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1. Introduction

In [1], Watanabe proved that for every Markov process X, under some
conditions, there exists a sequence of regular step processes (R.S.P.) X" such
that the resolvents of X" converge weakly to the resolvent of X. Under some
supplementary conditions we shall prove that the distributions of X" converge to
the distribution of X. An intuitive description of X" is as follows: X and
X" start frcm the same state x, (we mean that X, and X{ have the same dis-

tribution). If X remains closed to x, for a time T, (that is, d(x,, X,)<% for

all t<T, and X, ==, with d(x, xl)g%), then X}=ux, for all t<D,, with

D, an exponentially distributed holding time with same mean value as T, (T,
is generally not exponentially distributed). Then X" jumps in x; (we mean
that X, and X have the same distribution), and so on.

The rigorous construction of X" and Watanabe’s result are presented in
the beginning of the paper. The theorem following this construction is the
main result of the paper.

2. Main results

Let E be a locally compact with countable base space (L.C.C.B.), U an
open base and d any metric of E. For each n we can choose the system U?%,
i€N and V%, iEN of sets in U satisfying the following conditions:

(1) Each U? is compact and d(U?)<% (d(A)=sup (d(x, y); x, y € A));

(2) ViceUs

(3) UVI=E;

(4) For every compact set K only a finite number of V7% intersect with K.

Let (Q, S, ¥}, X,, 0, P*) be a standard process with state space E and
(Uy)a»o be the resolvent of X. We now define o} by
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ol(w) = inf (¢; Xy(w)E U} if Xfw)eVi— L<J |44
oh(w) = 0';,’_1—1—0"1'0002_1 for k>1.

The following result is Lemma 3.3 in Watanabe’s work. Let X be a standard
process such that U,(Cy(E)) S Cy(E) for «>0 and sup Uy(x, E)<oo. 'Then the
following assertions hold:

(i) For each n, g,(¥)=[E*(¢1)]™" and II,(x, 4)=P*(X sE4) represents the

parameters of a R.S.P.
The corresponding R.S.P. are denoted by X" and the resolvent of X" by

uy.
(if) X" is an approximation of X in the following sense:
(5) lim U’ P fx)=U,f(x) forevery xE and fe&CyE).

We shall need instead of (5) a stronger result. For any compact set K,
a>0and feCy(E)

(6) lim U Wf(x) = Uyf(x) uniformly for x=K.

Considering the proof of Lemma 3.1 in [1] it is obvious that to obtain (6)
it is sufficient to prove the following condition:
(c) For any compact set LEE, >0 and £€>0, we may choose a compact set

K such that LC K and
) lim sup U$(x; CK)<¢ .

Through this paper we shall consider on E a metric d such that B,(x)=
(v; d(x,y)<<h) has compact closure for any 2>0 and x€E. For A>0 we

define T%, k=N by
T, = inf (¢; d(X,, X)>H),
Ti=T, and T}*'= Ti+ TyoOrh .

We shall also consider the function
q(k) = sup [EX(T,)]™ -

We note that g(k) and g,(x) are distinct notations. The function h—>q(k) is
monotone, so we may choose, for every =, k, and d, such that lim 4,=0, d,<h,

and

(8) Q(h dn)
- qh+d,)

Now we shall choose the above mentioned U% and V? in the following
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particular form: U}=B, (x;) and V=B, (x;) with x;, /&N, chosen such that
condition (4) is fulfilled. ¢} will be defined like above with respect to this
system of sets. The following two inequalities will be useful in what it follows

(9) Th,.—d,, <oi< Th,,+d, .

Now we assume that the following condition holds for X. There is some
a>>0 such that for every >0

sup E*(T},)<ainf E*(T,) .
*En ren

Then, by (9) we may conclude that
(10) aq(h,—d,) > (%) > g(hu+-d,) -
Now we are able to formulate the result of the paper.

Theorem. Let X be a standard process with state space E such that
(1) UuCKE))SCWE) for every a>0.
(i) linol P, f(x)=f(x) uniformly on E, for every f € C(E).
(iii) sup Uy(x, E)<<oo.
ep
(iv) There is some a0 such that for every h>>0
sup E*(T,)<ainf E*(T,) .
en ren

(v) There is some c=>0 such that for every x&E and h>0
E*(Di) = c||EV(Di)|
with
IEXp)l| = sup E” (p)  and
(11) Dj(w) = inf (¢; X(o)&E By(x)) .
Then, lim Py=P for every u (probability measure on E). (We denote by
P} the distribution of the R.S.P. X" which has initial measure p).

