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Introduction

Involutions on torus bundles have been studied by several authors [10, 11,
13, 15, 17, 20, 22, 25]. In particular, involutions on S*x S'x S' and orienta-
tion-reversing involutions on orientable torus bundles have been classified by
Kwun-Tollefson [13] and Kim-Sanderson [10] respectively.

The purpose of this paper is to classify all involutions on torus bundles.
In fact, we will give a finite procedure for finding all involutions on a torus
bundle M, form its monodromy matrix A4 (see Section 2). It should be noted
that involutions on a given non-orientable torus bundle are not necessarily dis-
tinguished by their quotients (Example 4.7). Here the quotient of an involution
h on a space M means the pair (M/h, Fix(h)/h). As a consequence of our main
theorems, we obtain the following result, which sharply improves the estimates

given by Kojima [11] on the number of non-equivalent symmetries on torus
bundles.

Theorem. (1) If M ,is an orientable torus bundle, then 1 < | Inv(M ,)| =21.
(2) If M, is a non-orientable torus bundle with tr(A)==0, then 1< |Inv(M )|

IA

7

Here Inv(M,) denotes the set of all equivalence classes of involutions on
M,, and |S| denotes the cardinality of S. The following examples show that
the above estimates are the best possible.

Exameie. (1) 1fA=[‘3“1’ 3] then |Inv(M.,)| =1.
@) If A:[ﬁg 20], then |Inv(M,)| =21.

3) If A:B (1)] then |Inv(M,)] =1.

@ If A=Bé g:l then |Inv(M,)| =7.

As an application, a simple sufficient condition for a torus bundle to have
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exactly one involution will be presented (Theorem VI), which generalizes a
result of Tollefson [22]. Moreover, we will give a necessary and sufficient con-
dition for a torus bundle to be a regular covering of S* (Theorem VII).

I am grateful to Dr. S. Kojima for bringing the problems treated in this
paper to my attention.

1. Preliminaries

T? denotes the torus obtained as the quotient space R?/(6,, 0,)~(0,+2px,
0,-+2q7) (p, g=Z), on which two specific loops =R X0/~ and m=0x R/~
are assigned. For each homeomorphism ¢ on T? ¢, denotes the matrix repre-
senting the automorphism on H,(7?) induced by ¢ with respect to the base </, m>.
The correspondence ¢+— ¢y gives an isomorphism from the homeotopy group of

T? to GL(2,Z). For each matrix A:[j g] in GL(2, Z), ¢, denotes the homeo-

morphism on 7% defined by the equation ¢ 4(6,, 0,)=(a6,+b0,, c6,+db,). Then
we have (¢ 4)x=4.

There are just five non-equivalent involutions {r;|1=<7=<5} on 7% which are
listed as follows.

r(0,, 0) ) Tir, Fix(r,)
r (6,, 6,+7) } (1)] T? Empty
v | (=6, —8) i*(l) __‘1’] 52 Four points
| 73 (6,, —6,) :(l) __(1): Annulus Two circles
re | (6140, —6) :(1) _{ Mobius band | A circle

75 0+, —06,) l}) _(1)_ Klein bottle | Empty

For a matrix A in GL(2,Z), M, denotes the torus bundle whose mo-
nodromy matrix is 4, and M, denotes the infinite cyclic cover of M, associated
to the subgroup of =,(M ,) generated by a fiber. For a homeomorphism ¢ on 7%
¢ denotes the homeomorphism on T?X R defined by $(x, £)=(¢(x), t-+27z). If
¢x=4, then a generator of the covering transformation group of the infinite
cyclic cover M, is identified with ¢. Then H,(M,) admits a Z<t>-module
structure by identifying the action of # with that of ¢4, where Z<¢)> is the integral
group ring of the infinite cyclic group generated by ¢. As an abelian group,
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H (M) is isomorphic to Z?, and the action of ¢ is identified with the linear action
of the matrix 4. Such a Z<{t)>-module is denoted by the symbol H,. =,(M,)is
isomorphic to the semi-direct product H,[X<t> of H, and <{¢> with the above
operation (cf. p. 105 of [14]). The following lemma is well-known (cf. [20]).

Lemma 1.1. Let A and B be matrices in GL(2, Z). Then the following

conditions are equivalent.
(1) M, is homeomorphic to M.
(2) (M ) is isomorphic to m\(Mp).
(3) The Z<{ty-module H , is isomorphic or anti-isomorphic to the Z<t>-module
Hg.
(4) A is conjugate to B or B™".

We now give some properties of GL(2, Z). Proofs can be found in [19]
(cf. [9]).
DreriNiTION 1.2. (1) For a matrix 4 in GL(2, Z) let
C(4) = {BeGL(2, Z)|BAB™' = 4} ,
C*(A4) = {BC(4)|det(B) = €1} (€= + or —),
R(A) = {BeGL(2,Z)|BAB™' = A"},
R*(A) = {BER(A)|det(B) = €1} (€ = + or —),
N(4) = C(4A)UR(A) .
(2) A is called exceptional, if one of the following conditions is satisfied.
(i) det(A)=1 and |tr(4A)|=2.
(i) det(4)= —1 and tr(4)=0.

(3) A is called Anosov, if A is not exceptional.

REMARK 1.3. N(A) can be identified with the group of all isomorphisms
and anti-isomorphisms on H ,.

Lemma 14. If A is exceptional then it is conjugate to one and only one
of the following matrices.

e R G e O N
Moreover we have the followings.
()~ feft 1 <2 1]
R )=l _Ye(® )
o2 4] - (<3 9 <2 1) <[4 Hm

R

Z,




166 M. Sakuma

D=0 -1e(@ 1)
(+[} t]rez)=2+2 o=+
)=l le(si) o0
o 1) =%(6 1) ={=lo 1} +[o f}=2z+=
(o i) =[5 1)) ={[o 1] £[o i f}=2+2

For an Anosov matrix A:[? 3], consider the Mobius transformation on

RV {0} given by xt—(ax+b)/(cx+d). Let w(A4) be the fixed point of this map
given by

Il

w(A) = {(a—d)+V/ (tr(A))*—4det(A)} |2¢ .
Since w(A4) is a quadratic irrationality, its infinite continued fraction
w(A) = [Co» €1y Cay "']

= ¢+ 1 1
Cl—l— 1 ’
Gt
where ¢,€Z and ¢;& N\{0} (=1), is ultimately periodic. Let (a,, -+, a,) be a

primitive period, and put

A= o]~ [1 o

We call 4, a primitive root of A. Two sequences (by,-+,b,) and (¢, ++,c,) are
said to be congruent, if they are related by a cyclic permutation.

