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ASYMPTOTIC SUFFICIENCY I I : TRUNCATED CASES
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(Received October 4, 1982)

1. Introduction. Asymptotic sufficiency of maximum likelihood (m.l.)
estimator in regular cases has been studied by many authors (see Wald [17],
LeCam [2], Pfanzagl [12], Michel [8], Suzuki [14], [15], and so on).

In [6], Matsuda showed that for k&N={l> 2, •••} a statistic Tnk=(Tn,
G(

M

2)(#M, Tn\ — , GΪ\zH9 Tn)) is asymptotically sufficient up to order 0{n~k/2).
Here {Tn} is a sequence of asymptotic m.l. estimators and G(

n

m)(zn> θ) denotes
the m-th derivative relative to θ of the log-likelihood function. In the case
k=l, Tnl means TΛ.

The purpose of this paper is to investigate asymptotic sufficiency of a
statistic constructed by m.l. estimators in the following cases. Let xly •••, xn

be independent and identically distributed random variables with common
density p(x—θ), — oo<#, #<oo ) where θ is an unknown translation parameter
and p(x) is uniformly continuous and positive only on the interval (0, oo). We
shall consider here two cases.

Case(i) : p(x)~ax as x-> + 0 , where α > 0 .
Case (ii): p(x)~axι+β as #-> + 0 , where a, β>0.
It is assumed that in Case ( i ) Fisher's information number is infinite. Let

θn denote m.l. estimator of θ for the sample size n. In this case, Takeuchi

[16] and Woodroofe [20] proved the asymptotic normality of A/—- an log n φn—θ)

and the speed of convergence to the standard normal distribution was given
by Matsuda [4]. Moreover, it was shown by. Takeuchi [16] and Weiss and
Wolfowitz [19] that θn is an asymptotically efficient estimator of θ.

In Case (ii), it is well known that if Fisher's information number / is finite,
then the distribution of \/jn φn—θ) converges weakly to the standard normal
distribution. The order of convergence to normality is o(w~v/2) for every v<β
if β^l and O(rΓ1/2) if β>ί (see Matsuda [3] and cf. also Pfanzagl [11]).

In both cases, Mita [9] showed that m.l. estimator is asymptotically suffi-
cient up to order o(l). For n9 k^N define Snk=φnt G<2)(*n, Sn)y ..., G£\zΛ, 6Λ%
where Snl means Sn. We shall show that in Case ( i ) the statistic Snk is
asymptotically sufficient up to order o((log n)~v) for every v<(k+l)l(k+3)
and that in Case (ii) θnk is asymptotically sufficient up to order o(n~v) for every
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y < o / V ^ \\ i f β^Kk+3) a n d ί s asymptotically sufficient up to order O(n~k/2)Z(k+β+ό)
if β>k(k+3).

In Section 2 we introduce the results of von Bahr and Esseen [1] and Nag-
aev [10] which are useful to estimate probabilities of deviations for sums of
independent and identically distributed random variables with a restricted
moment. Section 3 is devoted to the problem of asymptotic sufficiency in
Case ( i) and Section 4 to the one in Case (ii).

2. Probabilities of deviations. Let Yu •••, Yn be a sequence of random
m

variables (r.v.'s) and put Sm=^ Yi> ί^tn^n. Using the elementary inequality

E\SJr^±E\Yi\
r,

* = 1

it follows from Markov's inequality that for x>0

(2.1) P{|5J^}^-Σ£|y,.r,
ί = l

If the r.v.'s satisfy the relations

(2.2) E(Ym+1\Sm) = 0 a.s.

then von Bahr and Esseen [1] showed that

(2.3) ff
ί = l

The condition (2.2) is fulfilled if the r.v.'s are independent and have zero means.
In this case, (2.3) together with Markov's inequality implies the following
inequality

(2.4) P{\Su\^x}^2χ-rf]E\Yi\
r

y l^r^2,
1 = 1

for x>0.

Let Yly •••, Yn be a sequence of identically distributed independent r.v.'s
and E(Yi)=0, E(Y?)^\. In [10], Nagaev proved the following theorem (cf.
Lemma in Michel [8]).