We note that condition (iv) implies

(vi) lim sup EX(T},) = 0.

h>0 *€R
That is because for any xE, lim E(T',)=0.
h-»0

The proof will go as follows: In the first part we establish the similarities
between X and X". We refer to Appendix 1 which presents the law of large
numbers in two forms which are appropriate to our deal. The first two Lem-
mas assure that we may use the results in Appendix 1. We use it in Lemma
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3 which is essential for the whole proof. Roughly speaking this lemma estab-
lishes the similarity between the “time” of X" and the time of X. Lemma 4
is a simple remark which assures that the “‘space” of X" and the “space” of X
coincide. These similarities are used in all the following, in order to evaluate
quantities referring to X" by their analogoues with respect to X.

In the second part of the proof we establish the tightness of the sequence
Pj, neN. The last part deals with the convergence of the marginal distribu-
tions. We use here Watanabe’s result in his stronger form (6). To do it we
prove first (c), and then we refer to Appendix 3 which enables us to check the
convergence of the marginal distributions by the convergence of the resolvents.

3. Proofs

We first define, for all >0,
(12) F\(t) = inf P*(T,<t) = 1— sup P(T,>1).
rER =3
F, is infimum of a family of increasing functions which are right continuous
and have left hand limits, then so is F,. Next, it is obvious that #,(0)=0, and

so, in order to show that F, is a distribution function on R,, it will suffice to
see that

(13) lim F,(7) = 1.
tpoo
By Chebyshev’s inequality P‘(T,,>t)<tlE”(T,,) and so
Fu)>1— L sup BXT,) .
t *em
Because U, (x, E)=E”<SNIEOX,dt>=E”(§) with &= inf(¢; X,=A), by (ii),
0
sup E*(T,)< sup E*(§)<<oo and so (13) is proved.
*eEn ren

We denote by F, the distribution on R, corresponding to F,. It is ob-
vious that for any ¢ and x

(14) Fy([0, £]) SPY(T,<t) and F,((¢, o)) = sup P (T, >t).
ren

In order to simplify notations we shall denote

(15) Yi= X, and Zj=X7,.

with 7 =inf(¢$; X{+X;) and 7,=7,,+700,,_ . Next, let us put
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t, = 2 sup ||[ECY(D; )| (see (11)).
=3
The following relations will be used to prove Lemma 1
(a) limz, =0,

a0 ©) Futet =)<(L).

Because T,=Dj P*as., (a) is a consequence of (v) and (vi). To prove (b)
we shall use exercise (10.25) in [2]: If a(¢)=sup P*(Dy>f), then

*€p
(17) P*(Dy>k-t)<a(t)*

(U is a measurable set and Dy=inf(¢; X;=U)). Next we consider t=¢, and
U=CB, (x) then Dy=Dj and by Chebyshev’s inequality we obtain

PY(D; >1,)< %E(Din).

We take the supremum over all yEE and considering the definition of ¢,
and @ we conclude that

At < -
By (14) and (17) we get (b)
Fy((k+ty, ©0)) = sup P(Dj,>k+1,)< (%)" :

Lemma 1. (a) For every a>0
lizn r zF,,a(dz)-[S: :zF,,”(dz)]—1 =0.
®) [ s n<t sup BTL) = L

where c is defined in (V).

Proof. Let be k,& NN such that k,,<ti <k,+1; we have

[ 3P @) < ut DF [yt )1, B F Tt 22))
By (16) we get
(18) S” 2F, (d2) <t (ky+2)27 .
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It is obvious that for every x€E

[ P i) > | T, P(do)
and so, by (v)
([ #Fude)> sup EX(TL)>¢ sup IEODi)I| =% 1,.
0 *€n rep

The right continuity of the trajectories assures that Dj >0 P*as. (see (11))
and then #,>0 and we may write

[r thn(dz)]-[r -zF,,”(dz)]~1 <t,,(k,,—i—2)2~kn.[% t”]_l — £ (b2,

a 0

The last term vanishes when #—oo and (a) is proved. Now we have
S: 2F, (d2)<t,F; ((0, o))+, hZ;F,,'((k-t,,,oo)) < % sup EX(T},)

and (b) is also proved.
“Lemma 2. For every k&N and 1>0,
(a) PHot>D<Fh(, ),
(b) Pi(m<h<eXi,-a, (0, 1),
(a is defined in (iv) and e, is the exponential distribution with parameter ).

