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ON THE SET OF REGULAR BOUNDARY POINTS
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Introduction

Let X be a P-harmonic space with a countable base in the sense of the
axiomatics of Constantinescu and Cornea [3], U an open set of X and U,,
the set of regular boundary points of U. If X is a connected Brelot space,
it is known that U,,, is dense on 8U (see e.g. Hervé [4], Ikegami [6]). This
is not valid for more general hamonic spaces. We prove two results related
to this question. Assuming that the space has a base of regular sets, we ob-

tain a necessary condition (by means of absorbent sets) for the case that U,,,
is not dense on 9U.

1. Preliminaries

Let X be a $-harmonic space with a countable base in the sense of Con-
stantinescu and Cornea [3] and U an open set of X. We denote the set of
regular (resp. irregular) points of 8U by U,,, (resp. U,). If U is relatively
compact and M coU with p?(M)=0 for all x€ U, M is called negligible. Since
X has a countable base, if M is negligible, HY (x)=pY(M)=0 for all x€U
(cf. [2, Satz 4.1.7]).

RemaArk 1.1. Let y€8U. A strictly positive hyperharmonic function u
defined on the intersection of U and an open neighbourhood V of y is called
a barrier at y if

., = 0.
Then yeU,,, if and only if there exists a barrier at y. This follows from [3,
Proposition 2.4.7], [3, Theorem 6.3.3] and [3, Proposition 7.2.2]. Thus yeU,,,
implies that for every open subset U’ of U with yedU’, we have ye U/,,.

A relatively compact open set U is called a Keldys set, if U,, is negligible
[8, Proposition 2].

The following result was proved by Lukes and Netuka [9, Theorem 3]:

Let U be an open set of X. If K is an arbitrary compact set of U, there is a
Keldys$ set V with KcVcVcU.
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Lemma 1.2. Let U be an open set of X and MCoU with H, =0. Let
U’ be an open subset of U. Then HY, . =0.

Proof. Cf. [3, Proposition 2.4.4].
In the sequel we shall need the following two well-known minimum prin-

ciples.

Theorem 1.3. Let U be relatively compact. Let M C U be a negligible
set. For every lower bounded hyperharmonic function u on U, if

lim inf #(x) >0

for all z€0U\M, then u>0.

Proof. This has been proved in [2, Satz 4.4.6]. The same proof carries
over into the present situation.

Let U be relatively compact and & the set of finite, continuous functions
on U whose restrictions to U are hyperharmonic. A point x€ U is called ex-
tremal if €, is the only measure x on U such that

S udp <u(x)

for all ue Fy,. Then any extremal point is a regular point of U (cf. [2, Satz
4.4.1], [3, Exercise 2.4.7]).

Theorem 1.4. Let U be relatively compact. Any ucF, is positive if it
is positive at any extremal point.

Proof. The proof is a modification of [1, Satz 33]. We have to use [3,

Lemma 2, p. 26].

In the following lemma we denote by S(p) the smallest closed set outside
which a potential p is harmonic. Let G be a relatively compact open set. The
set of potentials p on X, for which ¢+S(p)CG, is denoted by Py; Pc+0 by
[3, Proposition 2.3.1].

Lemma 1.5. Let W and G be open relatively compact sets of X with GC
GCW. For every potential p< P; we denote

A, = FEW| R} (2) = p(2)} -
Then there exists a pE P such that GCW\A,.

Proof. Let p, be a finite strict potential on X. Then WcC {zeX|
Iég\w(z)< po(2)} by [3, Proposition 7.2.2]. Let p=]@f_0; p is a potential and
pEP;. Since R\ <RV, for every x€G
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RV (x) < REV (x) < polx) = p(x) ,
and x& W\4,.

2. On the set of regular points

Let U be an open set of X. We shall investigate the conditions under
which the set 80U\ U,,,

g May be nonempty.

Theorem 2.1. Let U be a Keldys set. Every x9U\U,,, has an open
neighbourhood V with 9U NV CoU\U,,, such that UNV is a nontrivial ab-
sorbent set of V. Moreover, U\U,,, is an absorbent set of X\U,,,.

