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0. Introduction

The object of this paper is to establish some estimates for the second order
derivatives of the solution of the 0-Neumann problem. Similar estimates
were obtained by Greiner-Stein [2] when the Levi form is non-degenerate
and the metric is a Levi metric. In this article we derive such results merely
assuming that the basic estimate (0.2) below holds; the metric may be an ar-
bitrary hermitian metric and we permit some cases where the Levi form is
degenerate.

We begin with recalling what the 9-Neumann problem is. Let M be
a bounded domain in C" with C~-boundary bM. We denote the vector bundle
consisting of type (1,0) vectors by S, and the space of smooth (p, ¢)-forms on
M by ar(M). If we write a (p, q)-form ¢ as >V ; ¢; ; dz'AZ’, then the 0-
operator is defined by

0p = 2377 2% 65”1’-’ dz;Adz'Ad7 ,
2

where {z,, -+, 2,}={x,+v—1y,, -+, #,++/—1y,} is the canonical coordinate
system of C”, 8/62,—=% (8/0x;—+/—18/8y;), j=1, -, n, and the notation >}

means that the summation is taken over strictly increasing p-tuples I and g¢-
tuples J of (1, :--, ). Let D?? denote the totality of the smooth (p, ¢)-forms
¢ on M such that (yr, 9¢)=(0, ¢) holds for each e@?¢ (M), where &
is the formal adjoint of 8 and (, ) the L*-inner product on M. We consider
the following variational problem: given AEC and f&&”9M) arbitrarily,
find = D such that

Oy Q@ $)+rw $)=(f,¢) forany gD,
where Q(¢, ¥)=(0¢, 0y)+ (D¢, Y)+(¢, ¥). This problem is equivalent to

the following boundary value problem:

0.1)F  (O+r+1u=f in M, ucD?, GucDre+ |
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where []=89499 stands for the complex Laplacian. Observe that the solu-
tion u of (0.1),, which is required to satisfy the first boundary condition u& D?*,
satisfies automatically the second boundary condition dueD?**!. The case
A=—1 is the 9-Neumann problem. The solution operator N, called the 8-
Neumann operator, is defined in such a way that if f is orthogonal to the null
space of [] then Nf is the solution of (0.1)_, orthogonal to the null space of [J.
For precise definition of Nf, see Section 3. The case A=—1 is reduced to
the case A=0 via spectral theory. We thus first consider the case A=0.

It is easily seen that there exists a solution # of (0.1), in the completion
of D?* with respect to the norm Q(¢)=V Q(¢, ¢). The most difficult part
of this theory is to prove the smoothness of the solution up to the boundary; that
is, to verify that the generalized solution # in the completion of D?*¢ actually
belongs to D?¢. 'This problem has been solved by Kohn under the assumption
of the following “basic estimate” due to Morrey [11]:

(0.2) SbM|¢|2dS§CQ(¢)2 for any D,

where dS stands for the surface element of &M and C is a constant independent
of ¢. In this paper we often use C for different constants without notice.
Notice that the estimate (0.2) holds for each ¢=1 if M is a strongly pseudo-
convex domain. Assuming (0.2), Kohn obtained an L*-estimate with loss
of one derivative, see (2.0) below; in particular, the estimate of all the first
order derivatives of the solution u of (0.1), by f: [[u||,=C||fll. Notice that
it is impossible to estimate the L’-norms of all the second order derivatives of
u by that of f under the assumption (0.2) only, see Sweeney [15].

Recently an interest is focused on obtaining sharp estimates without loss
of derivatives for the solution. In particular, Greiner—Stein [2] obtained esti-
mates, in various function spaces, of the second order derivatives of the solu-
tion  in term of f, where the directions of the derivatives are specialized accord-
ing to the problem, cf. Sweeney’s result cited above. Our main concern is
to generalize their result in the case of “Levi metric” to the case of an arbitrary
hermitian metric. Though our result will be stated in the case of the standard
metric in C", it can be generalized easily to the case of an arbitrary hermitian
metric on a complex manifold, see Appendix.

In order to specify the directions for which we can estimate the second
order derivatives of the solution u, we define the function r by r(x)=—dis(x,
bM) for x€M and r(x)=dis(x, bM) for x&c M where dis(x, bM) denotes the
distance from x to bM; then r is smooth and satisfies |dr|=1 in a neighbor-
hood M’ of bM. We define the vector field 9/0n on M’ by

or 0 L, or 9
SIS
""\ox; ox; 8y; 0y;
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which is the unit exterior normal vector to M on bM. Then a vector field
of type (1,0) is defined by

Zy,= Vl’f {8/on—~/—1J 0/on} ,

where J is the complex structure tensor. Roughly speaking, Z; is the direc-
tion along which the estimate is lacking.

Let us state our sharp estimates more precisely. Since the second order
derivatives in the interior of M are estimated by using a standard interior
regularity theorem for elliptic equations, we need to work only near the bound-
ary. For an arbitrary boundary point, we take a neighborhood U of that point
in such a way that there exists an orthonormal frame {Z,, -+, Z,} of S restricted
to U with Z,=Z/. We set W,j-1=Re Z; and W,;=Im Z; for j=1, -+, n—1.
Let &, and &, be real smooth functions supported in U such that §,=1 in a
neighborhood of supp &;. Then our estimates for the solution u=32}; %, ;
dz'Adz’ of (0.1), are stated as follows:

Estimate A.  Sup |[W,W 5 /lle = ColllE Sl fIT}

for k=0, 1, 2, ..+, where the supremum is taken over 1=<i, <2n—2 and all
I, ], the norm is the L?-Sobolev norm and C, is a constant independent of f.

Estimate B. Srqu WZi% s fllesn < CollE Al A1} -

Greiner-Stein [2] established Estimates A and B under the conditions
that the Levi form is non-degenerate and the metric is a Levi metric, i.e., the
metric tensor g on S,®S, coincides with the Levi form 80r where S,=SN
CTbM. They considered only (0,1)-forms, but proved the results for more
general L'-(1<<t<Cco) Sobolev and Lipschitz norms.