Proof. For F and G distributions on R,
FxG(l, o) = S‘” F(l—1, o) G(dt)
0

and so, if F and F' are such that F(s, o)< F'(s, o) for every s€R,, then
(19) FxG(l, )< F'*G(l, o).

To prove (a) we proceed by induction on k.~ For k=1, (a) is (12). Using
the strong Markov property for two variables functions we get

Y"
PY(ot>1) = P(ol1-+alo0,r He)

>0 = | P (@1 1ot (o) Pldo)

(see (15)). By (9) and (12), for every fixed w

Yi-1(@) Yi_1(o)

P (o"1’>l—0'z—1(&)))<P (Th”+d,,>l—0';:—l(w))<Fh,,+d”(l“0'z—l(w)’ o)

and so
P(oi>1) < P*o(0h-1) " '*F) 14,(1, ).
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Now, using the induction hypothesis and (19) we finish the proof.
In order to prove (b) we obtain in the same way as above

Per<) = [P (r,<1m,0) Pi(do)

see ((15)). With respect to PZi-1(®), 7, is exponentially distributed with
parameter ¢,(Z}_1(w))<aq(h,—d,) (see (10)). Then

Pzz—l(w)(‘rl<l—7'k_1(m))<ed,,(,,”_d.)(0, I—74y(w)) for every o .
We conclude that
Pi(ri <) Pyoti'se,0,-4)(0, 1)
and the proof fiinishes like above.

Lemma 3. For fixed k>0 and >0 we define

k' = 16kac™!, &' = 328ac™! (c defined in (v) and a in (iv)),
k,eN such that k,<2kq(h,—d,)a<k,+1,
l,eN such that 1,<2q(h,—d,)a<l,+1,
A, = {w; 7,—7;>8 for every i, j such that [,<i—j<k,},
B, = {w; oct—0oi<<®' for every i, j such that 0<i—j<l},
(We shall use these notations throughout all the rest of the paper). Then
(a) lim Py(r,,<k) =0,
(b) lim PYo} >k')=0,
(¢) lim PHCA) =0,
(d) lim P¥CB,)=0.
We note that all these limits are uniform with respect to the family {u; p prob-
ability measure on E}.
(¢) limsup E*(c},; o}, >k')=0.
n  zep
The idea of this lemma is that both ¢} and 7, are sums of little quan-
tities with the same mean value. If we take k, (the number of terms in the
sum) such that k,a,~I (a, is the mean value), then o} ~/ and 7, ~I. This is

the idea of the law of large numbers and to prove the lemma we refer to
Appendix 1, which presents appropriate forms of this law.

Proof. (a) By Lemma 2.b
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Pi(7y,<k) <e;":(;"_ 4y (0, k).

lim aq(h,—d,) "k, = 2k

and so, by Lemma 3, Appendix 1 we get

lim €fs _, (0, k)=0 (independent of y).

(b) By Lemma 2.a,
Pi(ai >k)<F, ,j':’ig',”(k', SIF
By Lemma 1.b,
M(F 20 < (glht-d,))

and so
M(Fy 0,) < (2hglly—d)a) al,+-2.))

and by (8) we obtain
B M(F(h, +d,)k,< -+ +2ka — 882 _ %
" c c 2
Lemma 1.a assures that conditions in Lemma 1 and Corollary 2, Appendix 1
are fulfilled and so li?lF,,”H”(k’, 00)=0 and (b) is proved.
To prove (c) we note that for 7,j with i—j>1[, 7,—7;>7;,, —7; and so
CA4,c ;g (Tj+1,—7;<8). Then P}(CA,)< 2:. Pi(74,,—7;<8). By the Markov
n j<kn

property
Pi(711,—7;<8) = E;(PZ}(7,,<8))

which is dominated by e;“q’(';,”_dﬁ)(O, 8) (see Lemma 2.b) and so

PYCA,) <kuef a0, 9)
and so, by Lemma 3, Appendix 1 the term in the right of the above inequality

vanishes when #— oo,
To prove (d) we note that w&CB, implies that there is some 7, j<k,

such that 0<i—j<I,+1 and ¢/—0o">8".

