ON A WEAKLY UNKNOTTED 2-SPHERE IN A SIMPLY-CONNECTED 4-MANIFOLD

Takao MATUMOTO
Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

(Received May 27, 1983)

Introduction

The purpose of this note is to present the following criterion for unknotting in a weak sense which gives us a simple geometric proof of Theorem of Kawauchi stated below.

Theorem 1. Let M be a smooth 1-connected 4-manifold and S^{2} a smoothly embedded 2-sphere in M. Suppose that $\pi_{1}\left(M-S^{2}\right) \simeq Z$ and $S^{2} \simeq 0$ in M. Then, S^{2} is unknotted in $M \#\left(\# S^{2} \times S^{2}\right)$ for some $n \geqq 0$.

Here S^{2} is called unknotted if there is a smoothly embedded D^{3} which is bounded by S^{2}. As a corollary we shall give a proof of Theorem of Kawauchi. His original proof uses the partial Poincaré duality associated to infinite cyclic covering (see [3], [4] and Suzuki [9, Th. 8.6]). Other proofs are founded in [1], [8] and [10].

Corollary (Theorem of Kawauchi). Let S^{2} be a smoothly embedded 2sphere in the 4-sphere S^{4}. Suppose that $\pi_{1}\left(S^{4}-S^{2}\right) \cong Z$. Then, it is algebraically unknotted, i.e. $S^{4}-S^{2} \simeq S^{1}$.

Is a smooth 2-knot with $\pi_{1}\left(S^{4}-S^{2}\right) \cong Z$ unknotted? This is a unsolved question. We stabilize the problem by making connected sum of the ambient manifold with $\#\left(S^{2} \times S^{2}\right)$ and another stabilization may be done by making connected sum of the embedded manifold S^{2} with trivially embedded \# (S^{1} $\times S^{1}$). There is a result due to [2].

Theorem 2 (Hosokawa-Kawauchi [2]). Under the same assumption of Theorem 1, S^{2} surgered by attaching n trivially embedded 1-handles is unknotted in M for some $n \geqq 0$.

We refer the reader to [ibid] for the precise meaning of trivial ($=$ trivially embedded) 1-handles and unknottedness of surfaces. We shall give also a
proof of Theorem of Kawauchi using this theorem in the last section.

1. Proof of Theorem 1

Since $S^{2} \simeq 0$ in M, we have $S^{2} \times D^{2} \subset M$. And $* \times \partial D^{2} \subset M-S^{2}$ gives a generator of $\pi_{1}\left(M-S^{2}\right) \cong Z$. This implies that there exists a map $f: M-S^{2}$ $\times D^{2} \rightarrow S^{1}$ which is an extension of the projection $S^{2} \times \partial D^{2} \rightarrow S^{1}$. We make f transversely regular at a point of S^{1} and get a connected smooth 3-manifold $N \subset M$ such that $\partial N=S^{2}$ in M.

