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1. Introduction and summary

Let T be a pseudometric space, and let X(¢), tT, be a real valued sto-
chastic process on some probability space. There has been much recent inter-
est in conditions for the continuity or boundedness of the sample functions
stated in terms of the finite-dimensional distributions of the process and their
relation to the pseudometric. On the other hand, one of my interests has
been the search for conditions under which X(z), #&T, is unbounded, or has
even more drastically irregular behavior. The main tool in this analysis is
the local time of the process. The theme of this work has been that the smooth-
ness of the local time implies the irregularity of the sample function. In the
current paper, in particular, we use the result that if the local time is an analytic
function of its spatial variable, then the sample function spends positive time
in every set of positive measure, so that it is unbounded on 7. This was used
in [2] to supplement the Beljaev dichotomy theorem for stationary Gaussian
processes [1]: In the noncontinuous case, the sample functions are often
not only unbounded, but have the property of the Carathéodory function [2].

The current work extends the latter results to more general, not necessarily
Gaussian processes. Suppose that there is a nonnegative function d(s,?) on
T? such that d(s, ¥)>0 for s==¢, and that the density function of the random
variable,

(1.1) X(9)—X(@) ,
d(s, t)

is uniformly sufficiently smooth in a precise sense for all s=¢; and suppose
that there is a specified nonincreasing function K(u), >0, determined by the
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density of (1.1) such that
(1.2) gT sT K(d(s, £))dp(s)du(t)<oo |

for some measure g such that x(7)>0. Then the lccal time of X(¢), t<T,
relative to the measure g on T, is almost surely an analytic function, so that,
in particular, the sample functions are unbounded on 7. The intuitive reason
for the sufficiency of (1.2) is that the double integral is an energy integral with
the potential kernel K(d(s,t)), and so the finiteness of the integral for some
u such that u(T)>0 signifies that T has positive capacity. This implies that
the time set T is sufficiently large so that the sample functions have “enough
time”’ to visit every set of positive measure.

The main theorem of the paper is applied to two cases: T is an interval
on the real line, and T is an ellipsoid in the Banach space /,, p>1. The latter
represents a generalization of the earlier result in [3] where X was Lévy’s Brown-
ian motion over Hilbert space, and T an ellipsoid in the latter space.

The sufficient conditions for the analyticity of the local time, and the sub-
sequent unboundedness of the sample functions are shown to be very close to
being necessary. In proving this we cite some of the recent work of Weber
[9] [10] on sufficient conditions for the boundedness of the sample functions
on a compact set 7. In stating such conditions, Weber and the other investi-
gators cited in his work have used an extension of the entropy concept which
was introduced in the Gaussian case by Strassen and Dudley (see [6]). If
d(s, t) is a pseudometric for T, and the latter is compact, then for €>0, there
is a finite set of open balls of radius at most & such that T is covered by their
union; then let N(€) be the least number of balls in such a cover. In studying
Gaussian processes, the pseudometric d(s, ¢) is taken to be the standard devia-
tion of X(s)—X(#). The sample functions are shown to be continuous or
bounded if the function N(€) increases at a sufficiently slow rate as €| 0. In
the non-Gaussian case, the pseudometric d is not necessarily the incremental
standard deviation.

For the convenience of the reader, we sketch the result of Weber of par-
ticular relevance to our work. If there is a pseudometric d such that the two-
sided tail probabilities of the random variable (1.1) for s==¢ are sufficiently
small, and if the corresponding functicn N(€) grows at a sufficiently slow rate
for £} 0, then the sample functions are almost surely bounded on 7. In two
typical examples we show that, with the exception of one case, either my suffi-
cient condition for unboundedness holds, or else Weber’s sufficient condition
for boundedness holds. This indicates that the well known dichotomy theorem
for Gaussian processes has modified versions in the area of more general pro-
cesses. In both of these examples I have, for the purpose of comparison, chosen
the estimate of the density of (1.1), required by my theorem, to be comparable
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to the estimate of the tail probability of (1.1), required by Weber’s theorem.
However, in order to apply either of the two theorems in general, it is not neces-
sary that there be a relation between the density of (1.1) and the tail probabilities.