Then, there is some p<< Rs_such that
I,+1

n

8/
0';(1,,+1) - 0'?»-1)(1,,+1))> 7 .
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We conclude that
8/
P#(CBn) < E P“<(02(1,+1)_O'?P—l)(l,,+1))>7)

k,

ith th, .
w1 € sum over p<< 41

we obtain

By the strong Markov property and Lemma 2.a

& &
p "((0'}(1,,+1>~0'Z‘p-1)<1,,+1))> 7) <F ;’:‘,f;;:”<7, °°)

for every p, and so
k & )
-, < n k(41 9
PY(CB,) [ PR, (2, o)
The proof ends like to the points (b) and (c).
To prove (e) we note that Lemma 2.a implies that

EX(o},; o, >k') = S zP‘oax;‘(dz)<S , #Ff, (d5).

(2>F) (2>k

Because

im F¥%s, =€,  with A<k’

the term in the right of the above inequality vanishes under lim sup and (e)
is proved.

Lemma 4. (Y}, k=N) has, with respect to P* the same distribution as
(Z#, ke N) with respect to P} (see (15)).

Proof. That is because both of them are Markov chains with initial distri-
bution x and kernel

TL,(x, dy) = PoX4(dy) .

Now, in order to prove the relative compactness of the sequence P4, nEN,
we shall use Theorem 2, page 429 in [3] which we write down for processes
with time [0, o). The tightness of P,, n&N, is equivalent to the following
conditions

(1) for every €>0 and k>0 there is some compact set K CE such that
lim P} (w; there is some <<k such that X, K)<& (We shall shorten the above

expression by writing “(e; ()t<k, X, EK)”.)
) 1;[13 lim P(w; Wi’ (X*)>€)=0 for every k>0, >0,

(3) l;n% im Pf(ew; Wio,n(X")>€)=0 for every £>0,
(4) lim im P¥(w; W5 0(X")>E)=0 for every £>0, >0,

§>0 *
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Wi, n(X) = sup (d(X,, X,); a<t<<s<<d),
Wi!y(X) = sup (min (d( X, X,), d(X,, X))

with the supremum taken over all ', ¢, # such that 0V (t—8) <t'<t<t”"<kA

(t+9).
To prove (1) it will suffice to show that for any £>0, £>0 and any com-

pact set K CE, there is some k'>0 such that:

li?n Pi(w; (A)t<k, X1 K)<PYo; ANk, X;EK)
and then we refer to the tightness of P* itself. By Lemma 3, (a) we know that
Ii—i?xP,‘,‘(w; ()t<k, XiEK)
= [im P{(w; (R)t<k, XiEK, 74, >k)< im Pi(w; (R)j<k,, Z}EK)

(k, is chosen, with respect to &, like in Lemma 3).
By Lemma 4 we know that the last term in the above inequality is equal

to im P¥(w; (R)j<k,, Y€ K) and by Lemma 3, (b) that is

li?l PYw; () <k, YiEK, i<k,
with &’ chosen in Lemma 3. Because the terms under the limit are dominated
by P¥w; (3)t<<k’, X,&EK), the proof of (1) is complete. (In what will follow

we shall frequently use the same way of passing from X" to X).
To prove (4) we note first that

Wi-s.0(X)<2 sup (X, Xi-s) -
k-5<ti<k

We have to show that for every k>0 and £>0

(20) lim [im P¥( sup d(X,, X,5)>6=0.

§>0 » k-8<t<
By the Markov property
Py sup d(X1, Xi_)>&) = | Pi(sup d(Xs, X1)>6)Pio(Xi-o)dv).
k-3<ti<k 0<t<§

Using Lemma 4, we obtain in the same way like above
P(sup (X5, X1)>€)<P(sup d(X, X)>8)+P(rys>8)+ P(a, <8)

with & and /, like in Lemma 3. Because the convergence in Lemma 3, (a), (b) is

uniform with respect to x&E, the two last terms vanish under th 8—0
implies that 8'—0 and so we have to prove that )
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lim lim S P( sup d(X,, X;)>€)Pho(X}-5) N (dx) = 0.
134

80 7
For a fixed >0, (1) assures that we may choose a compact set K, such that

21) lim Pl(w; (R)t<k, Xi¢EK,)<7y.

