KLEIN BOTTLES IN GENUS TWO 3-MANIFOLDS

Kanzi MORIMOTO

(Received April 20, 1984)

Introduction

For a closed 3-manifold M, it is very interesting to study the relation between a Heegaard surface of M and an embedded surface in M. For this purpose W. Haken has shown in [2] that if a closed 3-manifold M is not irreducible, then there is an essential 2 -sphere in M which intersects a fixed Heegaard surface of M in a single circle, and W. Jaco has given in [4] an alternative proof of it. M. Ochiai has shown in [8] that if a closed 3-manifold M contains a 2 -sided projective plane, then there is a 2 -sided projective plane in M which intersects a fixed Heegaard surface of M in a single circle, and moreover he has shown in [9] that if a closed 3-manifold M with a Heegaard splitting of genus two contains a 2-sided projective plane, then M is homeomorphic to $P^{2} \times S^{1}$. Succesively T. Kobayashi has shown in [5] that if a closed 3-manifold M with a Heegaard splitting of genus two contains a 2 -sided non-separating incompressible torus, then there is a 2 -sided non-separating incompressible torus in M which intersects a fixed Heegaard surface in a single circle. In this paper we will show a similar result for a Klein bottle.

Theorem 1. Let M be a closed connected orientable 3-manifold with a fixed Heegaard splitting ($\left.V_{1}, V_{2} ; F\right)$ of genus two. If M contains a Klein bottle, then there is a Klein bottle in M which intersects F in a single circle.

By the way it is well known that a closed orientable 3-manifold M with a Heegaard splitting of genus one contains a Klein bottle if and only if M is homeomorphic to $L(4 n, 2 n+1)$ for some non-negative integer n (c.f. [1]). Using Theorem 1 we will give a necessary and sufficient condition for a closed orientable 3-manifold with a Heegaard splitting of genus two to contain a Klein bottle. Namely we will give three families of closed orientable 3-manifolds, and we will show that a closed orientable 3-manifold M with a Heegaard splitting of genus two contains a Klein bottle if and only if M belongs to one of the three families (Theorem 2).

I would like to express my gratitude to Prof. F. Hosokawa and Prof. S. Suzuki and the members of KOOK seminar for their helpful suggestions.

0. Preliminaries

Throughout this paper, we will work in the piecewice linear category. S^{n} and P^{n} means the n-sphere and the real n-dimensional projective space respactively. I means the unit interval $[0,1] . \quad \operatorname{Cl}(\cdot), \operatorname{Int}(\cdot)$ and $\partial(\cdot)$ mean the closure, the interior and the boundary respectively. A handlebody of genus n is defined by disk sum of n-copies of $S^{1} \times D^{2}$ where D^{2} is a 2 -disk, and we call a handlebody of genus one a solid torus. A Heegaard splitting of genus n of a closed orientable 3-manifold M is a pair ($\left.V_{1}, V_{2} ; F\right)$, where V_{i} is a handlebody of genus $n(i=1,2)$ and $M=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}=F$. Then F is called a Heegaard surface of M. According to J. Hempel [3] we call a closed orientable 3-manifold with a Heegaard splitting of genus one a lens space. A properly embedded surface F in a 3-manifold M is essential if F is incompressible in M and is not boundary parallel. $A \# B$ and $A \cong B$ mean the connected sum of A and B and that A is homeomorphic to B respectively. Furthermore for the definitions of standard terms in three dimensional topology and knot theory, we refer to [3], [4] and [9]. For the definition of a hierarchy for a 2-manifold and an isotopy of type A, we refer to [4].

1. Proof of Theorem 1

Lemma 1.1. If a compact orientable 3-manifold M contains a compressible Klein bottle in Int M, then $M \cong S^{2} \times S^{1} \# M^{\prime}$ or $M \cong P^{3} \# P^{3} \# M^{\prime}$ for some compact orientable 3-manifold M^{\prime}.