In case M has a spin structure, we can restrict the spin structure of M on N and extend it over $N \cup D^{3}$, because the spin structure is determined by a framing of the stable tangent bundle over the 2-skelton (cf. Milnor [7]). Since the 3-dimensional spin cobordism group vanishes [ibid], we have a smooth spin cobordism ($W^{4} ; N^{3}, D^{3}$) relative to the boundary. We may assume that W^{4} is the union of the elementary cobordisms consisting of one of 1 -handles, 2-handles and 3-handles in this order. The elementary cobordism $N \times I \cup$ (1-handle) is easily embedded in M and the spin structure on the other boundary is compatible with that of M. By an inductive argument on the number of 1-handles, the level manifold N_{1} just above all the 1 -handles is embedded in M and $\partial N_{1}=S^{2}$. Remark that the spin structure of $N_{1} \subset W$ is compatible with that of $N_{1} \subset M$. The elementary cobordism $N_{1} \times I \cup$ (2-handle) cannot be embedded in M but can be embedded in $M \#\left(S^{2} \times S^{2}\right)$. In fact, we take $S^{1} \subset N_{1}$ which is the boundary of the axis of the 2-handle. Then, $S^{1} \simeq 0$ in $M-S^{2}$, because S^{1} does not link with S^{2} and $\pi_{1}\left(M-S^{2}\right) \cong Z$. The framing of $S^{1} \times D^{3}$ is uniquely determined by the spin structure of N_{1} and the surgery along this framed $S^{1} \times D^{3}$ changes $M-S^{2}$ into $\left(M-S^{2}\right) \#\left(S^{2} \times S^{2}\right)$ because of the choice of the spin structure. Of course, the spin structure on the other boundary is compatible with that of $M \sharp\left(S^{2} \times S^{2}\right)$. The level manifold N_{2} just above all the 2-handles is embedded in $M \#\left(\# S^{2} \times S^{2}\right)$ and $\partial N_{2}=S^{2}$, where k is equal to the number of the 2-handles of (W, N). We note that there is a diffeomorphism $h:\left(\# S^{1} \times S^{2}-D^{3}, \partial\right) \rightarrow\left(N_{2}, \partial\right)$, where l is the number of 3-handles of (W, N) i.e. 1 -handles of $\left(W, D^{3}\right)$. Take the component S^{1} of $S^{1} \times S^{2}$ and consider $h\left(S^{1}\right) \subset N_{2} \subset M \#\left(\# S_{k}^{2} \times S^{2}\right)$. As before, $h\left(S^{1}\right) \simeq 0$ in $M \#\left(\# S^{2} \times S^{2}\right)-S^{2}$. The spin structure of N_{2} induces a framing of the tubular neighborhood of $h\left(S^{1}\right)$ so that the surgery along $h\left(S^{1}\right)$ changes $M \#\left(\# S^{2}\right.$ $\left.\times S^{2}\right)-S^{2}$ into $\left(M \#\left(\underset{k}{\#} S^{2} \times S^{2}\right)-S^{2}\right) \# S^{2} \times S^{2}$. Then $N_{2}^{\prime} \cong\left(\#_{i-1} S^{1} \times S^{2}-D^{3}\right)$ is easily embedded in $M \# \underset{k+1}{\#}\left(S^{2} \times S^{2}\right)$ such that $\partial N_{2}^{\prime}=S^{2}$. By induction we get a smooth submanifold N_{3} of $M \#\left(\# \#_{k+l} S^{2} \times S^{2}\right)$ such that $\partial N_{3}=S^{2}$ and N_{3} is
diffeomorphic to D^{3}. This means that S^{2} is unknotted in $M \#\left(\# S^{2} \times S^{2}\right)$.
In the other case that $w_{2}(M) \neq 0$, we have only to remark that the surgery along the trivial circle with any framing gives us $M \#\left(S^{2} \times S^{2}\right)$. Since the closed 3 -manifold $N \cup D^{3}$ is orientable and the tangent bundle is trivial, there is a spin structure on $N \cup D^{3}$ and any choice of the spin structure on $N \cup D^{3}$ leads to the same proof as above.
q.e.d.

2. Proof of Corollary

Let \widetilde{E} be the universal covering space of $E=S^{4}-S^{2}$. Then, $E \#\left(\# S^{2}\right.$ $\left.\times S^{2}\right)$ is diffeomorphic to $S^{1} \times R^{3} \#\left(\# S^{2} \times S^{2}\right)$ by Theorem 1 . Hence, we have $H_{*}(\widetilde{E} ; Z)=0$ for $* \geqq 3$ and there is an isomorphism as $Z[Z]$-modules, $\alpha: H_{2}(\widetilde{E} ; Z) \oplus(Z[Z])^{2 n} \rightarrow(Z[Z])^{2 n}$, where $Z[Z]$ is the group ring of Z over Z. (From this fact the argument in the last paragraph of [5] completes the proof. We present here a little modified one.) Let $\beta=p \circ \alpha^{-1}$ where $p: H(\widetilde{E} ; Z) \oplus$ $(Z[Z])^{2 n} \rightarrow(Z[Z])^{2 n}$ is the projection onto the 2 nd factor. Since β is a surjection onto a free $Z[Z]$-module, there exists a $Z[Z]$-module homomorphism γ such that $\beta \circ \gamma=\mathrm{id}$. But, since $Z[Z]$ can be embedded in a field $Q(t)$, the right inverse matrix γ over $Q(t)$ is also a left inverse of β. In particular, β is an injection and so is $p=\beta \circ \alpha$. Hence, $H_{2}(\widetilde{E} ; Z)=0$, which implies that \widetilde{E} is contractible and E has the homotopy type of S^{1}.