Theorem 2.1. //ξ r=E\Y i\
r<oo y r>2, then

(2.5) P{ |S β I >*} <*&!«-'

nr/2-l

n max [log ̂ j , 0] ,

where Kr=l+(r-\-l)r+2exρ(—r) and c is an absolute constant depending only on r.

REMARK 1. It is obvious that Theorem 2.1 remains valid even if
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As a consequence of Theorem 2.1 we obtain a result on probabilities of
moderate deviations: If ? r<oo, r>2, then there is a positive constant c such
that

P{\Sn\ >c\/n log n} = φr<'" 2> / 2).

It is remarked that Theorem 4 in Michel [7] implies the above result under
the same condition and Lemma 1 in Pfanzagl [13] gives a uniform version of
this result when

3. Asymptotic sufficiency: Case ( i ) . For Θ^R> let Pθ be a prob-

ability measure on the Borel real line (R, 3$). It is assumed that every Pθ is
absolutely continuous with respect to the Lebesgue measure μ on R and dPΘ/
dμ=p(x—θ). For each n<=N= {1, 2, •••}, let (Rn, Bn) be the Cartesian product
of n copies of (R} 3$) and Pnθ be the product measure of n copies of Pθ. Fur-
thermore, let μn denote the product measure of n copies of μ and set pn(zn, θ)
=dPnfθldμn for Θ<=R and zn=(xl9 —, xn)^Rn.

Let k be a positive integer equal to or greater than 2. We shall impose the
following Condition Λk on p(x)

Condition Ak

( i ) p(x) is a uniformly continuous density which vanishes on (—oo, 0)
and is positive on (0, oo).

(ii) p(x) is (&+l)-times continuously differentiable on (0, oo).
Let ^(^^log p{x) for # > 0 and g{m)(x) be the m-th derivative of g{x).
(iii) For some «G(0, oo) and 7^(0, oo)

p(x)=ax+O(x1+y)> ^ 1 ) (*)=*- 1 +O(* γ - 1 ), gi2)(x
^3>(Λ?)=O(Λ-3)and^*+lχΛ?)=O(Λ?-*-1) as Λ̂
(iv) For every ί^O, there exists η>0 such that

Jo

( v ) For some M>0

(vi) For every «>0, there exist δ > 0 and η>0 such that

(a ) ("sup Ig<*>(x+u) 11+VW dμ< oo ,

( b) ("sup I£<3>(*+M) Iί(x) dμ<oo,

( C) ("sup Ig<M\x+u) Ip{x) dμ<oo.
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Let MΛ=min(Λ;1, ••-, xn) and Gn(zM t)==^g(xi—t) for t<Mn. Condition

(i) insures that m.l. estimators of θ for the sample size n exist in the interval
(—00, Mn). Let {Sn; n^N} be a sequence of m.l. estimators. Woodroofe
[20] remarked that condition ( i ) and

I —g(x)p(x)dμ<oo
Jo

imply all assumptions of Wald [18] and that, moreover, if g(x) is continuously
difϊerentiable, then {§„} will form a consistent sequence of roots of the likeli-
hood equation

and

We shall use αll=>y — an(log ft+log log n) rather than Ai -~-an log n as the

convergence order of m.l. estimator to the true parameter θ (see [4] and [5]).

Since θ is a translation parameter, we restrict our attention to the case
that 0=0. The following lemma is the same as Lemma 5 in [5] except that
conditions (v) (b) and (v) (c) in [5] can be replaced by weaker conditions (vi)
(a) and (vi) (b) because of (2.4).

Lemma 3.1. Let conditions (i)-(iii), (vi) (a) and (vi) (b) be satisfied for
k=2. Then for every se(0, 1) there exists c>0 such that

«)-*} = O((log n)-1),

where bn(s)=aή1(log n)s/2.

REMARK 2. It seems to be impossible to improve Lemma 3.1 (see Remark
in [5]).

Using (2.4) instead of Chebyshev's inequality in the proofs of Lemma 1
and Lemma 2 of [4], we obtain the following Lemma 3.2 and Lemma 3.3, re-
spectively.

