Oshima, H.
Osaka J. Math.
21 (1984), 765-772

A REMARK ON JAMES NUMBERS OF
STIEFEL MANIFOLDS

Dedicated to Professor Nobuo Shimada on his 60th birthday

Hipeaki OSHIMA

(Received July 13, 1983)

1. Introduction

The purpose of this note is to supply a few relations between the unstable
and stable James numbers of Stiefel manifolds..

Let F be the field H of the quaternions or the field C of the complex num-
bers, and d the dimension of F over the field of the real numbers. Let G(F")
be the symplectic group Sp(n) or the unitary group U(n) according as F is H
or C. The stunted quasi-projective space Q, ,=0,/0,-, is a subspace of the
Stiefel manifold O, ,=G(F")/G(F"*) (see e.g. [8]). There exist the quotient
maps q,: Q,;—>0, -, and p,: O, ,—O0, ,;_,. Leti: Q,,—O0,, be the inclu-
sion map. Then i'ogq,=p,0i’ and ¢': Q,,—O,, is the identity map of the
(dn—1)-dimensional sphere S,

Applying the homotopy functor 7,,_,( ) and the stable homotopy functor
in—1( ) to g,-; and p,_,, we define the unstable James numbers (see [7])
Q{n, k} =Qp{n, k}, O{n, k} =0y {n, k} and the stable James numbers Q°{n, k}
=05 {n, k}, O'{n, k} =0% {n, k} by the following equations:

Qo-1*Tan-1(Qn.1) = O, B} au_i(S*7Y),
DPr-1» nd”_l(on.k) = O{n, K} msu_,(S"),

Q-3 7on1(On.p) = O° {1, B} m5u_r(S?"7Y),
Permins(On) = Ol Ry (S

whenever 1<k=mn. As easily seen (see e.g. [12]), we have

(L1)  Q'{n, B} |Qfn K}, O'{n, K 10{n, B}, Ofn, K} |Q1{m, R},
O*{n, B} | Q*{n, k+1}, Qfn, B} | Q{n, k+1} and Ofn, B} 10{n, k+1} ;

where a|b means that b is a multiple of a. In [12] we proved
(1.2) O {n, k} = O°{n, k} .

The stable James number O°{n, K} has been investigated by various au-
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thors, but the unstable ones Q{n, k}, O{n, k} have been done not so much
(see e.g. [7], [13], [15], [18]). By [2], [3], [4] we have

_ [2+@2n—1)!  ifniseven
(1.3) Oxtr, n} = {(Zn—l)! if m s odd;
O;{n,n} = Oc{n, n—1} = (n—1)!.

Our first result is an easy consequence of the results of Mukai [10], [11].

Theorem 1. (i) Og{n, n}=05{n, n}=a-Qyin, n}, where a=1 if n is

even, a=1 or 1/2 if n is odd.
1§.ii) Oc{n, n} =0% {n, n} =Q.{n, n} =0, {n, n—1} = Ot {n, n—1} = Q. {n,
n—1}.

Let E=: n,( )—=i( ) be the stabilization homomorphism. Since O,
and O, , are (d(n—k+1)—2)-connected (see e.g. [8]), it follows from Freudenthal
suspension theorem that E=: z;,_,(Q,.s) = 7in-1(0ss) and E=: 74,_,(0, ) —>
7in-1(0, ) are surjective whenever n=2k—1. Thus Q{n, K} =Q"{n, K} and
Ofin, K} =0{n, k} if n=2k—1. As seen in [13], if n<<2k—1, then O{n, k} +
O’ {n, k} in general.

We consider the case n=2k—2. Since (Oy_z4 Os-24) is (2dk—d—3)-
connected (see e.g. [8]) and d(2k—2)—1=<2dk—d—3, it tollows that 2} : mses-2-1
(Oz-2,4) = maczk-2)-1(03e-2,) 1s surjective, so that

(1.4) O{2k—2, R} = Q{2k—2,k} .
Our second result is
Theorem 2. (iii) If F=H or F=C and k is odd, then O{2k—2, k} =0°
{2k—2, k}.
(iv) If F=C and kis even, then O {2k—2, k} |O*{2k—2, k} =1 or 2.
ReMARK 1. In [13] we proved (iv) by a different method from the one

in this note, and showed that O, {2k—2, k} Oz {2k—2, k} is 1 if k=2, 6 and
it is 2 if k=4, 8.