Proof. Let V be a Keldys set, ¥ €x such that 83U NV caU\U,,. Ob-
viously we can assume that 7 is connected (Lemma 1.2).

We have V\U=@ by the assumption x&dU. Let G be an open set
with GEGCV\U" We consider the set of potentials P (see p. 276).

First, let there exist a G, G V' \U, and a pE P, with

(2.1) (p—RA)| TUNV=0.

The function u: =p—ﬁ’f\" is positive and harmonic on U N ¥V, continuous on
oU NV and bounded on UNV. Also, # does not vanish identically on UNV
and has the limit zero at every regular boundary point of V. Further,
ngr‘::’nacvnm =0, H’t‘lvn,.:’naww) =0,

by Lemma 1.2. Thus the set U, UV, is negligible on (U NV). Since
aU NV coU\U,,,, everywhere else on d(UNV), u has the limit zero. Then
Theorem 1.3 gives #=0 on U NV, a contradiction.

Thus, for every G such that GCV\U, and every pE P, the function
p—RXY equals zero on UN V.

Let yeV\U be arbitrary and G an open set with yeGcGcV\U.
Then by Lemma 1.5 there is a potential p, such that GCV\4,={z€V |
RYV<p,(2)}. Thus

n 4,,=0nv
yev\iIr
is an absorbent set of V.

Hence for every x& dU\U,,, there is an open neighbourhood V c X\U,,
such that UNV is an absorbent set of V. By the sheaf property of hyperhar-
monic functions, the function v which is 0 on U\U,,, and o on (X\U,,\U
is hyperharmonic on X\U,,,. Thus U\U,, is an absorbent set of X\U,,,.

This still holds if 8U\U,,,=0.
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ReEMARK 2.2. If 3U \_U:g=(2), then U \ZT“, is a union of some components
of X\U,.,-

Theorem 2.3. Let X have a base of regular sets and U an open set of X.
Then all the assertions of Theorem 2.1 are valid.

Proof. Let x€dU\U,,, be arbitrary and the connected set V in the
proof of Theorem 2.1 be regular [2, Satz 4.3.5].

We assume that there exist the set G and the potential p such that (2.1)
holds. Then, the function u has the same properties as previously. More-
over, u is continuous on UNV and equals 0 at every point of 8V. Since
aU NV cU,, by the barrier criterion also U NV (U NV),,. Thus the set
of regular, and hence of extremal boundary points is contained in 0F. From
Theorem 1.4 we obtain u=0 on U NV, a contradiction.

Everything else needed for the conclusion may be proved exactly as for

Theorem 2.1.
The following result was obtained for Brelot spaces (cf. [4, Théoréme

8.2], [6, Theorem 7]).
Corollary 2.4. Let X be elliptic and U an open set of X. Then 3U\U,,

Proof. X has a base of regular sets.

ExampLE 2.5. It is known that for the heat equation aU\U,,, may be
nonempty. Let X=R? and

U =(0,1)x(0, 1).

Then U,,,=([0, 1]x {0})U ({0} x[0, 1)U ({1} x[0, 1]), and U\T,,, is ab-
sorbent on X\U,,,, which may be seen directly. The same observation fol-
lows immediately by Theorem 2.3, and since U is a Keldys set [7, p. 1501],
also by Theorem 2.1.

ExampLE 2.6. Let X be the space of [3, Example 3.2.13] and
U= {(x9, 00X |0<s’+y*<1}.

Then X\U is thin at (0, 0, 0), and {(0, 0, 0)} =aU=U,,. Now U=U\U,, is
an absorbent set of X=X\U,,,, which can be seen directly and by Theorem 2.3.

RemaRk 2.7. If U is a Keldys set, then for every x& U, supp(p?)C U,,,.
Denoting

T: = U supp(uz),
rer
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TcU,, As IT,!,C T always, T=U,,,. It was proved in [5, Lemma 1.4] that

U\T is an absorbent set of X\T. Writing T=U,,,, this gives the assertion of
Theorem 2.1. However, Theorem 2.3 cannot be obtained in this way, since

T=U,,, does not always hold.
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