Proof. Let K be a compressible Klein bottle in $\operatorname{Int} M$, then there is a 2disk D in $\operatorname{Int} M$ such that $D \cap K=\partial D$ and ∂D is a 2 -sided essential simple loop in K. And so there is an embedding $D \times I \subset \operatorname{Int} M$ such that $D \times\{1 / 2\}=D$ and $(D \times I) \cap K=(\partial D \times I) \cap K=\partial D \times I$. By W. Lickorish [7] there are following two cases.

Case 1: $\quad \partial D$ cuts K into an annulus. Then $(K-\partial D \times I) \cup(D \times\{0,1\})=S$ is a non-separating 2 -sphere in M, so $M \cong S^{2} \times S^{1} \# M^{\prime}$, because K is one-sided in M.

Case 2: ∂D cuts K into two Möbius bands. Then $(K-\partial D \times I) \cup(D \times$ $\{0,1\})=P_{0} \cup P_{1}$ is a disjoint union of two one-sided projective planes in M, so $M \cong P^{3} \# P^{3} \# M^{\prime}$.

Proof of Theorem 1.

Let M be a closed orientable 3-manifold with a Heegaard splitting (V_{1}, $\left.V_{2} ; F\right)$ of genus two. If M contains a compressible Klein bottle, then by Lemma 1.1 $M \cong S^{2} \times S^{1} \# L$ where L is a lens space or $M \cong P^{3} \# P^{3}$. In the both cases it is clear that M contains a Klein bottle which intersects either V_{1} or V_{2} in a nonseparating disk. Hence we may assume that M is neither homeomorphic to
$S^{2} \times S^{1} \# L$ nor to $P^{3} \# P^{3}$. Therefore any Klein bottle in M is incompressible. For any Klein bottle in M by thinning V_{1} enough we may assume that the Klein bottle intersects V_{1} in disks. Let K be a Klein bottle in M such that among all Klein bottles in M which intersects V_{1} in disks the number of the components of $K \cap V_{1}$ is minimal, and put $K_{i}=V_{i} \cap K(i=1,2)$. We may assume that K_{2} is incompressible in V_{2} because K is incompressible in M. Then as in W. Jaco [4] we have a hierarchy $\left(K_{2}^{1}, \alpha_{1}\right),\left(K_{2}^{2}, \alpha_{2}\right), \cdots,\left(K_{2}^{n}, \alpha_{n}\right)$ for $K_{2}^{1}=K_{2}$ which gives rise to a sequence of isotopies in M where the i-th isotopy is an isotopy of type A at $\alpha_{i}(i=1,2, \cdots, n)$. In addition we may suppose that $\alpha_{i} \cap \alpha_{j}=\phi(i \neq j)$, so we assume that each α_{i} is a properly embedded essential arc in K_{2}.

By W. Lickorish [7], each α_{i} is one of the following five types. We say that α_{i} is of type I if α_{i} meets two distinct components of $\partial K_{2}, \alpha_{i}$ is of type II if α_{i} meets only one compoent of ∂K_{2} and α_{i} cuts K_{2} into a planar surface and Klein bottle with hole(s), α_{i} is of type III if α_{i} meets only one component of ∂K_{2} and α_{i} cuts K_{2} into an annulus (with holes), α_{i} is of type IV if α_{i} meets only one component of ∂K_{2} and α_{i} cuts K_{2} into two Möbius bands (with holes), α_{i} is of type V if α_{i} meets only one component of ∂K_{2} and α_{i} cuts K_{2} into a Möbius band (with holes). (Fig. 1.1)

Fig. 1.1
In particular we say that α_{i} is a d-arc if α_{i} is of type I and there is a component C of ∂K_{2} such that $\alpha_{i} \cap C \neq \phi$ and $\alpha_{j} \cap C=\phi$ for all $j<i$. Put $K_{1}=D_{1} \cup D_{2}$ $\cup \ldots \cup D_{r}$ where D_{i} is a disk and $C_{i}=\partial D_{i}$, so $\partial K_{2}=\partial K_{1}=C_{1} \cup C_{2} \cup \ldots \cup C_{r}$.