2. The main result

Let X(t), teT, be a real valued stochastic process, where T is a subset
of some measure space. For arbitrary s, t& T, with s=t¢, let p(x;s, t) be the

density of X(s)—X(#) at x, which we assume exists. Then the density of the
random variable (1.1) is

d(s, )p(xd(s, t); s, 1), for s=t.

Our hypothesis will be stated as conditions on the smoothness and growth of
this function of x. More exactly, we will suppose that the function has an
analytic extension to a strip in the complex plane, and that the latter extension
satisfies specified growth requirements. The function d is not necessarily
a pseudometric, but it is required to be nonnegative and tend to 0 for s—¢—0.
The intuitive meaning of such an assumption on the density of (1.1) is that
the values of X(s)—X(#) remain very diffuse for s near #, which explains the
unboundedness of the sample functions. The formal hypotheses are now
stated:

HypoTHESIS A. p(x; s, t) has an extension p(2;s,t) to the complex z-plane
for s==t which is analytic in the strip |Im z| <c, for some ¢>0 which is independ-
ent of (s, t).

In what follows, A(u), ©>0, is a nonnegative, nondecreasing function, and
d(s, t) is a measurable function on 7% such that d(s, #)>0, and d(s, £)=0 for
s=t.

HyrorHEsis B.  There exist functions h and d of the type described above
such that

* ; . 2 1 X
(2.1) S_mlp(—zx—l—y, s, 1) |2dy< s, t)h<d(s, t))

for all s=t and all 0<x<c.

HyrorHEsis C. p(x; s, t) is a positive definite function of x for s=t, and
there exist h and d such that

. 1
2.2) | p(—is s, )| < d(s, t)h(d(s, t)>
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for all s=t and 0<x<c.

For the convenience of the reader, let us briefly recall the definition of
the local time. Let x(¢), ¢T be a real valued measurable function on the
measure space T endowed with the measure p. For every measurable subset
ICT, and linear Boiel set 4, define v(4, I)=pu{t: t<1, x(t)€A}. If for fixed
I, v(+, I) is absolutely continuous as a measure on sets 4, then its Radon-Niko-
dym derivative, denoted (), is called the local time of x(z) relative to (I, u).
It is obvious from the definition that if the local time exists relative to a meas-
urable set T, then it also exists relative to every measurable subset /C7. In
our work on stochastic processes, the sample function X(¢) plays the role of
the function x(z).

Theorem 2.1. Let u be a positive finite measure on T. Then under Hypo-
thesis A and B or Hypothesis A and C, if

(2:3) S . 5 r d(sf t)h<d(sc, ':))d" @)du(t)<eo,

for some ¢=>0, then the local time a(x) of X(¢t) relative to (T, p) exists and is analy-
tic in the strip |Im 2| <3}c.

Proof. Assume Hypothesis A and B. We aim to establish

2
eZzudu}<oo ,

(2.4) E{S: ST XD (s)

for all x<%4c. By [3], formula (6.1), this condition is sufficient for the con-
clusion of our theorem. The fact that the domain of analyticity is |Im 2| <<
¢ follows from the argument in [2].

Since the integrand in (2.4) is nonnegative, Fubini’s theorem permits us
to interchange expectation and integration over %. Since u(T) is finite, we
may also move E inside the double integral after taking the square of the mod-
ulus:

[ 5,5, #s s aue)auee=as,

—00

where p(u; s, £)=E exp (iu(X(¢) — X(s))). As the modulus of a characteristic
function, | ﬁ(u; s, t)| is even in u; therefore, the integral above is at most equal
to 2 times

§. 0, 1, 1h0s o 01 udutids.

For fixed x, x<<}c, let " be an arbitrary number such that x<<x'<%c.
Then, by the Cauchy-Schwarz inequality, the square of the integral above is
at most equal to
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S: <ST ST |P(u; s, £) dlb(s)d[,b(t))z & dy S: e -0 gy

By the moment inequality, the latter is at most equal to p*(T)/4(x'—x) times

(70§ 1803 0 O autdutoeau

By Fubini’s theorem, the latter is equal to

ST ST {S: \plus s, t)Ize“/“du}dy(s)dp(t) .