In this paper we shall prove Estimates A and B for (p, g)-forms assuming
“basic estimate” (0.2) holds for D?¢. We shall also prove these estimates
for Nf instead of the solution u of (0.1), where IV is the 3-Neumann operator.

In addition, as an application of estimates for (0.1)_;, we give a sharp esti-
mate for the solution of the 9-problem, which is orthogonal to the null space
of 3. Such a solution v of the equation dv=0 with § €@**(M) has the following
estimate:

0.3)  Sup {IWtwr i H1Z18ws sl < CellIEN 11011}

for k=0, 1, 2, .-, where v=2) ;v,;d2'Adz/, the supremum is taken over
1<j=<2n—2 and all I, J and C, is a constant independent of 4.

Some remarks on allowable vector fields and estimates for them will be
treated in Section 4.

Estimate A is obtained from a few devices of the calculus for the commuta-
tors and for the integration by parts. For a real tangential differential operator
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D of order k+1, we shall show
O(Dtw)—Re(DS, f, D) = O(||t'ulli)  for feary(M),

where §’ is a real smooth function supported in {{,=1} with {'=1 in
a neighborhood of supp ¢;,. We use this commutator estimate for D of the
form W,D', where D’ is an arbitrary tangential differential operator of order &.
Since Q(W;D'Cu) dominates X3, ; ;I|W;W,;D'Cu; 5||, the tangential derivatives
of W;W i, ; up to order k are estimated, for the term O(||¢'ul|;.+.) can be
estimated by Kohn’s estimate (2.0), while the term Re(W;D'C,f, W;,D'C\u) is
treated by integration by parts. The estimates for the normal derivatives are
obtained as in the case of standard boundary value problems for elliptic equa-
tions.

Estimate B was suggested by Kohn (cf. foot note in pp. 7 of [2]). It is
obtained by using the second boundary condition, namely, dusD??*'. Let
u=w,Au'+1* be the decomposition of the solution of (0.1),, where @,=V2dr
=g(Z;. *) and 4, 4> do not contain w,. Then the first boundary condition
is written as %'=0 on M, while the second boundary condition implies Z—',’,u,, J
— By, j#’=0 on bM with an appropriate 0-th order operator B; ;. The estimate
of u' is easy. For #?, we estimate the second order derivatives of %’ containing
Z, by using the second boundary condition. Hence for the whole # we obtain
the desired estimate for the second order derivatives containing Z}.

The outline of this paper is as follows. In Section 1, we review some
elementary calculus for differential forms. All the formulae are known, but
arranged for the convenience of our use. In particular, expressions for the
complex Laplacian and for the second boundary condition are given. We
prove Estimates A and B for (0.1), in Section 2, and those for the 9-Neumann
solution in Section 3. In Section 4, we make Estimate A intrisic in terms of
allowable vector fields. An application to the 3-problem is given in Section
5. In Appendix, we suggest how to extend these results to a complex mani-
fold with an arbitrary hermitian metric.

1. Preliminaries

In this section we give some notations and known facts. We denote A?S*
®AS* by A?? where S* and S* are the duals of S and S respectively. The
canonical metric g in C” is given by g(8/dz;, 8/0Z;)=3$;;/2 and g(8/dz;, 0/0z;)
=g(0/0Z;, 8/0z;)=0 for 1=i,j<m. V stands for the flat connection in C”,
namely, Vyp=217,;(X¢, ;) dz'AdZz’ for ¢=211 ;¢p; ;42" AdZ’ and for a vector
field X.

1.1. The metric on the vector bundle A?¢
Let ¢'=2)} ;1. ;dz'AdZ’, i=1, 2 be (p, q)-forms. Then the inner product
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<p', $>> on A?1 is defined by
<P, D> =273 1197
where the summation 33’ is taken over all ordered p-tuples I=(z,, -+, 7,), 1=¢,

<+ <i,=n and g-tuples J=(j, =, j,), 1= i< - <j,=n. We set |p|=
V/<¢, ¢>. For this inner product we have the equality:

X!, ¢ = (Vxo!, ¢2+<P", Vz¢®>  for any vector field X.
In C", it means the obvious equality
X(SY ¢.s87.0) = 3 (Xoh.)) ot + 5 ohs(Xeh)).-
Let ¢ be a (p, g)-form and X&I(S). Then the (p, g—1)-form i(X)¢ is
defined by
HX)P) Xy, -+, Xyory Vi o+, V) = (X, Xiy o0y Xyoty Yy oo, V)

for X, -+, X,,,€8 and Y, -, Y,e8. i(*) is called the interior product.
The above norm on A? has the following property. Let ¢=&*%(M’) and
@=g(Zs, *¥). Then

LLY)  |$P= [dZ)e|*+ @Ad|* .
This equality will play an important role for Estimate B.

1.2. The boundary conditions

In this paragraph we rewrite the boundary condition ¢=D?? as a geo-
metrical condition on bM.

Let $=a»4M) and E&*"Y(M). Then the following integral formula
holds.

(12.) @, ) = (b, 991+ | <o iZi)gras”,

where dS’ stands for 1/V/ 2 times the volume element of bM.

In Folland—Kohn [1] the second term in the right side was represented as
Ssulyr a(B, dr)p>dS where o(d, £) denotes the symbol of ¢ and dS the surface
element of b6}. Hence we can see that the symbol (2, dr) is given by an inte-
rior product. Moreover we can see that

Dri = {pe@r(0)|i(Z,)p = O on bM} .

Tt is known that the solution u of (0.1), satisfies du< D?®+', namely, i(Z})0u
=0 on bM. This is called the second boundary condition.