Lemma 1.5. (1) A4 is conjugate to EA} (=41, nEN), where & and n
are characterized by the identity tr(A)=tr(EA3).
(2) Two Anosov matrices A and B are conjugate iff the following conditions
are satisfied.
(i) tr(A)=tr(B).
(it) The primitive periods of w(A) and w(B) are congruent.

We call the above expression EA4§ a standard form of A.

T e 0 o S e LT

we have the following.
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Lemma 1.6. If (ay,--+,a,) ts a primitive period of w(A), then (a,---,a,) is
a primitive period of w(A™).

A sequence (a,.++,a,) is said to be invertible if it is congruent to (a,,-:*,a,).

Lemma 1.7. Let A=¢EA} be an Anosov matrix where Ay=T1].% 1[‘11" (1) isa

primitive root of A. Then we have the following.

(1) CA)={+4i(ie2)}=Z+2,

(2) Suppose that det(A)=1, and the primitive period (ay, -++, a,) is invertible,
that is, there is an integer u (1 Su=s—1) such that (a,, a,_,, **, a,)=(@y11, ***, ds,

ay - a). Put P:[_(l) (1)]11,.,;“[‘1"' (1)] Then R(A)=C(A)P.

(3) If the condition of (2) is not satisfied, then R(A) is an empty set.
(4) A matrix Q in R(A) has period 2 or 4, according as det(Q)=—1 or +1.

2. Statement of results

Our fundamental tool is the following lemma, which is due to Tollefson
[23].

Lemma 2.1. Let M, be a torus bundle whose monodomy matrix A is con-
jugate to meither [(1) _(1)] nor [(1) __ﬂ Then any involution on M , is equivalent
10 a fiber-preserving involution.

Proof. In case the first Betti number B,(},) is 1, this lemma is a special
case of Theorem 2 of [23]. The proof for the case B,(M,)>1 is given in Sec-
tion 7 (see Lemma 7.1).

For the two exceptional torus bundles M, with A:[(l) _(1)] and [(1) _ﬂ,

the above lemma does not hold (see Section 7), and therefore different approa-
ches are necessary for them. Thus, in this paper, they are excluded from our
consideration, and all involutions on torus bundles are assumed to be fiber-
preserving. So, an involution 2 on M,=T?X R/} (px=A) is induced from a
homeomorphism % on T?X R, which is given by one of the following formulas.

(1) A(x, t)=(7.(x), t), where pov,=7,0 and (7,/=id.

(I1) Q(x, t)=(vx), t+x), where Ppo¥,=%,,p,0¢ and ¥, 07, =.

(II1)  A(x, t)=(v(x), —2), where ¢poy,=v, .0 ' and v_,07,=1d.
Here {v,|t€ R} is a continuous family of homeomorphisms on 7% We say % is
of type X, if % is given by the formula X for each X=1, II, or III. Inv,(M,)
denotes the set of all equivalence classes of involutions on M, which are of type
X.

Let P be the matrix (v,)4 in GL(2, Z).
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Case I. h is of type I. Then P=C(4) and P’=1. So, by Lemmas 1.4
and 1.7, we have P=+-1,in case A% +1. If P=1I, each involution v, is equivalent
to the involution 7,, and therefore, A is a free involution and M ,/h is a torus
bundle. If P=—I, each v, is equivalent to 7,, and M ,/h is homeomorphic to
SZx S' or $?X S’ (the non-otientable S? bundle over S') according to whether
M, is orientable or not. We say that % is of type I—0 or I—1, according to
whether P=1 or —I. Inv{(M,) denotes the set of all equivalence classes of
involutions on M 4 of type I—j for each j=0, 1. If M, is orientable and A=+ 41,
then all involutions on M, of type I are orientation-preserving.

Case II. hisoftype II. Then PeC(4)and P’=A. So, det(4)=(det(P))?
=1, and M, is orientable. M ,/h is homeomorphic to the torus bundle M. &
is orientation-preserving, iff det(P)=1.

Case II1. his of type III. Then PER(A) and P?=]. By Lemma 1.7 (3),
M is orientable. Assume that A=-+1, then we have PR~ (4), by Lemma
1.7 (4). Hence each 7, is orientation-reversnig, and therefore / is orientation-
preserving. M 4/h is obtained from 7% [0, z] by identifying (x, 0) with (7,(x), 0)
and (x, ) with (¢o7(x), ).

Put V, = T%x [0, =/2]/ (%, 0)~(7(x), 0) and
V,= T?X[n/2, n] (%, m)~(PoVx), 7).

If v, (resp. ¢o7,) is non-free, then it is equivalent to the involution 7; or 7,, and
V, (resp. V,) is a solid torus. If v, (resp. po7,) is free, then it is equivalent to
rs, and V), (resp. V) is a twisted I-bundle over a Klein bottle. Let j be the
number of V;’s (i=1,2) which are homeomorphic to the solid torus. Then we say
h is of type I11-j. Invgd (M ,) denotes the set of all equivalence classes of involu-
tions on M, of type III-j (j=0,1,2). An involution A€ Invi(M,) is free, iff
j=0. M,/h is homeomorphic to a lens space, a prism manifold, or a “sappihre
space”, according as % is of type III-2, III-1, or ITII-0. Here a lens space (resp.
a prism manifold) is a 3-manifold which is a union of two solid tori (resp. a
solid torus and a twisted I-bundle over a Klein bottle), and following [16], we call
a 3-manifold M a sapphire space, if M is a union of two twisted I-bundles over
a Klein bottle.
We will prove the following theorems.

Theorem 0. If B(M,)=1, then the sets Invi(M,) (j=0,1), Inon(M,),
and Invfy(M,) (k=0,1,2) are mutually disjoint. Moreover, if A= —1I, the disjoint
union of them is equal to Inv(M ). If A=—1, it is equal to Inv(M ,)*, the set of all
equivalence classes of orientation-preserving involutions on M ,.

Let p be the natural map GL(2, Z) — GL(2, Z,). Note that GL(2, Z,) is
isomorphic to the dihedral group of order 6.

Theorem 1. Suppose that 3,(M 5)=1.
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(1) If llp(A)l|=3, then |Inv}(M ,)|=0 and |Invi(M,)|=1.

@) If lp(A)|=2, then | Inod(M.,)| =1 and | Inv}(M.5)| =2.

(3) Suppose that ||p(A)||=1.
(1) If |p(N(A))| =3 or 6, then |Invi(M,)|=1 and |Invi(M,)|=2.
(ii) If | p(N(A))| =2, then | Inv}(M )| =2 and |Invi(M ,)|=3.
i) If | p(N(A))| =1, then | Inod(M )| =3 and | Inv}(M)| =4.