Before the proof of Theorem 1 we show some lemmas.
Lemma 1.2. Any α_{i} is not a d-arc.
Proof. If some α_{i} is a d-arc, then by using the argument of the inverse
operation of an isotopy of type A defined in M. Ochiai [9] we can show that there is a Klein bottle K^{\prime} in M such that each component of $K^{\prime} \cap V_{1}$ is a disk and the number of the components of $K^{\prime} \cap V_{1}$ is less that that of $K \cap V_{1}$. This is a contradiction.

Lemma 1.3. Any α_{i} is not of type II.

Proof. If some α_{i} is of type II, then by the definition of type II there is an $\operatorname{arc} \beta$ in ∂K_{2} such that $\beta \cap \alpha_{i}=\partial \beta=\partial \alpha_{i}$ and $\beta \cup \alpha_{i}$ bounds a planar surface P in K_{2}. Since each α_{j} is an essential arc in K_{2}, some α_{j} in P is a d-arc. Hence the conclusion follows from Lemma 1.2.

Lemma 1.4. If some α_{i} which is of type V meets C_{j}, then D_{j} is a nonseparating disk in V_{1}.

Proof. By performing an isotopy of type A at α_{i}, we obtain a Möbius band in V_{1}. Since V_{1} is orientable a Möbius band in V_{1} is one-sided, and so D_{j} is non-separating.

Lemma 1.5. α_{1} is of type III, IV or V. Moreover we may suppose without loss of generality that α_{1} meets C_{1}, and D_{1} is a non-separating disk in V_{1}.

Proof. By lemma 1.2 and lemma $1.3 \alpha_{1}$ is of type III, IV or V. Suppose that α_{1} meets C_{1}. If α_{1} is of type V then by Lemma $1.4 D_{1}$ is a non-separating disk in V_{1}. So we suppose that α_{1} is of type III or IV and D_{1} is a separating disk in V_{1}. Let A_{1} be an annulus in V_{1} obtained by performing an isotopy of type A at α_{1} and K^{\prime} be the image of K after the isotopy. Then $K^{\prime} \cap V_{1}=A_{1} \cup D_{2}$ $\cup \ldots \cup D_{r}$ and there is an annulus A^{\prime} in ∂V_{1} such that $K^{\prime} \cap A^{\prime}=A_{1} \cap A^{\prime}=\partial A_{1}=$ ∂A^{\prime}. Let $K^{\prime \prime}=\left(K^{\prime}-A_{1}\right) \cup A^{\prime}$, then $K^{\prime \prime}$ is a Klein bottle in M and by pushing A^{\prime} into V_{2} we obtain a Klein bottle \bar{K} from $K^{\prime \prime}$ such that each component of $\bar{K} \cap V_{1}$ is a disk and the number of the components of $\bar{K} \cap V_{1}$ is less than that of $K \cap V_{1}$. This is a contradiction. Therefore D_{1} is a non-separating disk in V_{1}.

Now by Lemma 1.2 and Lemma $1.3 \alpha_{2}$ is of type III, IV or V.
Case 1: α_{1} is of type III or IV.
At first let α_{2} be of type III or IV. If α_{2} also meets C_{1}, then there are two arcs β_{1}, β_{2} in C_{1} such that $\partial\left(\beta_{1} \cup \beta_{2}\right)=\partial\left(\alpha_{1} \cup \alpha_{2}\right)$ and $\left(\beta_{1} \cup \alpha_{1}\right) \cup\left(\beta_{2} \cup \alpha_{2}\right)$ bounds a planar surface in K_{2}, so there is a d-arc α_{j} for some $j \geq 3$. Therefore, by Lemma 1.2, α_{2} meets only C_{2}. Let K^{1} be the image of K after an isotopy of type A at α_{1} and K^{2} be the image of K^{1} after an isotopy of type A at α_{2}. Then $K^{2} \cap V_{1}=A_{1} \cup A_{2} \cup D_{3} \cup \ldots \cup D_{r}$, where A_{i} is an essential annulus properly embedded in $V_{1}(i=1,2)$. By cutting V_{1} along a disk D parallel to D_{2} missing $A_{1} \cup A_{2}$ we obtain a solid torus V containing $A_{1} \cup A_{2}$. (Fig. 1. 2).