1.3. Modified connection V
Let ¢=D?? and X be a vector field tangenital to bM. In general Vy¢
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does not satisfy the first boundary condition. Hence we modify Vy so as to
presetve the first boundary condition. Recall that the estimate in the interior
of M has been known, so that we may only work in the neighborhood M’ of
bM. As in Komatsu [8], we define the connection ¥V on M’ by

¥, Y = PV PY+(I—P)Vy(I—P)Y,

where P is the orthogonal projection from the tangent bundle to the subbundle
spanned by 8/0n and J8/dn, and we extend this connection to p-form ¢ by

(Vx9) (Xy, -+, Xp) = X($(X,, -+, X)) =221 (X, -+, Vi X, o0, X))
Then, Vyp < D?? whenever ¢ & D?? is supported in M'. In fact,
(Z)Vxp = Vx(i(Z1)$)—i(VxZ2)¢ ,

where both terms in the right side vanish on bM; the first term by the first
boundary condition and the second one by

ViZ, = pZ, with p= SN, 2g(Z}, 8/0Z,) Xg(3/0z;, Z1) .
As in the case of V, our connection V satisfies

(1.3.1) X<, v> = Vi, ¥D+<p, Vx> for ¢, pE»I(M').

In order to see (1.3.1), we set S(X)=Vx—Vy,. Then S(X) is an operator
of order zero and {S(X)@, y>=<¢, —S(X)y¥)> holds for ¢, y=&I(M’) (see
Appendix). Thus <V ch, ¥rd>-+<b, Vay>— (T xby p>+<b, Trd)—<(S(X)h, ¥>
+<, SRW>=0.

When we prove Estimates A and B, we first establish the estimates of the
tangential derivatives of the solution of (0.1), or (0.1)-;, and then those of its
derivatives containing the normal one. Let U and {Z,, ---, Z,} be as in the
introduction. Then the complex Laplacian has the local expression:

(1.3.2) D5519+195 = —2,{1 szﬁzj—}---- N

where -+ is at most first order terms. We often use this expression in the
following form:

(133) Vo Vzu= —f—3%7 Vo,V +r

where --- contains at most first order derivatives of u.
We also need the second boundary condition gu<D??*! in order to prove
Estimate B. We set

B, = —S(Z}))+Xict w,Md(Z1)S(Z))

where {@,, -+, @,} is the dual frame of {Z,, -+, Z,}, hence ®,=w,=g(Z,, *).
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Then for u< D?* satisfying dus D#**, we have

(1.34) @ A(Vzu—Bwu)=0 on bM.

2. Estimates

In this section we fix U, {Z,, ---, Z,}, {W,, -+, W,,_5}, &, and &, stated
in the introduction. Assuming that the basic estimate (0.2) holds for D9,
we shall prove Estimates A and B for (0.1),. Firstly we show them in the
case that the derivatives are restricted to tangential directions, namely, only
for J3/on and {W,, -+, W,,_,}. Secondly we show them for general case with
the aid of a usual method for elliptic boundary value problems.

We use the following estimate without not ce.

Kohn’s estimate. Let £ and &, be real smooth functions supported in U
with £,=1 in a neighborhood of supp . Then for each non-negative integer
m, there exists a constant C,, such that

2.0)  [lEullps = CodllEeflla+1IfI}  forany fear(i),
where u is the solution of (0.1), fqrf and || fl|=I| fllo-

We shall prove the following theorem, which is slightly stronger than
Estimate A, and will be used in the proof of Estimate B.

Theorem 1. Let &, and &, be as in Estimate A. Then
Sup IIVW,VW,EluHmLS}lP IV, V28l < CoAlIEA 1+ f1}
for f €@ 9(M), where u is the solution of (0.1), for f.

2.1. The proofs of Theorem 1 and Estimate A

The main tool for the proof of Theorem 1 is the following proposition,
whose proof is given in 2.2, and it is a part of Theorem 1 that the derivatives
are restricted to tangential directions. To state such cases we introduce a
few notations.

We set e;=W,; for j=1, .-, 2n—2 and e,,,=]J0/0n. {e,, -, ey-1} is a
local basis of tangential vectors on U. We denote ¥, * Veuen, by V.* and
set |a|=m where 1=a(l), -+, a(m)<2n—1.

O

Proposition 2.1. Let D=Vy,V,” with |a|=k. Then

ODtw) < CAILAA+AY  for any fear«(i),
where u s the solution of (0.1), for f.

Proof of Theorem 1. We denote \/17 8/on by N’ and JN' by T'. We



866 T. Sarro

shall prove the following inequality by induction on /.
#1; ) Sup ||V, Ve, V. Vi Ll +Sup ||V, V2,V Vi ul|
S CAIGALHIAY  0=isk,

where the supremums are taken over 1=7, j<2n—2 and |a|=k—1.
Let us prove (§1; I). (#1; 0) follows from Proposition 2.1 and the fact

Sup Vw9l +11Vz,0l| < KQ(¢p)  for gD nNa*(MNU).

Suppose that (#1; ) is known to hold for i</—1. Noticing N'=Z,—+/—1 T",
we get

”vW.'ijVa“va’Clu” =
”vw,vwl(vedvr')vll\pl;‘xﬂ‘+Ivaivig(ijvf)vll\lﬂ;l““‘f‘C“Cﬂl“Hl
S C{ILAll+IfI} by (2.0) and (41; I-1).

On the other hand, noting N'=Z,++/—1 T', we obtain
IVw, V2,V *Vitm|| <
“ijvfgvz;veavllﬁlglu[ [+ “ijvi’,,(vsavT’)v}V—’-lClM [4+CII88] 441
S|V, V.2 V8V 2V 2.8l |+ C I AL+ AT}

Now in view of (1.3.3), ||Vy;V,*Vi7'V 2,V 2, Ll | <

522 11(Vw, YV V2V Eul | H S Il ClIE sl =<
CUCAU+NA N} -

Thus the proof of the induction is complete, and hence so is that of Theorem 1.

Now we can show Estimate A. Since Vyp=2Y ;(X¢; ;)dz'AdZz’ for
=211 7¢;,1d2' AdZ’, we have only to show

[IVw, Vi, Sl < C{IE A+ F11}

The difference of the connections Vy and Vy, namely, S(X), contains no deri-
vatives. Therefore

”VW.-VW,- Cull, < va,vw,- Eaulli+ClIG e =
C{lI&.f1lx+I11f11} , by Theorem 1 and (2.0). q.e.d.