According to the theorem of Paley and Wiener [8], page 7, the inner integral
is at most equal to

|7 1p(—izertyss, 12ays

hence, the finiteness of the preceding multiple integral for x’<<4c¢ follows from
(2.1) and (2.3). This completes the proof of (2.4).
Next assume Hypothesis A and C. Then (2.2) and (2.3) imply

[ 1p(—ins s ldnduty<eo,

for 0<x<<c. In [4] we showed that the latter is sufficient for the conclusion
of the theorem in the case where p is linear Lebesgue measure, and the bivariate
density function of X(s) and X(¢) is a positive definite kernel. The former is
not a real restriction, as the proof extends to an arbitrary measure space (7, u).
The positive definiteness of the joint density was used only as a sufficient condi-
tion for the positive definiteness of the density of the increment. The latter
forms the hypothesis of the present theorem.

RemarRk. Note that the integral appearing in (2.1) is of fundamental
importance in the theory of Hardy functions; see, for example, Hoffman [7].

In order to demonstrate the sharpness of our conditions, we will employ
some recent results of Weber [9], which, for the convenience of the reader,
we will briefly summarize. Let d(s, t) be a pseudometric for T, and suppose
that T is compact. Let ®=®(x) be a nonincreasing function such that

p(1XO—XO) <
wP( o >x) @),

for x>0, and then the function R(x) as

2.5) R(x) = x S:_lw B(w)du+ DY(1)x) .



138 S.M. BERMAN

Weber showed that the sample functions are bounded on T if
diam(T)

2.6) [ RV du<oo,
0

where N(u) is the covering number defined in Section 1.

Since the function R is defined indirectly in terms of @, it is useful to
obtain an estimate for it more directly in terms of ®. We deduce the following

result: If

27 i r D(y)dy
(2.7) 1nsup W )
then
(2.8) lirunsilp R(u)/® ' (1ju)<<oo .
Indeed, by (2.5), we have

(1/D(w)) = "?(1“)—4““ ’

which, by (2.7), is at most a constant multiple of u.

3. Application to a process on a real interval

Let X(#), 0<t<1, be a real stochastic process satisfying the conditions
of either Hypothesis A and B or A and C, for some functions 4 and d. Put

(3'1) g(t) = infls—s’thd(s) sl) ’
and let ux be linear Lebesgue measure. Then (2.3) holds for an arbitrary subset
T of [0, 1] if
oy c
(3.2) S L p( Vi< oo
0£(?) <g(t))
Let us now specialize the result of Weber in Section 2 to the case T'=][0, 1].
Define the function g(¢), in contrast to (3.1), as
(3.3) g(t) = supje—y1<d(s, ) .

Let N, be the covering number function for the interval [0, 1] in the pseudo-
metric d. Since an interval of length & in the Euclidian metric is of length
at most g(€) in the d-pseudometric, we have

Ny (g(8))<# intervals of Euclidian length at most
& which cover [0, 1]1<2/€ .
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It follows that
(3-4) Ny(€) = 2/g7(€) -
If the estimate (2.8) is valid, then (2.6) holds if

(3.5) S: (3 g ) du< oo .

We conclude that the sample functions are unbounded under condition (3.2)
and bounded under condition (3.5).

Consider the class of processes on [0, 1] whose increment distributions
satisfy (3.2) with A(x)=c exp (bx") for some positive ¢, b and v, and where g(z)
in both (3.1) and (3.3) is asymptotically, for #—=0, a constant multiple of |log ¢|~?,
for some #>0. Assume also that @ may be chosen of the form ®(x)=cexp (—bx"),
for some positive ¢, b and v, where v is the same as for A(x) but where ¢ and
b are not necessarily the same. Condition (2.7) holds for this @, and so (3.5)
is sufficient for sample function boundedness. An elementary calculation shows
that (3.2) holds if

(3.6) 0<1)v.

On the other hand, we have g'(u)= exp (—ku"?), for some k>0, and ®~}(y)=
|67 log (y/c) |", so that (3.5) holds if

(3.7 0>1]y.

This result was proved in the particular case of a stationary Gaussian pro-
cess in [2]. There the functions % and @ are of the exponential forms above
with =2, and the pseudometric d is the standard deviation of the increment.
As in that particular case, the nature of the sample functions at the ‘“‘boundary”
0=1/7v is undetermined.