In the above [|p(4)|| denotes the order of p(A)eGL(2, Z;). To state The-
orems Il and III, we need three functions o; (=1, 2, 3) from {A=SL(2, Z)|
|tr(4)| =3} to {+, —}, defined as follows. For an Anosov matrix 4 in SL(2,Z),
let €45 be a standard form of 4 (cf. Lemma 1.5). Then

o\(A)=sign(det(4y)),
ay(A)=sign(¢€),
s o ()=,
7l )—{ sign(— 1) if o (A)=—.
(Note that, if ¢(4)=—, then 7 is even.)
Put O'(A):(O'l(A), 0'2(/1), o-s(A)).

Theorem II. Let A be an Anosov matrix in SL(2, Z).

(1) If o(A)=(*, —, %) or (+, *, —), then |Invy(M ,)|=0.

(2) If o(A)=(*, +, +), then | Invy(M ,)|=2.

3) If o(A)=(—, +, =), then |Invy(M,)| =1 or 2, according to whether the
primitive period of w(A) is invertible or not.

Theorem IIl. Let A be an Anosov matrix in SL(2, Z).
(1) If R™(A) is empty, then | Invy (M ,)| =0.
(2) If R~ (A) is not empty, then
(4if a(A)=(+, +, +),
| Inoia(M.)| ={ 1if o(A)=(—. +, =) or (—, =, +),
2 otherwise.
(3) If the set p(R™(A)) does not contain I (€GL(2, Z,)), then |Invg(M ,)|
= |Invi(M ,)| =0.
(4) Assume that p(R™(A)) contains I. (Note that, in this case, we have ||p(4y)||
=1or2)
(1) llp(A)I=2. Then
IIm)lln(MA) | =2,
2 lfa'(A):(—[——, -+, +) (_; -+, +)» or (_) ) _)’
IIn‘vI?I(MA)Iz\ 1 lfo’(A)——_(—l-, ) +)y (_’ +’ _'), or (—7 ) +),
0 if o(A)=(+, +, =), or (+, —, —)
(i) llp(Aoll=1. Then
1 4if o(A)=(+, %, %),
IInvIII(MAH:{ 2 if o(A)=(—, *, *),
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| 1 nvl‘}I(M A= Im)ﬁl(M a)l-

The following table summarizes our results for orientable torus bundles
with Anosov monodromies. (For a non-crientable torus bundle M, with an
Anosov monodromy, we have Inv(M,)=1Invy(M,).)

Type 1 Type II Type III

Free T?*-bundle (0<3) | T%bundle (0=<2) | Sapphire (0=4)

Non-free | S'x 8% (1=4) Prism (0=4)
Lens (0=4)

Here, homeo. types and the Lest possible estimates of the numbers of prescribed
involutions are piresented. Now the Theorem in the introduction is a direct
consequence of the preceeding theorems and the forthcoming Theorems IV and
V. The results given in the Fxample can be seen from the following identities.

49 [IER 0. 4]
BO-CaG

For a torus bundle M, with an exceptional monodromy matrix 4 and
Bi(M 4)=1, we have the following.

Theorem IV. Inv(M,) with A= SL(2, Z) and —2=tr(A)<1 is tabulated
as follows.

I-0 | I-1 IT | III-0 | ITI-1 | I1I1-2

0 —(1)] 1| 2] o of 1| 1

i_? _i] o 1] 2] of of 1

:‘1) —ﬂ o] 1/ 0| ol ol 1

:_(1) At 2 o o] 2] 2 |nou
e o] 0| 1] 2| 2 | e,
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For A=—1, this table presents only orientation-preserving involutions. M_; has
Just six orientatoin-reversing involutions (see [10]).

For torus bundles with 3,>1, we have the following.

Theorem V. Let A=[(1) ’1‘]

(1) If nis odd, then M, has just five involutions {h;|1<i<5}, and they are
characterized as follows.
(@) M ylhy=M 4/h,=S*X S*, Fix(h,)==three simple loops, Fix(h,)==a simple
loop.
(b) M 4[hs=L(n, 2), Fix(hy)==three simple loops.
(c) M,/h,=a prism manifold, Fix(h,)=a simple loop.

(d) M fhs==M, with B:[(l) 2’1’], by is free.

(2) If n is even and non-zero, then M 4 has just nine involutions {k;|1=1<9},
and they are characterized as follows.
(@) Mylk;=S?x S* (1=5i<3), Fix(k,)== four simple loops, Fix(k;)==Fix(k;)
=two simple loops.
(b) M,/k,=L(n|2, 1), Fix(k,)=< four simple loops.
(c) M ylks=L(2n, 2n-+1), Fix(ks)=<two simple loops.

(@) Mjk=My(6=is8)with B=| o %4 | B=[ "] B=[ 7§ 5]

0-—1
k; (6=1=<8) are free.
(e) M ylky==a sapphire space, ky is free.

ReMARK 2.2. Free involutions on M, with A:[(l) ﬂ were also classified
by Goto [7] through a group theoretical method.

We end this section by proving Theorem 0. Let M, be a torus bundle with
Bi(M )=1, and let & be an involution on M, and p: M,— M ,/h be the projec-
tion. For a topological space Y, B,(Y) denotes the torsion-free abelian group
H(Y)/TorH(Y). Then, by the preceding observations, we have the followings.

(1) If & is of type I, then py: By(M,)— By(M,/k) is an isomorphism.

(2) If kis of type II, then p, is injective, and py(B,(M,)) is a subgroup of

By(M 4/h) of index 2.

(3) If A is of type III, then By(M 4/h)=0.

Hence, Invy(M,) (X=I, II, III) are mutually disjoint. Clearly, Inv{(},) and
Invi(M,) are disjoint. So, we have only to prove that Invg(M,) (j=0, 1, 2) are
mutually disjoint. This is done in Section 6 (see Lemma 6.2).

3. Involutions of Type I-0
Let B be a matrix in GL(2,Z), and H be a Z<{t>-submodule of H} of index
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2. Then there is a matrix 4 in GL(2, Z), such that H=H ,, and the group
H,X<{t> can be considered as a subgroup of z,(Mz)=H[X<{t> of index 2.
The covering space of M corresponding to the subgroup is homeomorphic
to M,, and the covering transformation is an involution on M, of type I-0.
We call it an involution determined by the Z<{t>-module pair (Hz, H,). Every
involution on M, of type I-0 is obtained in this way. We say that two Z<{¢)-
module pairs (Hp,, H,,) (i=1, 2) are equivalent, if there is an isomorphism or
an anti-isomorphism from Hp to Hj, carrying H, to H,, Then we have
the following.

Lemma 3.1. Let M, be a torus bundle with B,(M,)=1, and let h;, and
h, be involutions on M, of type 1-0, which are determined by the Z<{t>—module
pairs (Hg, H,) and (Hp,, H,) respectively. Then hy and h, are equivalent, iff
(Hp, H,) and (H g, H ) are equivalent.