RemMARK 2. In [13] we did not determine O,{8, 5}. Now (iii) says that
O, 1{8, 5} =0%1{8, 5} which was calculated in [12].

ReMaRk 3. I know of no case where Oy {n, k} =03 {n, k}.

2. Proof of Theorem 1

The assertions are trivial when n=1. So we assume that #=2.

Let E denote both the reduced suspension functor in the category of point-
ed spaces and the suspension homomorphism in homotopy groups. For a
continuous map f: $"—X, we denote the order of f in z,(X) and #;(X) by #f
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and $E* f, respectively.
As well known (see e.g. [8]), we have a CW-decompos1t10n

Q" = Qn,n =Uettye® 1y - Uetr!
such that Q,, is a subcomplex of Q, provided m<n, so
(2.1) Qn,l; = eOU d(n—k+1)-1 U--U e,

Let T,_,: (B, 842 — (Q,, Q,-;) be a characteristic map of the top cell,
and let T,_,: S*? — Q,_, be the restriction of T;_; to S % the boundary of
the disk B, Let also Ty i s1=¢,4°Th-1: (B, S 2%) - (Qp s Ou-1.4-1)
and T,y o 1=qu1°Tyo1: S = Oy pre

Applying z}( ) to the cofibre sequence

T,
dn—2 L 8-1Lk-1 Gr-1 dn—1
Sn -)inkl")an '>S” ’

we obtain the exact sequence

7[,1,, 1(Q,, Iz) qk—l—) 7:,1,, (Sd" 1) Mi ”;n—l(EQn—l,k—l) .

It follows from the cell structure of Q,_;;-; that zj,_1(EQ,-,;-;) is finite, so
$E-T,_,,-, is finite. Hence the exactness implies that

(22) O'{n, i} =4E~T,_ ..

Next we see the unstable case. Consider the homotopy exact sequence
of the pair (Q, 4, Qp-1,4-1):

”dn—l(Qn,k) ﬁ ”dn—l(Qn,iu Qn—l,k-l) _6) ”dn—z(Qn—x,k-l) .

By definition 8(T%-1 4-1)=Tp-14-1- Let ¢": (Qpps Qu-14-1) = (S, %) be the
collapsing map. Then ¢4(T7-. +—1) generates m,,_,(S*"). If n>k or F=H,
then, by Blakers-Massey [1], ¢&: Zsn-1(Qnts Qn-1.6-1) = Zan-1(S*?) is an iso-
morphism, so T;_; 1 generates zsu_1(Qups Qu-1,6-1)- Since giojx=g-r, it
follows that the order of T,_,,_, is equal to the order of the cokernel of g;_j»:
Zan-1(Onk) = Zan-1(S?"?) provided n>k or F=H. Hence the following lemma
implies that

(2.3) Ofin, k} = 8T, 4y tfn>kor F=H.
Lemma (2.4). The order of T,_, ;-, is finite if n>>k or F=H.

Since T,-14-1=Gu-4°Tn-1 and since T,_; 4-1=qu-4-1°Tp_1,n—z if #>k, it is
sufficient for proving (2.4) to show that #T,_, is finite if F=H, and 47T,_, .-,
is finite if F=C.
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The rest of this section is devoted to the proofs of (2.4) and Theorem 1.

We consider the case F=H. ' In [11] Mukai proved that #7',_,=#E~T,_,
=2+(2n—1)! if n is even; $E~T,_,=(2n—1)! and 4T, ,/2n—1)!=1or 2 ifn
is odd. Hence we obtain (2.4) and (i) follows from (1.1), (1.2), (1.3), (2.2),
(2.3).

We see the case F=C. Let P, be the (n—1)-dimensional complex pro-
jective space, and let P; be the union of P, and a base point. We then have
0,=EP;) and Q,,,=EP, (see e.g. [8]). Note that there is a homotopy
equivalence E(P;)=EP,\V S* which makes the following triangle commutative
up to homotopy:

Q,=E(P}) = EP,VS'

N\ P
Qn,n—l = EPn

where p is the projection. Hence ¢, has a left homotopy inverse, so

(2.5) qis* 7on-1(0n) = 725-1(Qy n-1) 5 surjective.