2.2. Proof of Proposition 2.1

The proof of Proposition 2.1 is a consequence of the following estimate:
for D=V,” with |a|=k-+}1,

(22)  O(Dtw, DEw)—Re(DL,f, Dt w) = O(|IE"ullir) »
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where &’ is a real smooth function supported in {{,=1} with {’=1 in
a neighborhood of supp £;. In fact, suppose that (2.2) has been proved. Take
D=Vy V,” with |a| =k. Then the term O(||5 ull;.,) is treated by using Kohn’s
estimate and the term Re(D¢,f, D¢ u) is dominated by ||D\g, f||Q(Dtu) where
D,=V.,”. Hence it remains only to prove (2.2).

In order to prove (2.2), we recall that

(Dt.f, Dtw) = O(u, £,D*Dt),

where D* is the formal adjoint of D. Setting ¢p=¢,v for vEX?4(M) and B=3
or ¥4, we have

||BD¢|[?*—Re(Bv, BE,D*¥*D¢) = Re(I,+1,+11,+11,),
where 1,=([B, D]¢, BD¢), I,=(B¢, [D*, B]D¢),
II, = ([B, ¢]v, BD*D¢) and II, = (Bv, [§,, B]D*D¢).
Hence, in order to prove (2.2), it suffices to show that
(23)  Re(li+1I) = O(ll$ll3:1), and
(24)  Re(IL+1L) = O(lIg"2lli+1) -
Proof of (2.3). We prove (2.3) by showing
2.3y (B¢, [D¥, B]D¢) = (BD¢, [D, Bl$)+O(|4lli+1) -

Decompose the proof of (2.3)" into two steps. The first and the second steps
are to show

(2.3.1) (BD*¢, [D*, Blp) = (BD¢, [D, Blp)+O(l|plli+1), and
(2.3.2) (B¢, [D*, B], D]¢p) = O(llglli+1) -
Under (2.3.1) and (2.3.2) one can see easily (2.3)" and hence (2.3).
Proof of (2.3.1): It suffices to show by induction on &,
(*; k) D—(—1)**'D* is a sum of differentials of order < k.

For the case k=0, it is trivial, since (V,)*=—V,—dive. We assume that (*; 7)
is known to hold for .<k—1. Let D=D,D,, where the order of D, is k and
that of D, is one. Then D*=D¥D¥. Hence

D—(—1)**'D* = D|(D,+D¥)—D¥(D,—(—1)*D¥)—[D,, Df].
Thus (*; &) follows.

Proof of (2.3.2). It is easily seen that [D*, B] is a sum of terms of the
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form V*P,V¥ with |B|+|v| =<k and an appropriate first order differential
operator P,. Hence [[D* B], D] is a sum of terms of the form D,P,D, where
P, is a first order differential operator, D, and D, are hybrid products of V,,
V# and their commutators with the sum of the orders of D, and D, smaller
than 2k+1. Therefore the conclusion follows from the following lemma,
which is used in also showing (2.4).

Lemma 2.2. Let D=V," with |a|=m and L be a first order differential
operator. Then
(¢ LDY) | = Cilldllm-dll¥llin  0=i<m,
for ¢, @ (M NU).

Proof. We shall prove the following by induction on /
(C; 1) for any first order differential operator P,,

I(@, PVAY) | = CPy, L )lIglli-illliv,  0si=I

for ¢, €@ 4(M N U), where |B| =L
Case /=0 is trivial. We assume that (C; 7) is known to hold for i<I—1. Let
D=V with |a|=I. Then

(4” PID‘I") = (D.l*db PlDz‘l')+(¢: [Pu Dl]Dz‘I")

where D=D,D, and the order of D, is one. Therefore

[(¢, PiDY) | = Cill¥rllia {lllli-1-i+-11DFDIl -1~}
for 0=<:=<I—1 by (C; I-1).
Hence (C; /) follows from this and the following trivial estimate.
[(¢, DY) | = Cligll [rllia *

Proof of (2.4). We decompose the proof of (2.4) into two steps. The
first and the second steps are to show
(2.4.1) ([B, ti]v, BD*D¢) = (D[B, £,]v, BD¢)+O(||t"2||3+1), and
(2.4.2) (Bv, [£,, BID*D¢) = (BD¢, [t1, BIDv)+O(l[E |[7+1) -

Under (2.4.1) and (2.4.2), one can see that Re(I,+11,)=Re([D, [B, &]]v,

BD¢)+0(||¢"2]li+1), and in view of Lemma 2.2, ([D, [B, §,]]2, BD¢)=0(|| 0|} +1)-
Therefore (2.4) holds.

Proof of (2.4.1). Following the proof of (2.3.2), we can see ([B, {;]v,BD*D¢)
=(D[B, t1]o, BD$)+([B, {,]v, [B, D¥]D¢)=(DI[B, £,]v, BD$)+O(I[E "l[%+1)-
q.e.d.
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Proof of (2.4.2). As the proof above, we get (Bv, [£,, B]D*D¢)=(BDv, [{,,
B]Dtw)+-O(|[& 0|l +1), and in a similar way, (BDw, [§,, B]D§,v)=(BD¢, [¢,, B]Dv)
+0(||§'v|li+1). The proof is complete.

2.3. Estimates for V2, Vzu and V3 V3u (Proof of Estimate B)
In Theorem 1, we have already shown a part of Estimate B:

(*; 4)  Sup V2, V%, Clle < CollE Il A} -

Since the tangent space on U is spanned by {W,, -+, W,,_;} and {Z/, Z}}, in
order to prove Estimate B, we need to show

@5) 1992t < CAIEAL+IfI} , and

(2.6) V2, V25l < CollIEof 1+ A1}

In what follows, we shall prove (2.5) and (2.6). The proof of (2.5) is easy
in view of (1.3.3), while that of (2.6) is slightly difficult. In view of (*; A)
and (2.5), the crucial part of the proof of (2.6) is to show

26.1) (19292, 75tall < OllIEAL+IA -

We decompose the proof of (2.6.1) into two parts: one part is treated by using
the first boundary condition and the other one by using the second boundary
condition in view of (1.1.1).

Proof of (2.5). From (1.3.3),
1V 2, V2,8l < 272N (Vw Y6l e+ CINE wlliar+HIE S e -
Hence (2.5) follows from Theorem 1 and (2.0).