3. Further discussions

3.1. In Theorem $1, \pi_{1}\left(M-S^{2}\right) \cong Z$ implies $S^{2} \simeq 0$ in M if M is a closed manifold. In fact, $\left[f\left(S^{2}\right)\right] \cap\left[S^{2}\right]=0$ for any immersion $f: S^{2} \rightarrow M$, because we can assume that $f\left(S^{2}\right)$ and S^{2} intersect transversally and hence the algebraic intersection number times generator of $\pi_{1}\left(M-S^{2}\right)=H_{1}\left(M-S^{2}\right)$ is zero. By the fact that $\pi_{2}(M)=H_{2}(M)$ and the Poincare duality this means $S^{2} \simeq 0$ in M.
3.2. Theorem of Kawauchi is valid for the locally flat topological 2-knot S^{2} if it has a normal micro-bundle. In this case $S^{2} \times D^{2}$ is embedded in S^{4} so that the interior of $\bar{E}=S^{4}-S^{2} \times \dot{D}^{2}$ is homeomorphic to E. Then, Kawauchi's proof can be applied to \bar{E} to get $E \simeq S^{1}$. Our method is also applicable. In fact, we consider an embedding of S^{1} parallel to ∂D^{2} in Int \bar{E}. Since $H^{i}\left(\bar{E}-S^{1}, \partial \bar{E}\right)=H^{i}\left(S^{1} \times S^{2} \times[0,+\infty), S^{1} \times S^{2} \times 0\right)=0$ for any i, the non-compact 4-manifold $\bar{E}-S^{1}$ admits a smooth structure relative to the boundary $\partial \bar{E}$ (see [6, V. 1.4.1]). So we get a smooth embedding of S^{2} into a 1 -connected smooth 4-manifold M which is homeomorphic to $S^{4}-S^{1}$ such that $\pi_{1}\left(M-S^{2}\right) \cong Z$ and $S^{2} \simeq 0$ in M^{4}. By Theorem $1 S^{2}$ is unknotted in $M \#\left(\# S^{2} \times S^{2}\right)$. Then $E \#\left(\# S^{2} \times S^{2}\right)$ is homeomorphic to $S^{1} \times R^{3} \#\left(\# S^{2} \times S^{2}\right)$. This implies $E \simeq S^{1}$ by the argument of $\S 2$.
3.3. Proof of Corollary by using Theorem 2: Let $T(n)$ be S^{2} surgered by attaching n trivially embedded 1-handles in S^{4}. Then by Theorem 2 we can assume that $T(n)$ is unknotted. By 3.3 of [5], $S^{4}-T(n)$ has the homotopy type of $S^{1} \vee\left({ }_{2 n} S^{2}\right)$. On the other hand we see in the same way that $S^{4}-T(n)$ $\simeq E \vee\left({ }_{2 n} S^{2}\right)$. Now the same argument as in $\S 2$ leads to the conclusion of Corollary.

References

[1] P. Hirshhorn and J. Ratcliff: A simple proof of the algebraic unknotting of spheres in codimension two, Amer. J. Math. 102 (1980), 489-491.
[2] F. Hosokawa and A. Kawauchi: Proposals for unknotted surfaces in four-spaces, Osaka J. Math. 16 (1979), 233-248.
[3] A. Kawauchi: On partial Poincaré duality and higher dimensional knots with $\pi_{1}=Z$, Master Thesis, Kobe Univ., 1974
[4] -: A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math. 26 (1975), 437-458.
[5] A. Kawauchi and T. Matumoto: An estimate of infinite cyclic coverings and knot theory, Pacific J. Math. 90 (1980), 99-103.
[6] R. Kirby and L. Siebenmann: Foundational essays on topological manifolds, smoothings, and triangulations, Ann. Math. Studies 88 (1977).
[7] J. Milnor: Spin structures on manifolds, Enseign. Math. 9 (1963), 198-203.
[8] D. Sumners: On asphericity of knots of S^{2} in S^{4}, Preprint.
[9] S. Suzuki: Knotting problems of 2-spheres in 4-space, Math. Sem. Notes Kobe Univ. 4 (1976), 241-371.
[10] G. Swarup: An unknotting criterior, J. Pure Appl. Algebra 6 (1975), 291-296.

Department of Mathematics
Faculty of Science
Hiroshima University
Hiroshima 730, Japan