4. Preliminary analytic results for the case where T is an ellip-
soid in /|
The rest of this paper is devoted to the conditions for boundedness and

unboundedness in the case of the ellipsoid. In this section, we obtain some
purely analytical results which are needed for our calculations.

Lemma 4.1. Let F(x) be a distribution function with support in [0, oo),
and such that

4.1) m— g: xdF(x)< oo .
Put
fs) = j: e +*dF(x) ;
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then, for every g>1, there exist b,>>0, and b,>0 such that

(4.2) I/ 5)<b, exp (—b,p*),
for all y=>0.

Proof. For every &, 0<E<m, there exists >0 such that
(4.3) f()<1—s(m—eg), for 0<s<d;
this is a consequence of (4.1). It follows that
(44) Ofw s 1 forey)

< I, [—(m—epn]
< exp {—y(m—¢) (n>(§)1"')n—q} )

The sum in the exponent is at least equal to

oo _ 1 (y 1/q }l—q
q AN
S(,ml/mx dx, or (q_1){ 3) +yo

which, for sufficiently large y, is at least equal to

1
§)t-aVa
2(9—-1)(3'/ )

Thus, the last member of (4.4) is at most equal to

3(q-l)lqyl/q
exp [—(m——e) ——] .
2(¢—1)
This establishes (4.2) with 4,=1 and for all large y. This immediately implies
the more general bound (4.2).

Lemma 4.2. Let F(x) be a distribution function on the nonmegative reals
whose Laplace-Stieltjes transform satisfies

(4.5) r e~ dF(t)<b, exp (—bys’?), for s>0,
0

where by, and b, are positive constants, and q>1. Then there exist ¢,>0 and
¢, >0 such that
(4.6) F(x)<c,exp (—ex~@ D™y, for x>0.

Proof. It is elementary that

x

Flx)<e* So ¢ dF(y)< e S: edF(y),
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and the latter, by (4.5), is at most equal to
4.7) b, exp (sx—b,57) .

Since s>0 is arbitrary, we choose that value of s which minimizes the expo-
nent in (4.7), namely,
s— (ég_)q/(q-l) ,
gx

and here the exponent in (4.7) takes the value
x~@ DTl g=@-D7 (1 _g) /g,
where the constant is negative because ¢>1.

Lemma 4.3. Let F(x) be a distribution function satisfying an inequality
of the form (4.6). Let H(t) t>0, be a positive nondecreasing function such that
H(0+)=0. If, for >0,

(4.8) lim H(w/y)F(3) = 0,
then,
(4.9) [T o <a | exp (—afwio)en)am()

Proof. By integration by parts and the condition H(0+4)=0, and the
assumption (4.8), it follows that

[, Hp)rw) = — | Fo),Hb),

and the latter, by a change of variable, is equal to

[ Floly)ar) .

By (4.6), the expression above is dominated by the right hand member of (4.9).
Finally, we state the elementary result,

Lemma 4.4. Let H(x) be a nondecreasing nonnegative function such that
for some v>0 and >0,

(4.10) lim H(x)e™*" = 0;

Zpoo

then, for every p>—1, 8>3,

(4.11) S” wte ¥ H(x)dx < oo .
0
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5. Estimation of the energy integral for a class of measures on [,

In this application we take the underlying time parameter set to be the
real vector space /,, for p>1. We define a general class of probability meas-
ures on the space. Then we state conditions on the function 2 and on the
function d which are sufficient for the finiteness of the energy integral, taken
over the whole space. In the next section we show that the measure is posi-
tive on the class of ellipsoids under consideration. This implies the analytic-
ity of the local time relative to the ellipsoid, and so the sample function is un-

bounded on it.
Let {£,,n>1} be a sequence of independent random variables with a

common distribution such that E|&,|?<<co. For arbitrary ¢>1, the random
sequence X= {n"%?£,} belongs to I, because E XIn~?|&,|?=E|£,|?2In "< oo.
Let x be the probability measure on /, induced by the distribution of X.
We will consider functions d(s, ) on (/) of the following form; Let
w(u), u>0, be a nondecreasing function such that w(0)=0 and w(co)=oco.

For arbitrary s and ¢, put
(5.1) d(s, t) = w(||s—2]?),

where ||+|| is the usual /, norm. d is not necessarily a pseudometric.

