anosov. Let F be a 2-sided surface
properly embedded in a 3-manifold M'. F is incompressible if iy: m\(F)—m(M')
is injective. Let E be a subset of a Seifert fibered manifold S. E is saturated
if E is a union of fibers of S. f: M —M is reducible by I if 9 is a system of
mutually disjoint, non-parallel incompressible tori, and f(Z)=9. Letg¢: N—A4
be a circle bundle over an annulus 4, g: N—N a fiber preserving homeomor-
phism, @: A—A a map induced from g. g is a twist homeomorphism if @ is a
twist homeomorphism.

Lemma 4.1. Let M be an H*X R, SLy(R), or Nil-manifold with a Seifert
fibration, T an incompressible torus in M. Then T is isotopic to a saturated torus.

Proof. Asumme that T' is not isotopic to a saturated torus. By [Sc],
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[Wa] Seifert fibrations on M are unique up to isotopy. Then by [J] Theorem
VI. 34 we have either:

(1) M is a torus bundle over a circle and T is a fiber of the bundle, or

(i) M=M,UM, where M,N\M,=0M,=0M,=T, and M, (i=1, 2)is a
twisted J-bundle over the Klein bottle.

Assume that (i) holds. The monodromy of M is represented by a 2Xx2
matrix A€ SLy(Z). By [Sc] a torus bundle over the circle admits either an
E3, Nil, or Sol structure, and M admits a Nil structure if and only if 4 is con-

jugate to (g Z) (6é=+41, n%0). Then we easily see that there is a Seifert

fibration on M such that T is saturated with respect to the fibration. This
contradicts the assumption. Assume that (ii) holds. By [Sc] M admits an E3

or Sol structure and does not admit an H?X R, SL,(R), or Nil structure, a con-
tradiction. Hence T is isotopic to a saturated torus.

Proof of Theorem 2. If T is a non-peripheral, saturated, incompressible
torus in M, then p(T) is an essential loop on O. Conversely, if a is an essential
loop on O, then p~'(a) is a non-peripheral, saturated, incompressible torus in M.
Moreover, if a,, a, are mutually non-parallel, essential loops on O, then p~'(a,),
p~'(a,) are mutually non-parallel incompressible tori. From these facts the
proof of Theorem 2 follows immediately from Theorem 1.

Now, we investigate homeomorphisms of type periodic on M. Suppose
that f is of type periodic. Let G be a subgroup of Out 7,(M) generated by f.
Let +: Out 7,(M)— Out z$™(0) be a cannonical homomorphism, where z3™(0)
denotes the fundamental group of O as an orbifold ([T, § 13]). Then we have
an exact sequence:

1—~>Ker1}r|c—+G-—-1lf—> Y(G)—1.

(@) is a finite cyclic group. If O is non-orientable, then by Kojima [Ko]
Ker 4r|¢ is a finite group and G itself a finite cyclic group. This fact together
with [Zi] implies:

Proposition 4.2. If O is non-orientable and f: M — M is a homeomorphism
of type periodic, then f is homotopic to a periodic one.

5. Topological entropy of homeomorphisms of H’X R, S/L\z(;i),
or Nil-manifolds

In this section we see that the map ¢ obtained in Theorem 2 attains the
minimal entropy in its homotopy class. Throughout this section, M denotes a

—~——

compact, orientable H?X R, SL,(R), or Nil manifold with Seifert fibration M —O.
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Lemma 5.1. Let g: M—M be a fiber preserving homeomorphism. Then
h(g)=h(+r), where Jr: O—O is the homeomorphism induced from g.

Proof. By the argument in the proof of Lemma 3.1 of [S-S] we see that
he(2)=0 for each fiber C of M. Hence, by Theorem A we have A(g)=h(+).

By Lemma 5.1 we have:

Proposition 5.2. If f: M—M is a homeomorphism of type periodic, then
h(f)=0.

For the homeomorphisms of type pseudo-Anosov, we have:

Proposition 5.3. If f: M —M is a homeomorphism of type pseudo-Anosov,
then h(f)>0. Moreover, it attains the minimal entropy in its homotopy class.

Proof. By [Sc] M admits a finite covering p: M—M such that the Seifert
bundle structure on M lifts to a circle bundle structure g: M—S. We may
suppose that some power of f, f, lifts to a homeomorphism f: M—>M. Let
¥: S—S be a homeomorphism induced from f. Then we have A(f)=1/n-h(f").
By Lemma 5.1 &(f*)=h(f)=h().

Then we note that ¥ is a pseudo-Anosov homeomorphism. Let A (>1)
be the expanding factor of f. Then A" is the expanding factor of ¥r. By [F-L-P]
h(¥)=n-logx>0. Hence, we have A(f)=Ilogn. Since X(S)<<0, there is a
loop I in M such that ¢(I) (CS) is an essential loop of S. We note that
g(f(D)="(q(])) (cS). Then by [Sc] we see that L(I')>L(q(!")) for each loop
I’ on M, where L(I') denotes the infimum of the length of loops which are homo-
topic to I’. Since 'lgg 1/m-log L(y"™(q(l))=2N", we see that }gn 1/m-log L(f™())
>\". Hence if f’ is homotopic to f then h(f')>h(f)=n-log\. From this we

see that f attains the minimal entropy in its homotopy class.

By using the argumant as in the proof of Proposition 2.1 and by Lemma 5.1
we easily have:

Proposition 5.4. Let o: M—M be as in Theorem 2. Then ¢ attains the
minimal entropy in its homotopy class and h(p) is positive if and only if @ contains
a component of type pseudo-Anosov.
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