Lemma 3.2. Let conditions (i )-(ϋi) and (vi) (a) be satisfied for k=2. Then
for sufficiently small £>0, there are events Dny n^N for which Pn0{(Dn)

c} =
o((log n)~ι) and zn^Dn implies

Lemma 3.3. Let conditions (i)-(iii) and (iv) be satisfied for k=2. Then
for every £>0

Lemma 3.4. Let Condition A2 be satisfied. Then for every $e(0, 1)
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Pnfi{an\l\ ^log log n} = O((log n ) - 1 ) .

Proof. We shall use ideas related to Woodroofe [20]. It follows from
Lemma 3.2 and Lemma 3.3 that

(3.1) P.fi{aJu£-log logn} = P.,o{έΛe<+«.-1log log κ)^0} +o((logn)~ι),

(3.2) Pnfi{aJn^ log log n} = ^ . o E ^ . - ^ l o g log »)^0,
ί = l

Mn>a~'log log «} +o((log w)'1).
Using Lemma 3.1 and the equality

έ ^ ί ^ + β ί ' I o g log n) = ±g^(xi)+^1log log »
ί = l ί = l

with un&(0, aΰJlog log rc), (3.1) implies that

P B > 0 {«A^-log log ft} ^ . o K 1 Σ ^ ( 1 ) ( ^ ) ^
A similar argument shows that (3.2) implies

Lemma 3 in [4], together with the fact

Φ ( — y log log n) = o((log ή)-1),

leads to the desired result. Here Φ(x) denotes the cumulative distribution
function of the standard normal distribution.

Lemma 3.1 and Lemma 3.4 yield the following lemma.

Lemma 3.5 (cf. Lemma 6 in [5]). Let Condition A2 be satisfied. Then
for every $e(0, 1) there exists c>0 such that

Pn 0{ sup te'GPiz., Sn+t)+ί I ̂ c(log «)-*} = O((log ft)-1).

We shall investigate an asymptotic behavior of aήk~1Gi

n

k+1)(zn, t), \t—θn\
^bn(s)y with k^2.

Lemma 3.6. Let conditions (i)-(iii) and (vi) (c) be satisfied for some k^2.
Then for every se(0, 1) there exists c>0 such that

Proof. Since Pnt0{Mn^2bn(s)}=O((log w)5"1), we may assume that Mn>

2bn(s). Then G?+ 1 )(*,, ί ) = ( - l ) * + 1 l j / * + 1 ) ( ^ - 0 for \t\^2bn(s). Let α > 0

be so small that p{x)<*2ax and |^*+ 1 )(ΛT)| ^Lx~k~ι for 0<*<2tf where L is a
positive constant, and choose δ > 0 to satisfy condition (vi) (c). Then we have
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(3.3) I ϊ * - ^ 1 ^ , , t) I ̂

for \t\^2bn(s) and all sufficiently large n. Here 2 « denotes the summation
over i^n satisfying u^XjKv.

To evaluate the first term above define {Yni\ ί = l , •••, n} by

yM, = fa-^))-*"1, if 3 ί , ( ί )^ Λ < <ιi ,

= 0 , if ^<3iM(ί) or α ^ ^ .

Since E(Yn?)=O(bn(s)~2k\ it follows from Chebyshev's inequality that

PnAl^-'Έ (Yni-E(Yni))\ ^ l ( l o g »)-(*+υ^ = O((log n)-1).
ί 1 i
ί — 1

Moreover, using aήk"iyΣE(Yni)=o((log ή)~^k+1)s/2) we obtain
ί = l

Λ.oίl^*"1 Σ n, I ^(log n)-^W) = O((log n)-1).
ί = l

This, together with the fact PM>0{Σ y.ίΦΣό(*,—^.(ί))"*" 1} =O((log M)5"1), im-
ί = l

plies

} = o((io g »)«-»).

It remains to estimate the second term on the righthand side of (3.3). It
follows from Markov's inequality and condition (vi) (c) that

Λ . o K ^ Σ " sup |£<*+I)(*f.+iι) I ̂ (log n)-<* + 1 ^ - o((log n)*-1).

This completes the proof.