Proof. Let p;: M,~M,/h;=<Mp, be the projection for each 7=1, 2. Sup-
pose that &, and 4, are equivalent, then there are homeomorphisms f: M ,—M,
and g: My —M;, such that pyof=gop,. Since B(M,)=1, we have B(Mj)
=1 (i=1, 2). So M, Mg, and My, have the unique infinite cyclic covers
M,, MBI, and My, and the maps f, g, and p; (i=1, 2) lift to maps f, 5, and 3,
(i=1, 2) between the infinite cyclic coverings. Note that p,of and gop, co-
incide up to multiplication of a covering transformation. p,: Hy(M,)— H\(M3)
is a Z<t>-homomorphism, and we have (H, H,)=(H(M},), p:+H,(M,)) for
each =1, 2. Now the “only if”’ part follows from the fact that g: HI(MBI)
—H,(Mj,) is an isomorphism or an anti-isomorphism (cf. Lemma 1.1). The
“if” part follows from the fact that any isomorphism or anti-isomorphism
from Hp to Hj, is realized by a homeomorphism from My, to Mj, (cf. Lemma
1.1).

Lemma 3.2. If H, is a Z{&)>-submodule of Hy of index 2, then 2H  is a
Z<{t>-submodule of H, of index 2. Moreover, the equivalence class of (H g, H ,)
is uniquely determined by that of (H 4, 2H ).

Proof. Clear.

Each Z<t)>-submodule H of H , of index 2 is a kernel of a Z{¢)>-epimorphism
from H, to Z,(Z, can be considered as a Z<{f>-module in a unique way), and
such epimorphism is determined by an epimorphism from H,®Z, to Z,. Here
the tensor product is taken over Z<t>, and therefore H & Z,=Coker(p(A4)—I).
We say that two epimorphisms &;: H ,QZ,—~Z, are A-equivalent, if there is an
element f of p(IN(A4)) such that £,=&,0f. (By Remark 1.3, f can be considered
as an isomorphism on H,QZ,.) It is clear that the equivalence class of the
pair (H 4, H) is uniquely determined by the A-equivalence class of the corre-
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sponding epimorphism from H,®Z, to Z,. Thus we obtain the following.

Proposition 3.3. Let M, be a torus bundle with B,(M)=1. Then there
25 a one to ome correspondence between Invi(M ,) and the set of all A-equivalence
classes of epimorphisms from H ,QZ, to Z,.

The classification of Invi(M,) in Theorem I follows from the above Pro-
position. For example, if ||p(4)||=3, then H ,Q Z,=0 and therefore |Inv}(M,)]
=0.

4. Involutions of type I-1

Recall the involution 7, on 7% defined 1n Section 2, whose fixed point set,
denoted by W, consists of four points @; (1=i<4), and whose quotient space
is homeomorphic to S? (see Fig. 1). Let w; be the image of @; in T?[r,=S?
for each 7 (1=<i<4).

w, @,
—-3 w; w,
W, W3

Fig. 1

Let 0t be the group of all homeomorphisms on 7% which commute with 7,
modulo homeomorphisms which are isotopic to the identity map by isotopies
commuting with 7,. Let M be the group of all homeomorphisms on S? which
preserve the subset W={w;|1<i<4} modulo homeomorphisms which are
isotopic to the identity map by isotopies preserving W. Then there is a na-
tural epimorphism ¢: R — M with Ker(p)={id, r;} (cf. [1]). Let » be the
forgetting homomorphism from R to the homeotopy group of 7% (which is
identified with GL(2, Z)).

If fis an element of M, the torus bundle M, is homeomorphic to 7%
% [0, 11/ (x, 0)~(f(x), 1). (Here the last “f” denotes a homeomorphism on 7%
which commutes with 7, and represent the class fE%t.) So the involution
r,Xid on T?x [0, 1] induces an involution on My, which is of type I-1. We
denote it by the symbol A(f). (Note that it does not depend on a choice of a
representative of the class f&9.) Every involution of type I-1 is obtamed in
this way. The quotient of A(f) is homeomorphic to (S% W)x[0, 1]/(x, 0)~
(¢(f) (x), 1), which is denoted by the symbol L(¢(f)).
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Proposition 4.1. Lei f, and f, be elements of M. Then the involutions
h(f,)) and h(f,) are equivalent, iff f, is conjugate to either f, or 7' in M.

Proof. Since the “if”” part is clear, we prove the “‘only if”” part. Assume
that A(f,) and A(f,) are equivalent, that is, there is a homeomorphism G: M, 7
~M,, such that h(f,)=Goh(f,)eG™*. G induces a homeomorphism G be-
tween the quotients L(J(f,)) and L(¢(f,)). The following lemma will be proved
at the end of this section.

Lemma 4.2. G is isotopic (as a homeomorphism between manifold pairs)
to a homeomorphism G’ such that G'(S?x0)=S?x0. So G is equivariantly
isotopic to a homeomorphism G’ such that G'(T?x 0)=T? x 0.

By the above lemma, we may assume that G(S?x0)=3S2x0 and G(T?x0)
=T?x0. Thus the homeomorphism G from T?x[0, 1]/(x, 0) ~ (fi(x), 1) to
T2 [0, 1]/(x, 0)~ (fy(x), 1) comes from a homeomorphism G: T?x[0, 1] —
T?x [0, 1]. Let g, and g be the homeomorphisms on 7% defined by the equa-
tions G(x, 0)=(gy(x), *) and G(x, 1)=(g,(x), *). Then we have the followings.

(0) g, and g, commute with 7,, and therefore they can be considered as

elements of .
(1) If G(T?x0)=T?x0, then f,=g .o fio87".
(2) If G(T?x0)=T?x1, then f7'=g0 fiogs".

Proposition 4.1 now follows from the following lemma.
Lemma 4.3. g, and §, represent the same element of M.

Proof. We have only to prove that ¢(g)=¢(g,) in M. To do this,
note that G is induced from a homeomorphism G on (8% W)x[0, 1]. Let
g, and g, be homeomorphisms on (S?% W) defined by the equations é(x, 0)
=(gy(%), ¥) and G(x, 1)=(gi(x), *). Then ¢(g;)=g; (i=0, 1) and G gives a
homotopy between the maps g, and g, on (S?% W). (Note that G is not neces-
sarily level preserving.) By using a theorem of Baer (cf. [6]), we can see that
g, and g, determine the same element of IN.

There is an epimorphism 7 from R to S,, the symmetric group on four
letters, defined by the equation f(@;)=.(» ). Let A be the normal subgroup
of S,, which consists of four elements §; (0=¢=3), where §,=1id, 8,=(12) (3 4),
8,=(1 3) (2 4), and 8;=(14) (2 3).