Proof of (2.6). We want to establish the following inequality:

(*;B) (192,92, Dbwll < CLIEAL+IIfI}

where D=V4.V2.V% with I4-m-+ |a| =k.
But this inequality is known to hold if @30 by (*; 4). Hence we can assume
a=0. Changing N’ to Z,++/—1 T’, we obtain

V2 V2 ViV ELwl| < 1V2, V2 V2 il |+ CIEA 1 fII} -

Therefore in order to prove (2.6), we have only to show (2.6.1). In view of
(1.3.3), we need to show the following

(2.6.2) 1i(Z2)Vz,Vz, Vi twl < C{ILA1l+IfI} , and
(2.6.3) @AYz V2 Vil < C{lIEAlAIAI} -
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In order to show (2.6.2), we prove the following, which is used later in
the proof of Theorem 3.

(2.6.2) ||i(Z;)§1u”k+2 < C{IGAllAIA1} -

Compute 33,2, Vz,Vz ,.i(Z;)Clu. Then in view of (1.3.2), we get
133121 V2,V2,4Z 0wl < CUlHZI)Eflli+CIE ullis
= C{lIEA e +11f 11} -

Since #(Z})¢u=0 on bM, (2.6.2)" follows from a well-known result on elliptic
boundary value problems (cf. Nirenberg [12]).

We prove (2.6.3). To do so, we first see that for any €&**(M N V)
with Y»=0 on bM,

IV 2 @l? = 1IVE 0l 42 Re (Vg r, ¥)+O(IvIP),

by integration by parts, where W=Vz,Z;.
In view of (1.3.4), we can apply this calculus to

Vb @i A(Vzu—Bu)}

where B, is the operator which appeared there.
Therefore we obtain

IV 20 ll < IV 2,0l |1+ C {1E ul s+ I Virpll} -

Since W belongs to the subspace spanned by {W,, -+, W,,_,} and Zj, in view
of Theorem 1 and (2.5), we obtain

Vel < CUEA A+ A1} -

(2.6.3) follows from these inequalities. Collecting these results, we get the
following theorem.

Theorem 2.
19288 lliss < CLIGA AL} for any fE@H (M),
where u is the solution of (0.1),.
Estimate B readily follows from Theorem 2 as Estimate A follows from
Theorem 1.

3. Estimates for the 3-Neumann operator

In this section we establish sharp estimates for the 3-Neumann operator.
Such estimates are easily derived from Theorems 1 and 2, for the equations
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(0.1), and (0.1)_., differ only up to a lower order term. In order to state it more
precisely, we need to recall the precise definition of the 9-Neumann operator.

3.1. Review of the d-Neumann problem

The d-Neumann operator N: L} ,(M)— L} ((M) is defined as follows.
If fe L} ,(M) belongs the the harmonic space,

H?* = {heD»1|5h = 0, 9h = O} ,

then Nf=0.
If feL} (M) is orthogonal to H?, then Nf is the unique solution of (0.1)_,,
which is orthogonal to H?,

Since the basic estimate (0.2) is assumed, it has been known that H?#*¢
is finite dimensional, in particular, closed in L} ,(M). Hence the operator N
is well-defined.
Notice that, setting w=Nf,

(D+1)u =f+u’ ueD’rq’ Euer.q-{-l ,

that is, u=Nf is the solution of (0.1), with f+u in place of f in the right side.

The following lemma corresponds to Kohn’s estimate (2.0). Though
it might be well-known, we can not find any references, so we shall give the
proof for the sake of completeness.

Lemma 3.1 (Kohn’s estimate for the 9-Neumann operator). Let ¢ and
&, be the functions in (2.0). Then

GB.1)  NENSfllen = CAlIG Al FI -

Proof. Let {{7},=: be a family of smooth real functions supported in
{£,=1} with &{=¢ and supp §ic {{7..1=1} for I=1, 2, ...,
Let v=Nf. Then v is the solution of (0.1), for v-+f instead of f. We show
by induction on k:

(I; k) Igt0ll = Ch, DUIGS A1} for I=1,2, -,

where C(k, /) is a constant independant of f.
Firstly in view of (2.0),

lIg7oll = C{IE7a(e+NII+Ilo+A11} = ClIAII

Assume that (I; ) is known to hold for i<k—1. Then

€7l = CIET a0+l lo+Hf11} =
Clitte@ll+C UG L+ 11 A1} < C' IS+ £} . qed.

Proofs of Estimates A and B for the 3-Neumann operator.
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Now we are in a position to prove
(3.2) (Estimate A) ||V, Yy, ENfIl < C{ISA 1A},
for any f €@*(3) and 1<, j<2n—2, and
(3.3) (Estimate B)  |[Vz,LiNfllora = C{ICf 1+ £11}

for any f € @*Y(M).

As in the case of the problem (0.1),, (3.2) and (3.3) will follow from Theorems
1 and 2, respectively. In order to estimate error terms in the present case,
we need (3.1) in place of (2.0).

Proof of (3.2). In view of Theorem 1,
1V, ENFlls < CUIE 0+l A+ llo+Hf1} =
ClIg 0|+ C{lIE AL+ 11}

where ¢’ is as in the proof of (2.2) and v=Nf{.
Therefore the conclusion follows from (3.1).

Proof of (3.3). In view of Theorem 2,
V2, ENf llisa < CLIE @4+ llo+f11} -

Hence as the proof of (3.2), the conclusion follows.

4. Remarks on estimates for allowable vector fields

In this section we consider estimates for allowable vector fields. The
notation “allowable” appeared in a paper of E.M. Stein at first, and depends
only on the complex structure and the boundary M. A real vector field X
on M is called allowable if both X and JX are tangential to M.

Any allowable vector fields are spanned by {W,, ---, W,,_,} and {#fN’,»T"}
on U, where 7 is the defining function of bM stated in the introduction.

We shall prove the following theorem.