So we obtain an annulus A^{\prime} in ∂V missing the image of D, so in ∂V_{1}, such

Fig. 1.2
that $A_{i} \cap A^{\prime}=a$ component of $\partial A_{i}=a$ component of $\partial A^{\prime}(i=1,2)$ and $K^{2} \cap$ $A^{\prime}=\partial A^{\prime}$. By cutting K along A^{\prime} and pasting A^{\prime} to the boundaries of the suitable component(s), we obtain a Klein bottle K^{\prime} such that $K^{\prime} \cap V_{1}=A^{\prime \prime} \cup D_{i 1} \cup$ $\cdots \cup D_{i p}(p \leq r-2)$ where $A^{\prime \prime}$ is an annulus and $\left\{D_{i 1}, \cdots, D_{i p}\right\}$ is a subset of $\left\{D_{3}\right.$, $\left.\cdots, D_{r}\right\}$. In the case that $A^{\prime \prime}$ is boundary parallel, then by pushing $A^{\prime \prime}$ into V_{2} we obtain a Klein bottle which intersects V_{1} in p disks. In the case that $A^{\prime \prime}$ is essential, then by performing an isotopy of type A we obtain a Klein bottle which intersects V_{1} in $p+1$ disks. This is a contradiction. Therefore α_{2} must be of type V. By Lemma 1.4 and Lemma $1.5 \alpha_{2}$ must meet C_{1} and $r=1$. This completes the proof of Case 1.

Case 2: α_{1} is of type V.
At first let α_{2} be of type III or IV. If α_{2} also meets C_{1} and α_{2} is of type III, then $\alpha_{1} \cup \alpha_{2}$ cuts $C l\left(K-D_{1}\right)$ into a disk, and so $r=1$ by Lemma 1.2. If α_{2} also meets C_{1} and α_{2} is of type IV, then by Lemma $1.2 \alpha_{2}$ is an inessential arc in K_{2}^{2} where K_{2}^{2} is a surface obtained by cutting $K_{2}^{1}=K \cap V_{2}$ along α_{1}. This is a

Fig. 1.3
contradiction. Therefore α_{2} meets only C_{2} and is of type IV. Let A_{1} be a Möbius band obtained by an isotopy of type A at α_{1}, and A_{2} be an annulus obtained by an isotopy of type A at α_{2}. If there is a properly embedded 2-disk D in V_{1} such that D cuts V_{1} into two solid tori T_{1} and T_{2} and A_{i} is properly embedded in $T_{i}(i=1,2)$. (Fig 1.3)

Then by the argument of Lemma 1.5 we obtain a Klein bottle K^{\prime} such that each component of $K^{\prime} \cap V_{1}$ is a disk and the number of the components of $K^{\prime} \cap V_{1}$ is less than that of $K \cap V_{1}$. This is a contradiction. Hence there is a non-separating 2-disk D properly embedded in V_{1} with $D \cap A_{i}=\phi(i=1,2)$. (Fig. 1.4)

Let T be a solid torus obtained by cutting V_{1} along D. Since ∂A_{1} and ∂A_{2} are mutually parallel simple loops in ∂T, there is an annulus A^{\prime} in $\partial_{2} T$ missing the image of D, so in ∂V_{1}, such that $A_{1} \cap A^{\prime}=\partial A_{1}=a$ component of ∂A^{\prime} and $A_{2} \cap A^{\prime}=a$ component of $\partial A_{2}=a$ component of ∂A^{\prime}. By cutting K along ∂A^{\prime} and pasting A^{\prime} to the boundaries of the suitable components we obtain a Klein bottle K^{\prime} such that $K^{\prime} \cap V_{1}=S \cup D_{i 1} \cup \ldots \cup D_{i p}(p \leq r-2)$ where S is a Möbius band and $\left\{D_{i 1}, \cdots, D_{i p}\right\}$ is a subset of $\left\{D_{3}, \cdots, D_{r}\right\}$. Then by performing an isotopy of type A we obtain a Klein bottle which intersects V_{1} in $p+1$ disks. This is a contradiction.