REMARK 3. It is easily seen that in the case k^2 the distribution of n~(k+1)/2

n

ΊHgik+1Kxi) converges weakly to a stable law with characteristic exponent 2/
ί = l

(k+l). By the same reason as of Remark 2, we cannot expect to improve
Lemma 3.6.

The following lemma immediately follows from Lemma 3.4 and Lemma
3.6.

Lemma 3.7. Let Condition Ak be satisfied for some k^2. Then for every
0, 1) there exists c>0 such that

Pn0{ sup \a~k-ιG^ι\zn, θn+t)\^c(\og rc)-<*+1>s/2} = O((log ra)5"1).

At first we study asymptotic sufficiency of m.l. estimator όn.
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Theorem 3.1. If Condition A2 holds, then there exists a sequence of families
of probability measures {Qn,e'> Θ^R}, n^N, such that

(a) for each n&N,3n is sufficient for {Qny>
(b) for every v<\β

Proof. Let IA{ ) be the indicator function of a set A. We define

q*(zu, θ) = IYuJ,ΛW%{za) exp

qn(zn, θ) = c(P) q*{zM θ) ,

q*(zu, θ) = IYuJ,ΛW%{za) exp {Gn(zn, έ,)-± a

where

Vnfi = fce/ί"; a.\έ.-θ\<log log n} ,

W. = {*,eJΪ"; sup \a~2G^(zn, Sn+t)+l \ <c(log n)'
IΊ£»α/»

and c«(^)=[\ q.n*{zn-> θ) dμ^y1. Here the constant c in Wn is determined by

Lemma 3.5 with s=\β.

For every ^ e ^ " , let Q.,,{A) = \ q.{»u,ff\dμnsaάQiΛ{A}=\ q*{zn,θ)dμH.
J A J A

According to the factorization theorem, for each n^N On is sufficient for

Next we have

(3.4) ||P...-ρ?..ll =

Jv ,,βniκ,

It follows from Lemma 3.4 that sup Pne{{VnB)
c}—o(([og n)~v). And Lemma

3.5 implies that sup Pn e{(Wn)
c} =O((log ή)~1/z). It remains to estimate the first

term on the righthand side of (3.4). Since

(?„(*„ θ) = <?,(*„ ^ ) + l ( ^ - ^

with I (9,*—41 ^ I έn—θ I, we have for zn(Ξ Vnfi Π ίFβ

c(log log κ)2(log n)
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Here we used the inequality 11—exp (x) | ^£21 x \ for sufficiently small x.
Thus we obtain

sup ||iVe—yϊ.ell =

Since

sup |1—cn(θ)' ι\ = sup \I

= o((logn)-),

we have

sup \\pn_e-Qn,e\\^ sup i |P M -£*j |+su P ιιρ*,-ρMιι
ΘGR βe/2 βe^

^ o((log w)-v)+sup 1 1 - ^ ^ ) " 1 !

= o ( ( l o g n r ) .

This completes the proof.

We can also show higher order asymptotic sufficiency of the statistic Snk

Theorem 3.2. If Condition Ak holds for some k^2, then there exists a
sequence of families of probability measures {Rnθ; Θ^R},n^N, such that

(a) for each n^N, the statistic θnk is sufficient for {Rnθ;
(b) foreveryv<{k+ί)l(k+3)

Proof. Let

rm*{xm, θ) = Iyn9nwuk(*.) exp {Gu(zu9 Sn)+± ^Z^t G<Γ
m=2 fH\

rn{zn, θ) = Zn{θ)r*(zn, θ),

where

Wnιk = {*„€=*"; sup Iβί*-'G?+"(*,, ί , + ί ) I <C(log n)
ι<ιs»«α/u+a»

and FΛ f β is the same as in the proof of Theorem 3.1. Here the constant c in
Wnk is determined by Lemma 3.7 with s=2j(k-\-Z). Moreover, define Rnθ{A} —

[ rn(zn, θ) dμn and R*β{A} = [ rn*(#Λ, θ) dμn for every AEΞΉ". Then it fol-
JA JA

lows from the factorization theorem that θnk is sufficient for {i?w e ;
Using the Taylor expansion
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with I θ*—6n | ^ | <?,—01, we have for sΛ<= F M Π WMfk

pn(zn> θ)
m 2 mlml

n)~v).