Theorem 1'. Let X and Y be allowable vector fields. Then
IVxVbwll < CUIGAAIfI}  for any feqr (M),
where v is Nf or the solution of (0.1),.
Proof. It suffices to show
(I rEollise < CLIEA L+ 111} -

In order to show (I'), we compute [](r{,v), then
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N3EE) < 1L lle+ClE Dllerr = CUISA A+ £}

Hence (I') follows from a standard theorems for the boundary value problems
of elliptic equations (cf. Nirenberg [12]).

5. Estimate for the d-problem

In this section we show the sharp estimate for the solution of the equation
dv=40, orthogonal to the null space of 3, announced in the introduction. In
Greiner-Stein [2], they showed the sharp estimate as that in Theorem 3, for
L'-Sobolev norms with 1<<t<Coco, however their solution is not orthogonal to
the null space of 3 by the standard metric in C".

Theorem 3.
TNV, SV eIV 6V e < CUIEA N+ F 1T}
for any f €Y M), where V=>3NF.

Proof. In view of Proposition A.5.4, 9=—31;",4(Z,)Vz,. Hence applying
Esfimate A to i(Z,-)VziNf for 1=<j=<n—1, Estimate B to Vz;V and (2.6.2) to
U(Zx)V 2, Nf, we get

25 IV 6V 2121 IV, 6V e = CIS AL AT -
The conclusion follows from this estimate.

REMARK. Several types of Holder estimates for the equation du=f with
fEa* (M) appeared when M is a strongly pseudoconvex domain. Kerzman
[5] showed the Holder estimate for any exponent smaller than 1/2, and then
Henkin-Romanov [4] proved the exact 1/2-Holder estimate. These papers
dealt with the Holder norm of the solution # itself. Siu [14] showed the 1/2-
Holder estimate for the derivatives of the solution. The sharp estimate for
“good directions”, that 1s, Holder estimate with any exponent smaller than
1 for derivatives of u with at least one allowable direction, was showed in [12]
and Krantz [9]. These solutions are not orthogonal to the null space of 9,
i.e., holomorphic functions. The solution operator used in Kerzman [5] con-
sists of integrals only on M and that in the other papers, which was constracted
in Henkin [3], contains an integral terms on bM.

Appendix

The results of this paper can be extended to the case when M is a relatively
compact subdomain with C~-boundary dbM of a complex manifold M, with
an arbitrary hermitian metric g. We collect here necessary materials for such
extension and suggest the outline of it.
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A.0. Notations. We denote the subbundle of the complexified tangent
bundle consisting of the type (1,0) vectors by S. {Z,, :-+, Z,} denotes a local
orthogonal basis of S ({Z,, ---, Z,} is defined on some open set U of M;, how-
ever we do not specify such U unless necessary.)

A.l. Complex connection

DerINITION A.1.1. The canonical complex connection V is defined as
follows.

I Vi¥ =[X,Y]s for X, YEI(S),
where [X, Y]s is the (0, 1)-part of [X, ¥].
II. Let X, YET(S). Then V,Y &TI(S) is defined by

Xg(Y, Z) = g(VY, Z)+g(Y, VxZ) forany ZET(S).

III. VY =V, Yand ViV =V,¥ forany X, YET(S).

This connection coincides with what is defined in Wells [16] Chap. III,
2 and Kobayashi-Nomizu [6] II, Chap. IX, Prop. 10.2 and it is called hermitian
connection there.

Proposition A.1.2. i) Vvg=0. i) VvJ=0. ii) 7(X,Y)=0 for X, Y
€S, where T is the torsion tensor.

Proof. Since g vanishes on S®S and S®S, i) follows from II of Defini-
tion A.1.1.

To show ii), let X, YET(S). Then JX=—/—1X. Hence V4(J¥)
—[X, —/—=1 Fls= —V=T[X, Vls=—v—IV:¥ = J(V:D). 2(V:¥)—
J(VxY),2)=Xg(JY, Z)—g(J Y, V1 Z)— Xg(Y, J2)+8(¥, V2 Z))=g(Y,Vx(JZ)
—JVxZ)=0 for any Z&T(S). Thus V,J=0 for X&T(S), and Vg /=0 can
be proved in a similar way.

T(X, Y)=0 for X, YETI(S) is a direct consequence from I of Definition
Al

We extend the connection V to p-form ¢ by

(Vi) (Xy, 0, Xp) = X($(Xy, -+, X)) — 20521 H(X, o5 Vi Xy 0, X))

A.2. 'The canonical metric on the vector bundle A#*?

Let ¢ and  be (p, q)-forms. We define the inner product <{¢, J> on
A»? by

Y621 22, Z),

where I=(,, -+, ¢,) (resp. J=(jy, ***, j,)) runs over 1=¢,<<--<i,<mn (resp. 1=
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fr< < j,=n) and $(Z’, Z’) means
&(Z.,, -, Z;

lp’

Z’.l, e, Z,.q)
This inner product does not depend on the choice of {Z,, -+, Z,} and we set

Proposition A.2.1. Let ¢ and  be (p, g)-forms and X a vector field.
Then

X<¢’ ‘I"> = <VX¢” ‘l">+<¢') V)-(‘!’> .

Proof. Let P be any point of M,. We take a system of coordinate {z,,
-++, 2,} with the origin at P. Then there exist holomorphic vector fields {w,,
-+, w,} such that g(w;, W;)=3§;;+O(| 2|?) (Wells [16] Chap. III, Sec. 2, Lemma
2.3). Applying Gram-Schmidt’s orthonormalization to {w,, ---, w,}, we get
an ons. {W, -, W,} of I'(S) such that VIW,;=0 at P for j=1, ---, n. Then
at P,

X(p(W?!, WO (W', W) = (Vxdp) (W', Wy (W*, W)
+o(W*, W) (V) (W', WY).
Hence X<{¢, ¥>={V3 ¢, ¥>+<p, Vzy> at P. q.e.d.