Let SU(n) be the special unitary group and let A: O, ,_,=U(#n)/(U(1)x1,-,)
— SU(n) be the homeomorphism defined by

/14|
1
WA mod U(1)x1,_,) =4
1
Note that hoi’: EP,=Q, ,_,—SU(n) is the inclusion map defined in [20].

Hence in the following commutative diagram Aot} is surjective by Proposition

4.2 of [16].

Tinr(Q0) 2 mpaes(Uln))
g+d A =|pp by
”Zn—l(Qn,n—l) - ”2n—1(on,n—l) ; ”Zn—l(SU(n)) M

It follows that the lower #} is surjective and so is the upper 7% from (2.5). Thus
we have

(2.6) Qcin, n} = Oc{m, n} .

On the other hand we can take T,_, ,,=EY,_; where 7,_,: S#*3—P,_, is the
canonical S'-fibration. It is well known (see e.g. [10]) that §Ev, ,=#E~v,_,
=(n—1)!. Thus we have (2.4) and

(2.7) Oci{n, n—1} = Q¢ {n, n—1} = (n—1)!
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by (2.2), (2.3). Therefore (ii) follows from (1.1), (1.2), (1.3), (2.6), (2.7). This
completes the proofs of (2.4) and Theorem 1.

3. EHP-sequence

Let X, Y be r-connected CW-complexes which have exactly one vertex *,
and let f: X—Y be a continuous map with f(*)=#. We then have a diagram
consisting of the exact EHP-sequences for i<3r+1 (see e.g. [9], [19]):

E H P E
7(X) = 7 (EX) = 7 (E(X A X)) = m;(X) = =+
Vg WEDeg WEGAD p Vfx g
71':'( Y) - 7z,~+1(EY) g ”i-H(E(Y/\ Y)) - 71'.'—1( Y) > e
In the next section we shall use

Lemma (3.1). The above diagram commutes.

By using Theorem 5.3 of [6] and following faithfully the construction of
the EHP-sequence, we can prove (3.1). We omit the details.

4. Proof of Theorem 2

For an abelian group 4, A/Tor denctes the quotient group of A by its
torsion subgroup, and z: A— A[Tor denotes the quotient homomorphism.
Let Z be the infinite cyclic group.

By (2.1) we have

(4.1) won1(Q, )| Tor = Z .

It follows that Q°{m, k} &0 from (2.2) and that Q{n, k} 0 from (2.3), (2.6),
(1.3). Thus we have

Lemma (4.2). #zoE”=40: n;,-1(0,.1) = 7in-1(0y.:)/ Tor.

From now on we denote Quss by Q. By (L.1), (12), (1.4), (4.1) and
(4.2), Theorem 2 is equivalent to

Proposition (4.3). Let n=2k—2. Then the image of woE~: m4,-,(Q) —
7in-1(Q)/Tor is a*ni,—_1(Q)/Tor, where a=1if F=H or k is odd, a=1 or 2 if F=C
and k is even.

Proof. We consider the case F=C only, because we can prove the asser-
tion for the case F=H by a similar but slightly easier method to the following

one.
If k=2, then the assertion is trivial by Theorem 1. So we assume that
k=3. By (2.1) we have

Q —_ OUezk-.'sUezk—-lU ee Ue4lz—5 .
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and so
(4.4) Q/\Q — eOU e4k—GU e4k-4U e4k-4U U ok-10
Let 7: S*3="Ue*3=0Q,_,,— O be the inclusion. Since Q is (2k—4)-con-
nected, it follows that
(4.5) E=: ny-o(E*Q) — mir—s(Q) is an isomorphism, and
(4.6) E: 74-(E*Q) — my-(E?Q) is surjective.
By (3.1) we have the commutative diagram:
H
”‘k—](E3S2k—3) — 7’4k—l(E5(S2k_3/\ SZk-S)) ~ 7t¢k—l(S4k-l) ~ Z

B, UEGAD)s
manEQ) 7 mui(EAQAQ) 3 7u-sFQ) 3 u-AFQ).