Lemma 4.4. The restriction of T to the subgroup Ker(zn) gives an isomor-
phism from Ker(n) to A.

Proof. By Lemma 3 of [22] (cf. [11]), each element f of Ker(y) is dis-
tinguished by the image f(@,) (€ W), and therefore, Ker(y) consists of at most
four elements, and the restriction of 7 to Ker(y) is injective. On the other
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hand, we can easily find four elements 5, (0=<7=3) of Ker(y) such that -r(gi)
=3§,;. This completes the proof.

Corollary 4.5. Let A be a matrix in GL(2, Z), and let f, and f, be elements
of v”Y(A). Then f, is conjugate to f, (resp. fz7), tff there is an element g of n~*
(C(A)) (resp. n™(R(A))) such that 7(f)=(g)7(f)7(g)™ (resp. 7(f)"'=7(g)7(f)
(8)™)-

By Lemma 4.4, 7 induces an epimorphism from 9/Ker(z) to S,/A. S,/A

can be identified with GL(2, Z,) by an isomorphism sending (1 2)A to B (1):] and

(2 3)A to [(1) }:l We can see that, through this identification, the above epi-

morphism is identified with p: GL(2, Z)—GL(2, Z,), and we have the following
commutative diagram of exact sequences.

1 Ker(y) — it % GL(2, Z) > 1

VR Ip
1— A— S, > GL(2, Z,)— 1

Let 4 be a matrix in GL(2, Z), and let f be an element of % '(4). Then,
by Lemma 4.4, ™ {(A)={f5;|0<i<3}. Proposition 4.1 reduces the classifi-
cation of Invi(,) to the classification of % *(4) modulo a suitable equivalence
1elation, which can be done as follows, using Corollary 4.5.

Case 1. ||p(4)||=3. We may assume that 7(f)=(1 2 3). Then we have
7(f08)=7(8s0 fo857), 7(fo8)=7(Bi0fo87"), and r(fo8;)=(8,0f057"). Since
8, (0<i<3) are contained in Ker(y)C5(C(4)), any element of »7(4) is con-
jugate to f by Corollary 4.5. Hence, A(f) is the unique involution on M, of
type I-1, and we have Fix(k(f))=two simple loops.

Case 2. ||p(A)||=2. We may assume 7(f)=(1 2). Then we have 7(f08,)
=7(8,0 fo857)=(3 4), and 7(fod;)=7(8,0(f08,)085)=(1 2 3 4). Hence, fo5,
and fo8, are conjugate to f and fod, respectively, and f*!' is not conjugate to
fo8,. So M, has precisely two inequivalent involutions A(f) and A(f 08,) of
type 1-1, and we have Fix(k(f))=three simple loops and Fix(k(fo5,)=one
simple loop.

Case 3. ||p(4)l|=1. Note that (1) 7(»"'(4))=A, and (2) the action of
GL(2, Z,) on A (==Z,+ Z,) by conjugation is equivalent to the standard action
of GL(2, Z,) on Z,+Z,. Thus we have only to count the number of orbits
under the action of p(N(4)) (CGL(2, Z,)) on Z,+Z,. It is easy to see that
the number is equal to 4, 3, or 2, according as |p(N(4))| is equal to 1, 2, or
a multiple of 3. Exactly one element of Invi(M,) has four simple loops as
its fixed point set, and the remaining elements of Invi(M,) have two simple
loops as their fixed point sets. 'The proof of Theorem I is now complete.
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Next, we study quotients of involutions of type I-1. Since Ker(¢)={id, r,},
the epimorphisms 7 and 7 induce epimorphisms %’: M — PGL(2, Z) and 7':
M — S, respectively, and we have the following commutative diagram of exact
sequences.

1 - Ker(y') > M > PGL2, Z) > 1
Wl I |
1— A —> 8, — GL(2, Z,) — 1

Let A—A(A=GL(2, Z)) denote the natural map from GL(2, Z) to PGL(2, Z).
For an element 4 of PGL(2, Z), put C(A)={XEPGL(2, Z)| XAX '=A} and
R(A)={XePGL(2,Z)|XAX'=(A)"'}. Then, by the proof of Proposition
4.1 and the above commutative diagram, we obtain the following.

Proposition 4.6. Let A be a matrix in GL(2, Z), and f, and f, be elements
of 77%(A). Then L(Y(f))) is homeomorphic to L((f,)), iff there is an element

g of 7' (C(A)UR(A)), such that T(f,) is equal to T'(g)7(f)7'(g)™" or 7'(g)7(f)™*
7'(g)™" according as gEy'"(C(A)) or gy’ (R(A)).

Put C(A4) (resp. R(A)) be the image of C(4) (resp. R(A)) in PGL(2, Z).
Then, for a matrix 4 in GL(2, Z) with tr(4)=0, we have the following by con-
sidering #r(4+A4*") (cf. Section 5).

(1) CA)=CA)

(2) If det(4)=1 or det(4)=—1 and the primitive period of w(4) is not

invertible, then R(A4)=R(4).

(3) If the condition of (2) is not satisfied, then R(A) is non-empty, while

R(4) is empty.

Thus, comparing Proposition 4.6 with Proposition 4.1 and Corollary 4.5,
we can see that, if 4 satisfies the condition of (2), then each element of Invi(M,)
is distinguished by its quotient. However, this is not always true if 4 does
not satisfy the condition of (2). In fact, we have the following.

ExampLE 4.7. Let A= [Z ‘:ﬂ = H (1)] B (1)] B (1)] Then M, has precisely

four involutions of type I-1, and two of them have the same quotient.
Finally we give a proof of Lemma 4.2. 'To do this, we need the following.

Sublemma 4.8. Let B be a 3-ball in (S*x R, K,UK,) with K;=2;xR
(z:€8?% i=1, 2), such that BN K, is a connected arc and BNK, is empty. Then
(B, BNK,)) is a trivial ball pair.

Proof. Note that ,(S?x R—(K,UK,)) is the infinite cyclic group gen-
erated by a meridian m of K,. By van-Kampen theorem, we can see that
7(8?x R—(K,UK,))) is an amalgamation product of z,(S?x R—(BUK,UK)))
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and 7,(B,—K;) with amalgamated subgroup <m>. So z(B—K,) is a subgroup
of 7(S?x R—(K,UK,))=Z, and therefore it is isomorphic to Z. Thus (B,
BNK) is a trivial ball pair.

Let (M, L) denote the manifold pair L(¢(f;)) and let S and S’ be the
2-spheres S?x0 and G(S?X () respectively. We may assume that S and S’
intersect transversely. If SN S’=#@, then there is an ‘“‘innermost” disk D
in S (i.e. DN(SNS")=0D), such that [DNL|<2. Let D’ be the closure of
a component of S’—8D such that DU D’ bounds a 3-ball B in M.