Secondly let α_{2} be of type V. If α_{2} also meets C_{1} then we have the following two cases.

Case (a): Each component of $C_{1}-\partial \alpha_{1}$ contains one point of $\partial \alpha_{2}$.
Case (b): $\partial \alpha_{2}$ is contained in a component of $C_{1}-\partial \alpha_{1}$.
If Case (a) holds, then by Lemma $1.2 \alpha_{2}$ is an inessential arc in K_{2}^{2} where K_{2}^{2} is a surface obtained by cutting $K_{2}^{1}=K \cap V_{2}$ along α_{1}. This is a contradiction. If Case (b) holds, then $\alpha_{1} \cup \alpha_{2}$ cuts $C l\left(K-D_{1}\right)$ into a disk, so $r=1$ by Lemma 1.2.

If α_{2} meets only C_{2}, then α_{3} meets C_{1}, C_{2} or C_{3}. If α_{3} meets only C_{3}, then α_{3} must be of type IV. By a similar argument of the first case of Case 2, we get

Fig. 1.4
a contradiction. If α_{3} meets either only C_{1} or only C_{2}, then α_{3} is an inessential arc in K_{2}^{2}. Hence α_{3} is of type I and meets both C_{1} and C_{2}. Let K^{\prime} be the image of K after a sequence of isotopies of type A at α_{1}, at α_{2} and at α_{3}. Then $K^{\prime} \cap V_{2}$ is a single disk. This completes the proof.

2. Statement and proof of Theorem 2

Let K be a Klein bottle and $K I$ be the (orientable) twisted I-bundle over K. Then $K I$ admits two Seifert fibrations $\mathscr{F}_{1}, \mathscr{F}_{2}$ where the orbit manifold of \mathscr{F}_{1} is a disk with two exceptional points of each index 2 , and the orbit manifold of \mathscr{F}_{2} is a Möbius band without exceptional points. (see Ch. VI of W. Jaco [4]). Let α be a fiber of \mathscr{F}_{1} in $\partial K I$ and β be a fiber of \mathscr{F}_{2} in $\partial K I$. In the following we give three families of closed orientable 3 -manifolds containing a Klein bottle.
$C(1)$: Let $M(k)$ be a two bridge knot exterior in S^{3} where k is a two bridge knot (possibly trivial) (c.f. Ch. 4 of D. Rolfsen [10]). Let μ_{1}, μ_{2} be two disjoint meridians of k in $\partial M(k)$ and $\bar{\mu}_{1}, \bar{\mu}_{2}$ be two disjoint simple loops in $\operatorname{Int} M(k)$ obtained by pushing μ_{1} and μ_{2} into $\operatorname{Int} M(k)$. Let M_{1} be a 3 -manifold obtained
from $M(k)$ by performing arbitrary Dehn surgeries on $M(k)$ along $\bar{\mu}_{1}$ and $\bar{\mu}_{2}$. Then $C(1)$ is the family which consists of all 3-manifolds obtained from M_{1} and $K I$ by identifying $\partial K I$ with ∂M_{1} by a homeomorphism which takes β to μ_{1}.
$C(2)$: Let $M(k), \mu_{1}$ and $\bar{\mu}_{1}$ be a two bridge knot exterior, a meridian of k in $\partial M(k)$ and a simple loop in $\operatorname{Int} M(k)$ as in $C(1)$ respectively. Let M_{2} be a 3manifold obtained from $M(k)$ by performing an arbitrary Dehn surgery on $M(k)$ along $\bar{\mu}_{1}$. Then $C(2)$ is the family which consists of all 3-manifolds obtained from M_{2} and $K I$ by identifying $\partial K I$ with ∂M_{2} by a homeomorphism which takes α to μ_{1}.
$C(3):$ Let $L=V_{1} \cup V_{2}$ be a lens space where V_{i} is a solid torus ($i=1,2$) and $V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}$. Let $L(k)$ be a one bridge knot exterior in L (i.e. k is a simple loop in L and for $i=1,2\left(V_{i}, V_{i} \cap k\right)$ is homeomorphic to $(A \times I,\{p\} \times I)$ as pairs where A is an annulus and p is a point in $\operatorname{Int} A$). Let μ be a meridian of k in $\partial L(k)$. Then $C(3)$ is the family which consists of all 3-manifolds obtained from $L(k)$ and $K I$ by identifying $\partial K I$ with $\partial L(k)$ by a homeomorphism which takes α to μ.