Proposition A.2.2. Let Z<T\(S) have the unit length and o the (0, 1)-form
defined by o(X)=g(Z, X) for X& SDS. Then
i) for any (p, 9)-form ¢ and (p, q+1)-form

<wA¢’ ‘]"> = <¢) i(Z)‘I’> ’

where A is the wedge product. ~
ii) For any (p, q)-form ¢, | ¢|*=|wAd|*+ |i(Z)p|%

Proof. Let {Z, -+, Z,} be a local orthonormal basis of S with Z,=Z.
i) Let I=(z,, --*, 7,) (resp. J=(j1, ***, j;+1)) be any ordered p-tuple (resp.
g+1-tuple). Then

(0A$) (2", Z7) = Bk (1P u(Z, )$(2, 2,

where J()=(j,, - I, "y 1)
Hence it vanishes unless ,=1. Therefore

<‘0A¢’» ‘P‘> = (_l)p Elll=p,|l’l=q ¢(ZI’ Z],)'\I’(ZI) ZJ,) )

where J' runs over all ordered g-tuples (j;, -+, j,), 2= f1<<e<j,=m.
On the other hand,

$p UZW> = D21, Z' W2y, 28, Z7) = (— 1y (2", ZT W21, 2, Z7) -
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In this sum we can consider that J runs over all ordered g-tuples (ji, :*, 7,),
2< i< <f,=<m, since Y(Z!, Z,, Z')=0 if j,=1.
Hence <C0A¢’ > =<¢’ Z(Z)\I’> _

ii) By the calculus of i), |wA¢|*=2]"|p(Z7, Z7)|?, where J runs over
(s > jo)s 2= j1<-++<j,=n. On the other hand, |i{(Z)$|*=>Y | $(Z’, Z,, Z¥)|?,
where K runs over (k;, -, k), 25k <+ <k,_,=<n. Hence |¢|’=|wAdp|?
+1iZ)$ 1"

A.3. Notations about boundary

Let M be a relatively compact subdomain of M, with C~-boundary dM.
The function 7 is defined as in the introduction. We take a neighborhood
M’ of bM as there and define 8/dn by g(0/on, X)=(dr) (X) for X&TM’ and
set Z; as there. For an arbitrary point of the boundary M, we take a neighbor-
hood U of that point and the functions ¢;, ¢, as in the introduction. {Zj, -,
Z,} and {W,, -+, W,,_,} are stated as there.

A.4. Divergence and integral formula

Let X be a vector field. Then the following formula holds (Kobayashi-
Nomizu [6] I, Appendix).

(A41) div X =3 gle; Vo, X+T(X, €;))

where {e,, -, e,,} is an o.n.s. of the tangent space. Therefore if X &T'(S),
then

(A42) divX=2"%gZ;, V,X+T(X, Z))).

The following integral formula holds by Stoke’s theorem (Matsushima
[10] pp. 292).

(A4.3) j FiX)AV = S (f div X+Xf)dV .
oM M
DErFINITION A4.1. The vector field a=TY(S) on M, is defined by

2;,:-15’(2;, T(Zy, Zj))Zk .

The value of the above sum does not depend on the choice of {Z), ---, Z,}.
Therefore a is defined on the whole M,.

Proposition A4.2. Let o=@ (M). Then
[, 2 z0) @V = o(Zas'—| a@av,
where dS' is 1/\/ 2 times the surface element of bM.
RemARK. The value of 33%; (Vz;0) (Z;) does not depend on the choice



THE 3-NEUMANN PROBLEM AND THE J-PROBLEM 877

of {Z, -+, Z,}. Hence it is defined on the whole M.
Proof. Let X=3 &(Z;)Z;. Then X is defined on the whole M and
div X = SVt {8(V2, X, Z)+8(T(X, Z), Z))} .

Now 332 &(T(X, Z)), Z)=; 11 o(Z )Y T(Z,, Z,), Z,)=w(ct). On the other
hand, Zj:l g(Vz,X, Zi)=

Dt {ZgX, Z)—8(X, V2,Z))} = 2% (Vz,0) (Z)) -
Hence in view of (A.4.3),
[ & 50 @rto@par = _ixar.

Now if we take {Z, ---, Z,} with Z,=Z}, then i{(Z;)dV on bM vanishes as
a volume form on &M for j=1, ---, n—1 and i(Z,)dV is equal to dS’ as the
volume form on bM. Therefore

S (X)dV = S o(ZD)dS’ . qed.
M oM
A5. dand ¥
Lemma A.5.1. Let ¢ be a p-form. Then
(d¢) (Xl’ ) Xﬁ+1) = fi% (—"l)i+l(VXj¢) (Xl) °tty f’ ) Xp-H.)
”_Zi<j(_1)i+j¢(T(Xb Xj)’ Xl; °tt l., R} j) R Xq+l) .
Proof. (d¢) (X, -+, Xp+l) =2 ("‘l)jHXj(‘IS(XD ** j’ ] Xp+l))
+2i<j(_1)i+j¢([Xh Xj], Xl) °*% i) ) .;7 B Xp-H) ’
(Matsushima [10] pp. 140).
Replacing  X;(¢(X, =, J, s Xp11)) by (Vi; @) (Xy -+, Jy =5 Xpar)+
2i<j ¢(X1) % VXin) "0ty j’ A Xp+1)+zj<i¢(X1) '"7_;’ °*y

VX,Xi) % Xp+1) )
we get

(d¢) (XD 0 Xp+1) = Zf:{(—l)“l(vxi(ﬁ) (Xb Ty .;’ T Xp+l)_
2i<j(_1)i+j¢(VX,-Xj“‘VX;Xi‘—[Xi: Xj]: Xh °%% i) °%y j) R Xp+l) .

This is equal to the conclusion.
Proposition A.5.2. Let ¢ be a (p, g)-form. Then

(34’) (XD ) Xq+l7 Y1, sty Yp) = )
235 (_l)jﬂ(vxid’) (Xp s 25 o0 Xgay Yy o0y ¥p)—
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SN (=1 H(T(Xs, X))y Xay 0 By ooy Jo o0y Xty Vi o0y V)
for X,, -+, X,nu<€Sand Y, -+, Y,ES.

Proof. 3¢ is the restriction of dp on S?®S*'. Hence the conclusion
follows from iii) of Proposition A.1.2. and the fact ¢ vanishes on S?'QS**.