Step 1. We show that (B, BN L) is a trivial tangle. The infinite cyclic
cover (M, L) of (M, L) can be identified with (S?, W)X R, where a lift S of S
is identified with S2x0C.S?x R. Let D be the lift of D contained in S, and
let B be the lift of B containing D. We will show that (B, BNL) is a trivial
tangle. Since S and S’ (a lift of S’) meet each w;x R at exactly one point,
BN (w;x R) is a connected arc or an empty set. If BN L is empty, the asser-
tion is trivial. If BN L is a connected arc, the assertion is a direct consequ-
ence of Sublemma 4.8. Suppose that BN L has two components. We may
assume that BN (w; X R) is a connected arc w; X [0, ;] for i=1, 2, and is empty
for i=3, 4. Let J be an arc in int(D) (€ .S=S5?x0) joining w, X0 and =, XO0.
Put D'=0B- int(D). Then we may assume that Jx R intersects 0B trans-
versely, and D' N (Jx R) consists of simple loops and an arc J’ joining w, Xt
and w,Xx%,. If D’N(Jx R) contains simple loops, then there is an “‘innermost”
disk C in JXR (i.e. CND'=38C). Let C' be a disk in D’ bounded by 0C.
Then the 2-sphere C UC" is inessential in S?X R, since (C UC')N(2; X R)=0
for j=3,4. On the other hand, (CUC')N(2;x R)=C"N(2;X R) consists of
at most one point for /=1, 2. So CUC’ does not intersect ;X R (1=:=4),
and it bounds a 3-ball which is disjoint from L. Using this 3-ball, we can
eliminate the intersection 8C. Hence we may assume that D' N (Jx R)=],
and therefore (B, 8B) N (Jx R) is homeomorphic to Jx (I, 3I). By Sublemma
4.8, the core * x I of the band Jx ([, 8I) is a trivial arc in B. Hence (B, BN L)
is a trivial tangle.

Step 2. By Step 1, we can eliminate the intersection 9D through an am-
bient isotopy of (M, L). So we can deform S’ so that it does not intersect S.

Step 3. Let X be a region in M bounded by SUS’. By a similar argu-
ment as Step 1, we can find a band Jx I in X, such that /x I contains X N L
and (JxI)N8X=]x?9dl. Then, by the “Light Bulb Theorem” (see p. 257 of
[18]), the core of the band is unknotted in X=S%x 1. Hence (X, X N L)==(S?
W)x 1, and we can deform S’ so that it coincides with S. This completes
the prooy of L.emma 4.2.

5. Involutions of type II

Let M, be a torus bundle with an Anosov monodromy. We may assume
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that A=¢&A4§, where A, is a primitive root of 4. To classify Invy(M,), we
have only to classify matrices {P} such that P2=4. Note that, if P?’=A4,
then P=C(4). Hence, by Lemma 1.7, such matrices exist, iff &=-+41 and
n is even. If this condition is not satisfied, Invy(M,) is empty. Suppose
that the above condition is satisfied. Then the equation X?=4 has precisely
two solutions, +P with P=A4§"?, and Invy(M,) consists of one or two ele-
ments according to whether M, is homeomorphic to M _p or not. So, Theorem
IT follows from the following facts and Lemma 1.1.
(1) Since tr(P)=tr(—P), P and —P are not conjugate.
(2) If det(P)=+1, then tr(P)=tr(P)=tr(—P). So P! and —P are
not conjugate.
(3) If det(P)=—1, then tr(P™")=—tr(P)=tr(—P). So P! is conjugate
to —P, iff the primitive period of w(A4) is invertible.

6. Involutions of type III

Let M ,=T*X R/¢ (p=c,) be an orientable torus bundle with A=41I,
and let /2 be an involution on M, of type III. Recall that 4 is induced from
a homeomorphism /% on T?X R given by the equation A(x, £)=(7,(x), —¢), where
{v:|teR} is a continuous family of orientation-reversing homeomorphisms
on T% h has two invariant fibers 72X 0 and 72Xz, and M,/h is obtained
from T%x [0, =] by identifying (x, 0) with (¥,(x), 0) and (x, z) with ($pov,(x),
m). It can be seen that the equivalence class of % is determined by the strong
equivalence classes of the involutions v, and ¢ov, on T2 (Two involutions
7 and ' on a space X is said to be strongly equivalent, if there is a homeomor-
phism f on X, which is isotopic to the identity map, such that ¢'=fovyo f™1)
The strong equivalence class of an orientation-reversing involution ¥ on 7%
is determined by the matrix v, and whether 7 is free or not. Let F be a subset
of {0, =} defined as follows.

(1) O€&FP, iff v, is non-free.

(2) =EPF, iff poy, is non-free.

Then, by the above arguments, the equivalence class of % is determined by
the pair (P, F), where P=(v,)xGL(2, Z). (Note that (¢po7v,)=AP.)

Lemma 6.1. The pair (P, F) satisfies the following conditions.
(1) PeR-(A).
(2) If OEF (resp. &k F), then p(P)=I (resp. p(AP)=1I).

Proof. (1) is proved in Section 2. (2) follows from the fact that an ori-
entation reversing free involution on 7% has a matrix which is conjugate to

[(1) _ﬂ (see Section 1).

We say that a pair (P, F) (PeGL(2, Z), FCA0, n}) is A-admissible, if
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it satisfies the condition of Lemma 6.1. We can see that, if (P, F) is A-admissi-
ble, it is derived from an involution on M, of type III-i, denoted by A(P, F),
where i=|F|. We study when two A-admissible pairs determine equivalent
involutions. In the rest of this section, we assume B3,(M,)=1.

Lemma 6.2. Let (P, F) and (P', F') be A-admissible pairs such that h
(P, F) is equivalent to h(P', F'). Then |F|=|F']|.

Proof. Since B,(M,)=1, M, has the unique infinite cyclic cover M, (=T?
X R). A generator of the covering transformation group is identified with
¢, where ¢=¢, (see Section 1). The involution A=h(P, F) is induced from
an involution % on M, given by %(x, £)=(7,(x), —t). Then the set of all lifts
of h to M, is equal to {$"ok|n=Z}. Note that

Fix(¢"ok) = {(x, )| (x, t) = (¢"oY (%), —t-+2nn)}
== Fix(¢"oV,.)
[ Fix(¢*ovsop™) == Fix(v,) if =2k,
- {Fix(¢"o(¢ofy,,)o¢"’)g Fix(poy,) if n=2k+1.