Now let Y be another random point in /, with the same distribution as
X and independent of it, so that it has the representation Y= {n"%?£,} where
&, has the same distribution as &, and where &;, &/, 7,j>1, are mutually in-
dependent. Then the d-distance between X and Y is the function w at

(5.2) I AT
Let % be the function defined in Hypothesis B or C; then, for fixed ¢>0, define

1 c
(5.3) H) = s h<w(1/x)> ,

which is a nondecreasing function of x. If T'=I[, then condition (2.3) as-
sumes the form

1
(5.4) EH(E e I,)< .

>1

Lemma 5.1. If there are numbers v>0 and 8>0 such that the function
H(x) satisfies
(5.5) lim H(x)e™*" =0,

then,
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(0]
for q=1+1/v, and all sufficiently small &>0.

Proof. Put f(s)=E exp (—s|&,—E&!|?); then >3,5,n7|E,—E7|? has a dis-
tribution function G with the Laplace-Stieltjes transform

["eac) = T fines).

0 n=1

By Lemma 4.1, there exist constants b, and 4, such that the latter product is
at most equal to

(5.7) by exp (—b,sY?) .

Now the expected value in (5.6) may be written as
(5.8) S” H(w[H)dG(t) .
0

Now we apply Lemma 4.3 with G in the role of F. First we note that, by
the definition of H in (5.3) we have H(0+)=0. Next, it follows from Lemma
4.2 and the bound (5.7) that

GU)<aexp (—ay ™)
furthermore, (5.5) implies that

H(w/y)< exp (30"y7"),

for all sufficiently small y; therefore, the condition corresponding to (4.8) is
satisfied if 8e” is chosen to be smaller than ¢,. (Here we also use the fact that
g=141/v.) Since the conditions in the hypothesis of Lemma 4.3 are satis-
fied, we may apply the conclusion (4.9) to (5.8), and infer that the latter is at
most equal to

o, exp (—alafw))dH(E).

By integration by parts, it follows from Lemma 4.4 that the integral above is
finite if & is chosen so small that ¢,0™">8.

6. Conditions for the unboundedness of the sample function on the
ellipsoid

Following Chevet [5] we define an r-ellipsoid in [/,, where r>1. Let
{b,,n>1} be a nonincreasing sequence of positive numbers, and consider the
set of sequences ¥x=(x,) in /, such that
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(6.1) Sl (Iml By <1.

This a called an r-ellipsoid with semi-axes {5,}.

Lemma 6.1. If & has a density function which is continuous and positive
in some neighborhood of the origin, and if E |E,|"<<oo, and if

(6:2) 2 ()< oo,

then the measure p defined in Section 5 assigns positive probability to the ellipsoid
(6.1).

Proof. We show that the coordinates x,=n"%?£, of the random point X
satisfy

(6.3) f\;‘( “mblf |)'

n

with positive probability. First of all, the expected value of the sum above
is equal to

E|&|" 3 0%,

which, by (6.2), is finite. Next, for any m>2, we write the sum in (6.3) as
the sum of two subsums,
3 n“’"’l&.l)’
n§+1> ( b"

where the two sums on the right are independent. The first sum, over indices
1<n<m, has a density function which is continuous and positive in an interval
[0, &] for some >0, because it is the convolution of density functions which,
by hypothesis, have this property. On the other hand, for every &>0 and
8>0, there exists an integer m>1 such that

P(” 3 _m"s I'>e><8

(6.4) 2= (i_‘, +

It follows that the density of the left hand member of (6.3) exists and is the
convolution of a density which is positive and continuous on [0, £] with a den-
sity whose integral over [0, €] is at least equal to 1—&. Therefore, the con-
volution is positive and continuous on [0, €], and so (6.3) has positive proba-
bility.

Theorem 6.1. Let X(t), t€l,, be a real stochastic process satisfying the
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conditions of either Hypothesis A and B or Hypothesis A and C, with d(s, t) of the
form (5.1), and where the function H, defined in terms of h by (5.3) for some c,
satisfies the condition (5.5) for some & and . If the semi-axes of the ellipsoid T,
defined by (6.1), satisfy the condition (6.2) with

(6.5) = 14+1Jy,

then the local time or(x) exists and has an analytic extension or(2) in the strip
|Im 2| <c. Thus, in particular, the sample function is unbounded.