Theorem 2. Let M be a closed connected orientable 3-manifold with a Heegaard splitting of genus two. Then M contains a Klein bottle if and only if M belongs to one of $C(1), C(2)$ or $C(3)$.

For the proof of Theorem 2 we prepare the following two Lemmas.
Lemma 2.1 (Lemma 3.2 of T. Kobayashi [6]). Let V be a handlebody of genus two and A be a non-separating essential annulus properly embedded in V. Then A cuts V into a handlebody V^{\prime} of genus two and there is a complete system of meridian disks $\left\{D_{1}, D_{2}\right\}$ of V^{\prime} such that $D_{1} \cap A$ is an essential arc of A. (Fig. 2.1)

Fig. 2.1
Lemma 2.2. Let S be a Möbius band properly embedded in a handlebody V of genus n. Then there is a 2-disk D properly embedded in V which cuts V into V_{1} and V_{2} where V_{1} is a solid torus and V_{2} is a handlebody of genus $n-1$ and S is

properly embedded in V_{1}.

Proof. Since Möbius band can not be properly embedded in a 3-ball, by using a complete system of meridian disks in V, we can find a non-separating disk D_{1} properly embedded in V such that $D_{1} \cap S \neq \phi$ and there is a component α of $D_{1} \cap S$ which is an essential arc in S and is innermost in D_{1}. Therefore there is a 2-disk D_{2} in D_{1} such that $\partial D_{1} \cap D_{2}=\beta$ is an arc and $\alpha \cap \beta=\partial \alpha=\partial \beta$ and $\alpha \cup \beta=\partial D_{2}$. Then there is a proper embedding $D_{2} \times I \subset V$ such that $D_{2} \times\{1 / 2\}=D_{2}$ and $\left(D_{2} \times I\right) \cap S=\alpha \times I$. Let $D_{3}=(S-(\alpha \times I))^{\cup}\left(D_{2} \times\{0\}\right)^{\cup}$ ($D \times\{1\}$). Since S is one-sided in V, D_{3} is a non-separating disk properly embedded in V. (Fig. 2.2)

Fig. 2.2
Let $S_{1}=D_{3} \cup(\beta \times I)$, then S_{1} is a Möbius band and S is obtained by pushing S_{1} slightly into Int V. Let N be a regular neighborhood of S_{1} in V, then N is a solid torus and S may be supposed to be properly embedded in N. Therefore $D=C l(\partial N-\partial V)$ is the 2-disk satisfying the conditions of this Lemma.

Proof of Theorem 2.