DrFInNITION A.5.3. i) Let ¢ be a(p, ¢)-form. Then the (p, g+1)-form
T'¢ is defined by

(T¢') (Xh % Xq+l) Yl’ °tt Yp) =
_2i<j (—1)‘.+j¢(T(Xh Xj): Xh R i; EREY j, %t Xq+l) Ylv "ty Yp)

for X, -+, Xqﬂeg and Y3, -+, Y, E8.
if) T* is the adjoint of T with respect to the canonical metric on A9, ie.,
for each (p, g+1)-form ¢, the (p, ¢)-form T*¢ is defined by

T, ¢ = by, T*> for any AP,
Proposition A.5.4. Let ¢ be a (p, ¢+ 1)-form. Then
¢ = =21 dZ)Vz,p+T*p—i(a) .

Proof. Let y» be a (p, g)-form. We define the (0, 1)-form w by w(X)=
i(X)p, ¥)> for X&SPS and apply Proposition A.4.2 to it. In view of Pro-
position A.2.1. and A.2.2,

(Vz0) (Z)) = V2, Z)$}, ¥>+Z)b, V2,90 —<i(V2,Z,)$s ¥
=<UZ)Vz,0, ¥+, ;Az, 9,
where {®,, ---, ®,} is the dual of {Z,, ---, Z,}.
Hence (¢, 33,21 @;AVz )+ (3,51 #(Z;)V 2,0, )=
(—i(@)p, W)+ | <iZi)g, v>as' .
Therefore

(8 39) = (=D dZ,)V 2, -+ i), W+ <20, v>aS'.
Hence the conclusion follows.
Proposition A.5.5. Let U and {Z,, -+, Z,} be asin A.3. Then
O=->% V2,V z,;+lower order derivatives.

Proof. Let {w,, :**, w,} be the dual basis of {Z,, ---, Z,}. In view of
Proposition A.5.2 and A.5.4, the principal parts of 92 and 93 are equal to those of
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— 2 1 @A(Z)Vz, V2, and —X); 10 4Z,) {@AV2,Vz} .
Therefore using the relations
{Z;) oA} +BAUZ))p = 8, 1=j, k=m,
we get the conclusion.
A.6. Boundary conditions
In the proof of Proposition A.5.4, we get
(A61) (9, 39) = 09, W)+ <ilZh)g, vdas’

for ¢ €@»+*(M) and € X»4(M).
Hence we can see that the first and second boundary conditions are the same

in C".

A.7. Modified connection V

As Paragraph 1.3, we can define the modified connection V and extend
it to differential forms and hence, we set S(X)=Vy— V.

Lemma A7.1. g(S(X)Y, Z) = —g(Y, S(X)Z).

Proof. S(X)Y = PVx(I—P)Y+(I—P)V4PY from the definition.
Hence g(S(X)Y, 2) = g(Vx(I—P)Y, PZ)+g(VPY, (I—P)Z)=
X{g(I-P)Y, PZ)+g(PY, (I—P)2)} —g((I—P)Y, V+PZ)—g(PY, Vx(I—PZ)=
—8(Y,(I—=P)VyPZ+PVy(I—P)Z) = —g(Y, S(X)Z). q.ed.

Proposition A.7.2.
<S(X)p, ¥> = <, —S(X)WD holds for ¢, yEX (M) .

Proof. Let {e, -+, &,,} be an o.n.s. of the tangent space. Then we can see
by > = er-ad ) = - S, 2 M),
where m = p+q and K = (k;, -, k,,) .
Hence m! {S(X)¢p, > = 2k (S(X)) (eX)r(eF) =
—_ZK Ej':l ¢’(ekl’ H) S(X)ekj) °t%y ek,.)‘!’(ekla °*% ek,,)
= —2,-':1 21{ 212-71 g(S(X)ek,-, el)¢(ek1’ ttty €y oty e,,m)\]r(eK)

= 21’21 EK,I ¢’(elcl’ Sty €yt ek,,.)g(ekj’ S(X)e,)\[r(e")
= —m!<p, S(X)¥>. q.ed.

Proposition A.7.3. There is a linear transformation B, of A?? such that
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us D?? and dus D7 imply
@, A(Vzu—Bu) =0 on bM,
where wy=+/"2 or=g(Z,, *).

Proof. Let p@*(U). Thend¢p=23% 5;AVz,p+Té.
Hence #(Z})3¢ = Vzip—23% a)‘in(Z,’,)Vz,.qb—{—i(Z,’,)Tgb. Therefore
@i A(Z})ou = A {V z,u— 312 @, AU Z1)VZ u+i(Z3)Tu} = 0 on bM.

Thus changing V to Vx+S(X) and noticing i(Z;)Vz,4=0 on bM for j=1, ---,
n—1, we get

0 = o A[Vz ut{S(Z1)+i(Z1)T—X5=  @,A4(Z1)S(Z )} ] on bM.
Hence the conclusion holds taking B, as
—S(Z)—iZNT+X51 3,M(Z)S(Z,)

A.8. The outline of the extension

Let U and {Z,, ---, Z,} be as before. In general there is not an appro-
priate basis of @"°(U) as in C". So we give Estimates A and B in the following
forms:

Estimate A. Slﬁp IV, VwEatlle < CodlIE e+ F1T}
Estimate B. ”V2ﬁ,§1u”/¢+1 = Ck{”fzf”k'f‘”f”} .

In order to show these estimates it suffices to prove Theorems 1 and 2.
We can easily see that Theorem 1 hold in this case, since the proofs of Theorem
1 and Proposition 2.1 do not require the speciality of C”.

In order to show Theorem 2, we need some formulas in Section 1. We
showed (1.1.1) in Proposition A.2.2, (1.3.1) by Propositions A.2.1 and A.7.2,
(1.3.2) in Proposition A.5.5, and (1.3.4) in Proposition A.7.3. Hence we can
show (2.5) and (2.6.2) as before. We need (1.3.1) to integrate by parts when
we prove (2.6.3). Therefore we can show (2.6), hence Theorem 2.

(3.2) and (3.3) are obtained by the same method as there and the conclusion
in Section 4 holds in this case.

The difference of ¢ in Proposition A.5.4 and in Theorem 3 consists of
terms without derivatives, hence Theorem 3 holds in this case.
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