Proof. Let p be defined as in Section 5, and let u, be the measure defined
in the same way as u except that the random variables &, are replaced by &,/¢,
for arbitrary £>0. It is obvious that p, inherits the properties of p: Itis a
measure on /, which assigns positive probability to the ellipsoid (6.1). If
o=&?, then the energy integral in (5.4) with respect to u, is identical with the
energy integral in (5.6) with respect to the measure p. Thus if condition (5.5)
holds, then (5.6) holds, and so does (5.4) for the measure ..

The condition on the density function of &, required in the hypothesis of
Lemma 6.1 can always be fulfilled; indeed, &, can be taken with a standard
normal distribution. The conclusion of the theorem is now a consequence of
Theorem 2.1 and Lemma 6.1.

We remark that the method of proof is a generalization of the method

used in [3] for the local time of the Lévy Brownian motion over an ellipsoid in
lz.

7. An example illustrating the sharpness of the conditions for un-
boundedness

In this section we present a general class of processes on /, and a class of
ellipsoids and show, by comparison to Weber’s conditions, that neither his
nor our conditions can be appreciably improved.

We will take the distance function d in (5.1) to be

(7.1) d(s, t) = ||s—t||*, for some «a<1,

which is the same as choosing w(#)=u"?. We take the function % in the state-
ment of Hypothesis B or C to be Ah(x)=d exp (bx") for some positive b, d and
7. Then the function H(x) in (5.3) is of the form

(7.2) H(x) = dx™? exp (bc?x*"/?);

thus, the condition (5.5) is satisfied for §>bc”, and with av/p in place of 7.
Suppose that the sequence b, satisfies the condition

(7.3) lix;n inf b,n">0,
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for some s>0. Then the sufficient condition (6.2) of Theorem 6.1 holds with
g=1+p/(ay) if sr—r(1+p/(a7))/p<<—1, or equivalently,

(7.4) s<1jay+1/p—1Jr.

Let us now derive the conditions for the boundedness of the sample func-
tion by means of Weber’s results described in Section 2. We take d in (7.1)
as the pseudometric, and ®(x)=d’ exp (—b'x"), with the same < as before.
Let N,(€) be the covering number of the ellipsoid (6.1). It will now be ob-
tained from results of Chevet [5]. Let A be the exponent of convergence of
the sequence {5,}, that is,

A = inf (A": 28} converges) .
n>1

If A<<oo, then, if p is the exponent of entropy of the ellipsoid in [,, we have,
in our notation,

(7.5) p=(ri—p) L.

This means that the covering number N(&), computed with respect to the metric
of the I, norm, satisfies

p= lim sup leglO—gN(g) .
B3P log (1fe)

This implies, for arbitrary >1,
(7.6) NE)< exp (£7%),
for all sufficiently small £>0.

Let p,; be the exponent of entropy of the ellipsoid in the d-metric. Since
the latter is the a-power of the I, metric, a ball of radius € in the latter metric
is of radius &” in the d-metric; thus, it follows from the definition of the ex-

ponent of entropy that

(7.7) pa = pla .
It follows from (7.5), (7.6) and (7.7) that
(78) Nd(g) < exp (5"‘”_1("—14"'—1—1:—1)0) ,

for all small €>0. As in Section 3, Weber’s R function is of the form
|6 log (d’[x) |7, so that the condition (2.6) for boundedness becomes

u—Ow'I‘Y‘l(X‘1+r“‘—p"l)"du< 0o

(7.9)

’

Sdiam (T)

0

which holds if the expression in the exponent above is greater than —1, that is,
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AI>(av@)  Hp it
But there exists a @>1 such that the latter holds if
(7.10) AI>(ay) Hp .

We conclude from the arguments above that the sample function is un-
bounded if (7.4) holds and where s satisfies (7.3); and that the sample function
is bounded if (7.10) holds and where A is the exponent of convergence. In
particular, if b,~ constant #~%, for n—>oco, then there is boundedness if (7.10)
holds with A™'=s, and unboundedness if the opposite inequality (7.4) holds.
The case where equality holds is open. This is an extension of the result in
[3]; see the last example, and the note added in proof.
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