Hence an argument analogous to the proof of Theorem 3.1 shows that Lemma
3.4 and Lemma 3.7 imply

ΘGR

which leads to

This completes the proof.

EXAMPLES (Woodroofe [20]). Let

f(x) = r[T(Hr)Yl x exp(-x r ) , Λ;>0 for some r>0 ,

or f(x) = [riί+r)]-1 x(l+x)-2~r , x>0 for some r>0 ,

then Condition Ak is satisfied for every k^2.

4. Asymptotic sufficiency: Case (ii). We continue to use the same
notations as in Section 3. We shall need the following Condition B(β, k) on
p(x) where β is a positive number and k is a positive integer.

Condition B(β, k)
( i ) p(x) is a uniformly continuous density which vanishes on (—oo, 0)

and is positive on (0, oo).
(ii) p(x) is (&+2)-times continuously differentiable on (0, oo).

=O(x~k-1) andg(k+2\x)=O(χ-k~2) as x-
Moreover, g(2)(x)^0 for sufficiently small x>0.

[ k-\-2 (β-\~2) (k4-3) 1
, ^ ' v I. It is clear that p2'^2p3^2p1.

2 (k-\-Sk-\- β-\-6)Λ
(iv) For every ί^O

Γl^+ί)lP^)^<^.
Jo
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(v ) There exists M>0 such that

(a) \~\έ»(x)\»*P(x)dμ<oo,
J M

(b)

(vi) For every α>0, there exists δ>0 such that

(a ) ("sup I g<3\x+u) I Ίp(x) dμ< oo ,
Ja lMl^δ

(b) ("sup Ig«+2\x+u) I >*p(x) dμ< oo .
Ja \u\^8

J oo

g(2)(x) p{x) dμ. Conditions (i )-(iii) and (v) (b) guarantee
o

that J is finite. Moreover, we need
(vϋ)
According to condition (iii), it may be expected that gik+1)(x) has the ab-

solute moment of order r for every r<(/3+2)/(&+l), but we will not always
require this. That is, conditions ( i )-(iϋ) and (v) (c) insure that

(4.1) W + 1 ) ( )Γ<°° for every
)l*+2<°° , i£β>k{k+3).

We define λ* and *>* as follows

(4.2) X* = %+β+V' for/9<*(*+3),

It is noticed that λ*>l/2, and that v*<k/2 for β<k(k+3) and v*=kβ for

k(k+3).

(4.1) together with (2.1), (2.4) and (2.5) implies

(4.4) P.,t{ψ/MK*i)I ^«λ*> = o(n~η , 0</3^Λ-l,

φ )( ))] I ^ » λ l = o(«-v), k-Kβ<k(k+3),

1)( ))] I ^VίΠoiT*} = o(»-v), β=k(k+3) ,

» log »} = 0(«-*/2),
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where v<v* and c is a positive constant independent of v.
Hereafter, we shall use c>0 as a generic constant independent of

Lemma 4.1. Let conditions (i )-(ϋi) and (vi) (b) be satisfied for some β>0
and k&N. Then for every L > 0 there exists c>0 such that for v<v*

P.Λ sup i l l te(*+1)(*,+0-£(*+1>(*.)] I ̂ Ί = o(n-η , β<k(k+3),
\n^Ld» , =i

and

P»Λ sup IΣ

where dn=n~1/2Vlog n and the supremum is understood to be infinite if Mn^

Proof. Let a>0 be so small that p(x)<cxβ+ι and \g(k+2)(x) \<cx~k~2 for
ΰ<x<2a. Since Pn0{Mn^2Ldn}=o(n-v*), we may assume that Mn>2Ldn.
Using the equality

±g«+1\xi+t) = £glt+lKxt)+± [g^iXi+u) du
i=l ί=l ί=l Jθ

we have for sufficiently large n and \t\ ^

(4.5)

where δ is determined by condition (vi) (b). For t = l , •••, « let us define

(4.6) U., = (x .-L^)-*- 2 ,

= 0 , otherwise.