Let $\left(V_{1}, V_{2} ; F\right)$ be a Heegaard splitting of genus two of M. If M contains a compressible Klein bottle, then by Lemma $1.1 M \cong S^{2} \times S^{1} \# L$ where L is a lens space or $M \cong P^{3} \# P^{3}$. If $M \cong S^{2} \times S^{1} \# L$, then M belongs to $C(3)$ because $S^{2} \times S^{1}$ is obtained from $K I$ and a solid torus by identifying their boundaries by some homeomorphism. If $M \cong P^{3} \# P^{3}$, then M belongs to $C(2)$ by the same reason as above. If M contains an incompressible Klein bottle, then by Theorem 1 we can suppose without loss of generality that there exists a Klein bottle K in M which intersects V_{1} in a non-separating disk. For $i=1,2$ put $K_{i}=K \cap V_{i}$ then K_{1} is a non-separating disk in V_{1} and K_{2} is a Klein bottle with one hole in V_{2}. Let $\bar{\alpha}$ be an essential arc in K_{2} which gives rise to an isotopy of type A at $\bar{\alpha}$ and \bar{K} be the image of K after an isotopy of type A at $\bar{\alpha}$ and put $\bar{K}_{i}=\bar{K} \cap V_{i}$ $(i=1,2)$. Then we have the following three cases.

Case (1): $\bar{\alpha}$ is of type III. For $i=1,2 \bar{K}_{i}$ is a non-separating essential annulus in V_{i}. So by using a similar argument of $\S 4$ of T. Kobayashi [5] and noting Lemma 2.1, we can show that M belongs to $C(1)$.

Case (2): $\bar{\alpha}$ is of type IV. \bar{K}_{1} is a non-separating essential annulus in V_{1} and \bar{K}_{2} is a disjoint union of two Möbius bands in V_{2}. So by using a similar argument of $\S 4$ of T. Kobayashi [5] and noting Lemma 2.1 and Lemma 2.2, we can show that M belongs to $C(2)$.

Case (3): $\bar{\alpha}$ is of type V. For $i=1,2 \bar{K}_{i}$ is a Möbius band in V_{i}. So by using a similar argument of $\S 4$ of T. Kobayashi [5] and noting Lemma 2.2, we can show that M belongs to $C(3)$.

Conversely if M belongs to one of $C(1), C(2)$ or $C(3)$, then by tracing back the above procedure it is easy to see that M has a Heegaard splitting of genus two and contains a Klein bottle. This completes the proof.

Remarks.
(1) In the case that M is irreducible and has a non-trivial torus decomposition and has a Heegaard splitting of genus two, then M is completely characterized by T. Kobayashi [6].
(2) In the case that M is connected sum of two lens spaces L_{1} and L_{2} and contains a Klein bottle, then it is easily checked that either L_{1} or L_{2} is homeomorphic to $L(4 n, 2 n+1)$ for some non-negative integer n or both L_{1} and L_{2} are homeomorphic to P^{3}.

References

[1] G.E. Bredon and J.W. Wood: Non-orientable surface in orientable 3-manifolds, Invent. Math. 7 (1969), 83-110.
[2] W. Haken: Some results on surface in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer., Prentice-Hall, 1968.
[3] J. Hempel: 3-manifolds, Ann. of Math. Studies No. 86, Princeton N.J., Princeton University Press, 1976.
[4] W. Jaco: Lectures on three manifold topology, Conference board of Math. No. 43, 1980.
[5] T. Kobayashi: Non-separating incompressible tori in 3-manifolds, J. Math. Soc. Japan 36 (1984), 11-22.
[6] T. Kobayashi: Structures of the Haken manifolds with Heegaard splittings of genus two, Osaka J. Math. 21 (1984), 437-455.
[7] W.B.R. Lickorish: Homeomorphisms of non-orientable two manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 307-317.
[8] M. Ochiai: 2-sided embedding of projective planes into 3-manifolds, Trans. Amer. Math. Soc. 274 (1982), 641-650.
[9] M. Ochiai: On Haken's theorem and its extension, Osaka J. Math. 20 (1983), 461468.
[10] D. Rolfsen: Knots and links, Mathematics Lecture Series 7, Publish or Perish Inc., Berkeley, Ca. 1976.

Department of Mathematics Kobe University
Nada-ku, Kobe 657
Japan