By (4.4) and Blakers-Massey [1], 7 (E5(Q AQ), S* ) == 7z, (E(Q AQ), S*1)
=0, so the above (E5(iAi))y is an isomorphism. As well known (see e.g.
Proposition 2.7 of [17]), the upper H is not zero, hence so is the lower H.
Thus the image of P is finite, so that, by (4.6), E induces an isomorphism

(4.7) E: n, (E?Q)|Tor = ny_y(E*Q)|Tor.
Consider the EHP-sequence:

P E H
- E(QNQ)) = 7u-(EQ) = mu-o(E*Q) = mu-f( E(QAQ)) .

By (4.4) and Blakers-Massey [1], z;-3(E*(QAQ), S* %)==z, ,(E*(QAQ),
S§*-3) =0, so E*(i A7) induces a surjection (Z,2<) 7,,_5(S* %) >— 74 _(EXQ A Q))
and an isomorphism (Z==) 7,,_3(S*3) = 7, -(E(Q A Q)). Thus it follows that

(4.8) wa-A EXQ A Q)) is finite, and
(4.9) Za-oEXONQ) =Z.

The kernel of E is finite by (4.8). The cokernel of E is torsion free by (4.9),
while it is finite by (4.1), (4.2), (4.5), (4.7), hence it is zero, so E is surjective.
Thus E induces an isomorphism

(4.10) E: ny- (EQ)|Tor = ryy(E*Q)| Tor.

By (3.1) we have the following commutative diagram:

Z, {7741:—5}
z I
7’4I¢—5(S2k_3) - 7’4k—4(S2k—2) g 7’4/:-4(3“—5) - 7T4k~6(S2k_3)
Vix E V(Ed)4 H V(E®@E A1) P Vix
7’4k-5(Q) - 7’4k—4(EQ) - ”4k—4(E(Q/\Q)) - 7’4/:—6(Q) .
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Here 7,: S*— S? is the Hopf map and 5,=E™ %,: S*'—-S8" for m=2. By
(44) and Blakers—Massey [1], z,-(E(QAQ), S*°)=0. Thus (E(fA7))y is
surjective, S0 7z, (E(QAQ))=Z, or 0. Hence the cokernel of the lower E
is Z,or 0. Since =, (EQ)/Tor=Z by (4.1), (4.5), (4.7), (4.10), it follows that
the image of the homomorphism E: r,,_5(Q)/Tor— r,_(EQ)/Tor induced by
E is a-my_(EQ)/Tor, where a=1 or 2. Thus the assertion of (4.3) for & even
follows from (4.5), (4.7) and (4.10). We can prove (4.3) for k£ odd by showing
that z,,_(E(OAQ))is Z, if kis even and 0 if 2 is odd. But we will take a different
method which can be applied to the case F=H.

As well known (see e.g. [19]), P(9.-5)=[ls-3 72-3), the Whitehead product,
where I,_; is the identity map of S%*-3. It follows from [5] that [/,_3, 72-3]
=0 if and only if & is odd. We show that E: z,,_5(Q)/Tor— n,_(EQ)/Tor
is surjective if k2 is odd. Then the assertion of (4.3) for & odd follows from
(4.5), (4.7) and (4.10).

Let % be odd. Then there is an element x in 7,,_,(S*"%) such that H(x)
=nu-s by exactness. Hence H((E?)y(x))=E( A7)x(H(x))=E( N\2)x(74-5) which
generates 7y (E(OAQ)). Choose y in =,_,(EQ) such that z(y) generates
the infinite cyclic group =, (EQ)/Tor. If H(y)=0, then there exists y’ in
7u-s(Q) such that E(y’)=y, so E(z(y'))=n=(y) and E is surjective. If H(y)=*0,
then 7z,,— (E(Q A Q))==Z, which is generated by H(y). Hence H(y)=H((E%)4(x))
and there exists y” in 7z,,_5(Q) such that E(y”’)=y—(Ei)4(x). Since z,_,(S*?)
is finite as seen in [14], it follows that (E%),(x) has a finite order and E(xz(y"))
=n(y—(Ei)x(x))=n(y), so that E is surjective. This completes the proofs of
(4.3) and hence of Theorem 2.
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