So |F|=0, 1, or 2, according as (0) all lifts of % are free, (1) half of the lifts of
h are free, or (2) all lifts of & are non-free. The same result holds for the in-
volution #'=h(P’, F'), and a homeomorphism on M,, which gives the equiva-
lence of & and #’, lifts to a homeomorphism on M,, which gives equivalence
of the lifts of 2 and #’. Hence we can conclude |F|=|F’|.

RemarRk 6.3. (1) If we assume uniqueness of equivariant fiberings,
this lemma is an immediate consequence of the definition of the set F.

(2) For torus bundles with B;=1, this lemma does not holds (see Sec-
tion 7).

Lemma 6.4. Let (P, F) be an A-admissible pair.

(1) For any matrix B in N(A), the pair (BPB™'. F) is A-admissible, and
h(BPB™, F) is equivalent to h(P, F).

(2) If |F|=0 or 2, then (AP, F) is A-admissible, and h(AP, F) is equivalent
to h(P, F).

(3) If |F|=1, then (AP, F°) is A-admissible, and h(AP, F°) is equivalent
to h(P, F). Here F°’={0, n} —F.

Proof. (1) Let f be the homeomorphism on M, given by f(x, t)=(¢5(x),
t) or (¢p5(x), —£) according to whether BEC(4) or BER(A). Then f induces
a homeomorphism f on M ,, such that A(BPB™', F)=foh(P, F)o f~'.

(2) and (3) Let g be a homeomorphism on M, given by g(x, £)=(x, t—x).
Then it induces a homeomorphism g on M,, such that goh(P, F)og~'=h(AP
F) or h(AP, F°) according to whether |F|=0, 2, or |F|=1.
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Proposition 6.5. Let (P, F) and (P', F') be A-admissible pairs. Then h(P,
F) and h(P', F') are equivalent, iff the following conditions are satisfied.
(1) |F|=|F].
(2) There is a matrix B of N(A) and an integer u, such that
(i) P'=A"BPB7,
(ii) if |F|=1, then u is even or odd according to whether F'=F or F°.

Proof. The “if” part follows from Lemma 6.4. We prove the “only
if” part. The condition (1) follows from Lemma 6.2. Put h=h(P, F) and
h'=h(P’, F'), and let % and %’ be the “standard” lifts of % and k'’ to M, (=T?
X R) respectively. Then we have k=P and %},=P’. Assume that there
is a homeomorphism f on M, such that foho f~1=h'. Let f be a lift of f to M.
Then &'ofoh lof! is a lift of the identity map, and therefore, it is equal to
a covering transformation ¢*. Put B=f,, then B&N(A4) (cf. Lemma 1.1)
and P'BP7'B'=/4*. 1In case |F|=1, we may assume that F=F'={0}, by
virtue of Lemma 6.4. Then Fix(%) and Fix(%’) are not empty, and their pro-
jections to M, are equal to Fix(k) and Fix(h') respectively. Since f(Fix(h))
=Fix(h’), we can choose f, so that f(Fix(%))=Fis(k’). Then &'ofok of! is
the identiiy map, and we have P’BP~'B~'=1. This completes the proof.

If A-admissiblc pairs (P, F) and (P, F’) satisfy the conditions of Proposi-
tion 6.5, we say that they are A-equivalent and denote (P, F)~(P’, F').

Let A be an Anosov matrix, and assume that 4=¢&Aj4, where 4, is a primi-
tive root of 4. Suppose that R™(4) is not empty, and let P, be an element
of R"(A4). Then, by Lemma 1.7, R~(A)={+A4iP,|i€Z} or {+A}P,|licZ}
according to whether det(4,)=-+1 or —1 (that is, ¢y(4)=-+ or —). Since
N(A)=C(A)UC(A)P, and C(A)={+Aili=Z}, the equivalence relation ~
is generated by the following relations.

(43P, F) if o(4) =+,

(—A4iP, F) if oy(4)= —.

(AP, F) = (€43P, F) if |F|=0o0r2,

(AP, F) = (4P, F°) if |F|=1.

By the relation (1), any A-admissible pair is A-equivalent to a pair (P, F) with
P=P,, —P,, A,P,, or —A,P,. (If y(A)=—, we have P=+P,.) In case |F|
=0 or 2, the relation (2) can be replaced by the following relation, by virtue of
the relation (1).

(P) F) it O'(A) = (‘[—’ +, +)’ (_’ +, +)’ or (—" ) _)’
(=P, F) if o(d)=(+, —, +) (—, +, =), 0r (—, —, +),
(4.P, F) if a(4)=(+, +, —),
(—4,P, F) if o(A)=(+, —, —).

(1) (P, Fy~(4,PA:", F) — {

® @7~

(P, F)~
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By using the above facts, we can easily classify Invi(M,). Inviy(M,)(i=0,1)
are empty, if R™(4) N Ker(p) is empty (cf. Lemma 6.1). So, assume that R™(4)
NKer(p) is not empty (and therefore, ||p(4,)||=1 or 2). We may assume
that Py=Ker(p). Then

{£4iP|icZ} if oy(4) = + and [Ip(4)ll =1,

R—A K = .
(4) N Ker(p) {{:}__Ag‘PoueZ} otherwise.

Noting this fact, the classifications of Invi(M ) (7=0, 1) can be done similarly.

7. Torus bundles with exceptional monodromies

In this section, we study involutions on a torus bundle M, with an ex-
ceptiona! monodromy 4. If 8,(M,)=1 and A==—1I, then the preceding argu-
ments are also applicable to Inv(M ), and by using Lemma 1.4 in stead of Lem-
ma 1.7, we can classify Inv(M,). For A=—1I, the preceding arguments are
applicable to orientation-preserving involutions. Thus we can obtain Theorem
Iv.

To study Inv(M ) with 8)(M 4)>1, we need the following lemma, by which
the proof of Lemma 2.1 is completed.

Lemma 7.1. Let h be an involution on M, with A=[(1) ﬂ Then h s

equivalent to a fiber-preserving involutoin.

Proot. For n=0, this lemma is proved in [13]. So assume that n==0.
Put G=m,(M,), then G=_{, x, y|xfx"'=f, yfy'=f, [x, y]=f")> and the center
Z(G) of G is the infinite cyclic group generated by f. 'The involution % in-
duces an isomorphism & on G/Z(G)=Z-+Z. Since hj=id, hy is conjugate

to an isomorphism represented by the matrix [(1) Ojl , [“(1) _(1)], [(1) _(1)], or

[0 1] So. there is a subgroup H of GJZ(G), such that (1) H=(G/Z(G))H

=Z, and (2) hy(H)=H. Let H be the inverse image of H in G. Then H is
a normal subgroup of G, such that (1) H=Z+Z, G/H=Z, and (2) h(H)=
H. By the fibration theorem of Stallings [21], there is a fibering ¢: M ,— S*
with fiber a torus 7T such that =,(7)=H. By Lemma 1.1, this fibering is
equivalent to the original fibering. Using the fact that hy(z(T))==(T), we
can prove that there is a fibering ¢': M ,— S* isotopic to g, such that % is fiber-

preserving with respect to ¢’, by a similar argument to that of [23] (cf. Section
3 of [20]).