Since £ | Z7B l |
r^c<co for every «eiV and r<(/8+2)/(Λ+2), it follows from

(2.1), (2.4) or (2.5) that

This implies that

Pnfi{ΣΆ{Xi-LdnY
k-^2d?n»} = o( fO , β<k(k+3),

Taking account of condition (vi) (b), a similar argument shows that

Pn.o{Ώ7 sup
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sup

Thus, (4.5) implies the desired assertion.

REMARK 4. If β^k(k+3), then for every L > 0 there are events Hn,
for which PM{(#„)'} =O(«"*/2) and zn<ΞHn implies

sup

Lemma 4.2. Let conditions (i)-(iii), (v) (b), (vi) (a) and (vii) be satisfied
for some β>0 and k^N. Then for sufficiently small £>0 there are events Dn*y

n^Nfor which Pn,0{(^«*)c}=O(w-v*) and zn£ΞD* implies

sup G?Xzutt)<-JnlS.

Proof. Let a>0 be so small that£<2)(#)^0 for 0<x<2a and

dμ>—J/5. Then the event Mn^8 implies that

p

Let £=min [δ, J- ( \ sup I ^ ^ + M ) ! ^ ) ^ ) " 1 ] with δ, δ<a, satisfying condi-
5 Ja lMl^δ

tion(vi)(a). Then

and

Σ
imply

Since pi>l, it follows from (2.4) or (2.5) that

sup I ^ ( Λ .+M) I - n Γ sup | g
l«!^δ Ja l«l^δ 56

Lemma 4.2 follows easily.

The following lemma is proved in the same manner as Lemma 2 in [4]
except that (2.4) or (2.5) is used instead of Chebyshev's inequality.

Lemma 4.3. Let conditions (i)-(iii) and (iv) be satisfied for some /3>0
and k^N. Then for every £>0
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Lemma 4.4. Let conditions (i)-(iii), (v) (b), (vi) (a) and (vii) be satisfied
for some β>0 and k^N. Then for every L > 0

Proof. Since £|£ ( 2 ) ( )Γ*+ 1<°o, (2.4) or (2.5) implies that

It remains to estimate the right side of (4.5) with k=l. Let Uni be the same
as in (4.6) with k=l. It is easy to see that

for l<r<(/3+2)/3 , if Kβ<k(k+3)

E\Uul\(*+3)/3^c<oo , if β

Accordingly, from (2.1), (2.4) or (2.5) we obtain

so that

Moreover, condition (vi) (a) together with (2.4) or (2.5) gives us

ΣΓ sup \g<3KXi+

Thus the lemma follows.

Lemma 4.5. Let conditions (i)-(iv), (v) (a), (v) (b), (vi) (a) and (vii)
be satisfied for some β>0 and k^N. Then there exists L > 0 such that

Proof. It follows from Lemma 4.2 and Lemma 4.3 that for every L > 0

(4.7) Pnfi{SM^-Ldn) = Pφ

(4.8) P, i0{^ωs} = P^oφ/^-Ld^O, Mn>Ldn

Using the equality

£g<»(x{+Ld.) = ± g i
* = 1 ί = l

with ί/Me(0, Ldn)y Lemma 4.4 implies that

(4-9) P.jφ/'Kxi+Ldjm^P^oφ/'Kxd^^^M^} +O(«-V%)
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Since E\gM( ) |2 pi<oo, it follows from (2.5) that

(4.10) P
2

for some large L>0. Thus relations (4.7), (4.9) and (4.10) imply

Pnfiφn^-Ldn) =O(«" W ) .

By a similar argument, (4.8) implies

The following lemma is an immediate consequence of (4.4), Lemma 4.1
and Lemma 4.5.

Lemma 4.6. Suppose that Condition B(β> k) holds for some β>0 and

Ifβ<:k(k+3), then there exist L>0 and c>0 such that for 0<v<v*

Pnι0{ sup I Gίk+1\zny Sn+t) I ^cn») = o(n~η ,

Pni0{^\GίM\ZJΛ+t)~E(G<i+1\',0))\^cn^}=o(n-η, k-l<β<k(k+3),

Pnfi{ sup)G<yi\zJn+t)-E(Gik+iχ.,0))\^cV^n} = o(n-η, β = k(k+3),

where λ* and v* are defined by (4.2) and (4.3), respectively.