0 —1 0
s an involution on M, which is not equivalent to an involution that preserves
he torus-fibering structure. However, we can see that, for any involution £

Remark 7.2. For a torus bundle M, with A=[l O:I or [1 _ ﬂ , there
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on M, there is a fibering ¢: M ,—S* with fiber a torus or a Klein bottle, with
respect to which 4 is fiber-preserving.

By virtue of Lemma 7.1, we can list all involutions on M, with A= (1) ﬂ

(n=+0), by the methods given in the preceding sections. The listed involu-
tions can be easily distinguished, and finally, we obtain the following table,
from which Theorem V follows.

I-0 I-1 II | II1-0 | ITI-1 II1-2

n: odd he | ok // hoh | hh

n: even non-zero | ks R, | Ry Ry Ry | Ry Ry | Ry kg | ks ks | Ry Ry R, Rs

8. Torus bundles admitting unique involutions

Tollefson [22] showed that a family of non-orientable torus bundles {A(n)}
has the property that each M(n) admits a unique involution. The following
theorem generalizes this result.

Theorem VI. If a torus bundle M, satisfies the following conditions, then
M , admits exactly one involution.
(1) llp(A)lI=3.
(2) A is Anosov, primitive, and if det(A)=--1, then the primitive period
of w(A) is not invertible.

Proof. This is a direct consequence of Theorems I, 11, and III.

ExampLE 8.1 (Tollefson [22]). For a positive odd integer n, let M(n)

be the non-orientable torus bundle with the monodromy matrix A,,=|:n;1 ﬂ

Then ||p(4,)l|=3, w(A4,)=[0. 1, n, n, ---], and therefore, 4, is conjugate to
[’11 (l):l So, A, satisfies the condition of Theorem VI, and M(n) admits exactly

one involution.

The condition given in Theorem VI imposes restrictions not only on in-
volutions but also on periodic maps of arbitrary periods. In fact, if % is a peri-
odic map of period 7 (>2) 2n a torus bundle M, which satisfies the condition
of Theorem VI, then M ,/h is again a torus bundle, and the projection p: M,
—>M ,/h gives an n-fold unbranched cyclic covering, such that ¢'o p=g, where
g (resp. ¢') is the torus fibering M ,—S* (resp. M ,/h—S"). This can be proved
by using Theorem 5.2 of Edmond-Livingston [5]. Note that, such periodis
map £ exists, iff Z, is a quotient of Coker (4—1) (cf. Section 3). For the matri
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A, in Example 8.1, we have Coker(4,—I)=<Z, So, any periodic map on
M(n) has period 2 or a divisor of n (cf. Conner-Raymond [3]). In particular
M(1) admits exactly one periodic map (cf. [3, 22]). Conversely M(1) is the
only torus bundle which admits a unique periodic map. This follows from
the following facts. (1) If |Coker(4—I)|=1, then A is conjugate to A4,

[‘1) ‘ﬂ or B— }] (2) The torus bundle M, with A:[‘l’ ‘ﬂ (resp. [f }])
has precisely two (resp. three) involutions.

9. Torus bundles which are regular coverings of S?

In [20], we determined torus bundles which are 2-fold branched coveiings
of 83 (cf. [8, 15, 17]). In this section, we give a necessary and sufficient con-
dition for a torus bundle to ke a regular covering of S

Theorem VILI. An orientable torus bundle M, is a regular covering of S3,
iff R™(A) is a non-empty set. Moreover, if this condition is satisfied, M , becomes
a Z,+ Z, covering of S°.

ReEMARK 9.1. For a matrix 4 in SL(2, Z), R~(A4) is not empty, iff 4 is
exceptional or A4 is Anosov and one of the following conditions holds.
(1) oy(4)=—, and the primitive period of w(A) is invertible.
(2) oy(4)=+, and the primitive period of w(A4) is “negatively inverti-
ble”, that is, there is an odd integer u such that (a, -, a)=(a,4,,

Ayyzy ***y Ay dy, Gy, +++, 4,), Where (ay, +++, a,) is the primitive period of
w(4).
Proof. Suppose that R™(4) is non-empty. If A==-4-1, let P be any matrix

in R-(4). If A==, let P:[(l) _ﬂ. Then, by Lemmas 1.4 and 1.7, we have

P?=1, and therefore, we obtain an involution %, on M,=T?X R/}, induced
from an involution %, on T?X R, defined hy Z(x, t)=(¢pp(x), —2). Let h,
be the involution on M, induced from an involution %, on T?X R given by
hiy(x, t)=(ry(x), t). Then h, and h, are commutative, and they generate a Z,
+Z, action on M,. Let h{ be the involution on M 4/h, induced by k. Then
M (Z,+Z,)=(M 4[h,)[hi=S**x S*[h{=S®. So, M, is a Z,+Z, covering of S°.

Conversely, suppose that M, is a regular covering of S? that is, there is
a finite group G acting on M, such that M ,/G=S3 If A4 is exceptional, R~(4)
is non-empty by I.emma 1.4. So assume that 4 is Anosov, and therefore,
H\(M,; Q=Q. By p. 120 of [2], H,(M,; Q)°, the part of H,(M,; Q) fixed
by the operation of G, is isomorphic to H,(M,/G; @)=0. So, there is an ele-
ment g of G which acts on H,(M,; Q)==@Q as the multiplication by —1. Let
Z be a lift of g to the unique infinite cyclic cover M, of M,. Then we have
godaog '=¢", and therefore, PAP'=A4"', where P=g,eGL(2, Z). Since
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g is orientation-preserving, we have det(P)= —1, completing the proof.

ReMARK 9.2. The figures of the branch lines can be found in Dunber [4].
In it, oriented closed geometric orbifolds, which are not hyperbolic and whose
underlying topological spaces are S3, are classified.

10. Concluding Remark

Tollefson [24] proved that, if M is a closed, orientable, irreducible 3-
manifold with B;(M)=1 and the center of 7 () is trivial, then there is a one
to one correspondence between the strong equivalence classes of involutions
on M and the 2-torsions of Out(z,(M)), the outer-automorphism group of
7y (M). TFor a torus bundle M, with an Ancsov monodromy, Out(z,(M,))
is a finite group (see Kojima [12]), and it can be calculated explicitly by using
methods of [3] and [12] and the results in Section 1 of this paper. So the esti-
mate of |[Inv(M,)| given in this paper may also be obtained through a group
theoretical approach.
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