Ifβ>k(k+3), then there exist L>0 and c>0 such that

P.A sup I G r υ(*«, du+t)-E(Gί*1\^ 0)) I ^
\t\^Ldn

Now we shall discuss asymptotic sufficiency of the statistic θnk=ψny

K), -> G<t\zΛ9 6U))9 ktΞN, where §nΛ means 6Λ.

Theorem 4.1. // Condition B(βy k) holds for some β>0 and k<=Ny then
there exists a sequence of families of probability measures {Qk

n,θ\ Θ^R},
such that

(a) for each n<=N> the statistic Snk is sufficient for {Qk

n,θ\ Θ<=R}

(b) sup | | P M - £ U | = o(n~η fo
Θ€=R

2 2(k+β+3)A

Proof. The proof of the theorem is analogous to those of Theorem 3.1
and Theorem 3.2. Let

*,(*., θ) = /„*,„„*,(*.) eχP {G,(*., h-^φ-Kγ), if k= l,
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eχp {°( U + Σ ^Σ

+ ^ r f ί C ( ^ ( » ))>' if k^2 and /3>*~
(Λ+l)!

where

W*k = { sup I G?+ 1 )(*., Sa+t) I <«ίλ*} ,

= { sup I G< i + 1 )(^, ί .+ί)-£(G? + 1 >(. , 0))I <cnλ*} , if A -

= { sup

Here L > 0 and c>0 are determined by Lemma 4.5 and Lemma 4.6. Moreover,
l e t <In,k{zn> θ) be the normalizing of qtk(zn> θ) a n d let QltΘ be a probability
measure with the density qntk(Zn* ^) Since the remaining part of the proof
runs parallel to the lines of the corresponding part of the proofs of Theorem
3.1 and Theorem 3.2, we shall omit it.

In the case β>k(k+3), we can improve Theorem 4.1, if condition (v) (b)
in B(β, k) is replaced by a stronger condition (v) (b) ' .

(v) (b) ' There exists M>0 such that

\
M

k + 2In this case, condition (v) (b) ' with conditions (i )-(iϋ) implies E \ £(2)( ) | k+2< °°.
This leads to a stronger result than Lemma 4.4: For every L > 0 there exists
c>0 such that

(4.11) Pnt0{ sup | Σ te»(*i+*)+J] l^cVnlog n} = c{n-") .
\t\<ZLdn ί - 1

Lemma 4.7. If Condition B(βf k) with (v) (b) ' replacing (v) (b) holds
for β>k(k+Z), then

Proof. By a Taylor expansion we obtain
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with \θn*—θ\ < \Sn—θ\. This, together with Lemma 4.5 and (4.11), implies

the desired assertion.

Theorem 4.2. If Condition B(β, k) with (v) (b) ' replacing (v) (b) holds

for β>k(k+3), then Theorem 4.1 holds with the following (b) ' instead of (b):

Because of Remark 4 and Lemma 4.7, Theorem 4.2 can be shown in

quite the same way as in the proof of Theorem 2 in [6].

REMARK 5. Suppose k=\. From Theorem 4.1 and 4.2 it follows that

if /?^4, then m.l. estimator Sn is asymptotically sufficient up to order o(n~y)

for every v<βj(A-\-β) and that if /3>4, then un is asymptotically sufficient up

to order O(n~1/2).

REMARK 6. Theorems 4.1 and 4.2 still hold even if a sequence of m.l.

estimators {Sn} is replaced by {Tn} with the following properties: There

exist positive constants nλ and n2 (depending on v*) such that

(1) sup P,,,{*,eΛ ; n™\ Tn{zn)-Θ \ ̂  (log H)*.} = O{n^)

(2) sup P,,,{*,eΛ ; n Ί Σ / ' ^ - W ) I ̂  (log »)*«} = O(n-»).

{Tn} with properties (1) and (2) is called a sequence of asymptotic m.l.

estimators of order O{n~v*) (see Michel [8] and Matsuda [6]).
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