We dominate the above integral by
sup E*( sup d(X,, X;)>&)+Pho(X}_5) (CK,) .
*€Ky 0<t<y’

Proposition 1, Appendix 2 assures that the first term vanishes under lim. By (21),
for every >0 e

lim Plo(X7_,)(CK,)<n .

Because 7 is arbitrary small, the proof is complete.
An analogous proof goes for (3) and also for

im lim P* —
(22) I;E; lim Pi( Sup dX;, X,)>&) =0

for every ¢>0, £>0.
The last relation will be used later.
To prove (2) we define for a fixed 2>0 and £€>0 a discrete correspondent
of W//,, that is

T,: E*»— R

To(%y, *++, %) = sup min (d(x;, x;), d(x;, x,))
with i, j, pE N such that
i—(l A1) < j<i<p<kA(i-+(,+1))
(k, and /, are chosen with respect to & and & like in Lemma 3). By Lemma 3, (a), (c)
im PY(Wi/(X")>¢€) = im PWi!s>¢, A,, 74, >k) .
We note that for o€ 4, N (75, >k)
KX N(@)>€ = Ty(Zi(w), -+, Zi (@)>€.

Let be 0<t', ¢, "<k such that t—3<¢'<t<t"<t+8 and d(X7%, X})>¢,
d(X1, Xt/)<€. We define ¢ by 7;<t<7;, and j and p the corresponding in-
tegers with respect to ¢’ and ¢”

t’—tl<8 = T,-(co)—‘l'j+1(co)<8 .
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Because wE4,, it follows that ¢ —(j+1)</,, that is i—j</,+1. Because
wE(1y >k), 'Sk =7 (0)<k=p<k,

Xi=2!, Xt=27 and Xin=2Z}
(see (11)) implies that
min (d(Z}, Z}), d(Z1, Z3))<é&
and the above implication is proved. We may now conclude that

ﬁ?l PYWi!(X")>¢€)< Iim P(T(Z3, -+, Z} )>€) .
By Lemma 4 first and then by Lemma 3, (b), (d) the last term is equal to

fim PHT(YY, -+, Yi)>€, B, of,<k').

In the same way like above we may dominate this term by
P(Wy/ o(X)>€).
So we have proved that
l'?n P{W{!(X)>E) S PH W (X)>€).
k<co=>k'<o, §>0=38 -0,

and so we may refer to the tightness of X, and the proof of (2) is complete.

To prove the convergence of the marginal distributions we have to verify
the hypotheses of Lemma 3, Appendix 3.

The first one is an immediate consequence of (i) in our Theorem. For
(ii) we have to verify condition (c) enunciated in the beginning of the paper,
ie.

(c) for any compact set LCE, >0 and £>0, there is some compact set
K CFE such that
im sup U(x, CK)<é .

n il

To do it we shall prove that for every compact set KSE and k>0, we

may choose another compact set K SE such that KC K and

(23) [im sup U (x, CK)<e™ sup U,(x, CK)+e
” s rer

(R’ is defined with respect to k2 in Lemma 3). If (23) is true, we choose & such
that

&
e—ak< <
2
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and &’ such that e“k’8’<%. Then, Lemma 2, Appendix 2 assures that there

is some compact set K CE such that
sup U,(x, CK)<¢&'.
*esL

So, the compact set K mentioned in (23) is that needed in (c).

If A"=UU? over all i such that U?N K=, then by the definition of U?
we may choose a compact set K such that 4"C K for every nEN.

Next we prove the following inequality:

Tit+ i+
24) B " etogexta<E (| TogoXar.
o

Ti

Because X?=27? for 7;<t<7;;, and 7;,,—7;=7,00,,, we have
i i+1 i+1 i T

T
i i

Tie1 i+1
Sr eI o Xidt = IcKZ'i'S e dt<IpgoZim by, .

We dominate the term in the left of (24) by E;(IpxoZit'o6,,) which by the
strong Markov property is

Ei(IogoZiE%(m)) = T (Ipgdn)(%) -
By the definition of &} and K we have
% 0741 x 0741
E S 1 goXdt,>E (Lo Y* San 1dt)

o}

In the same way like above, the last term is equal to
IT: (Ipg ) ()
and (24) is proved.

Next, to prove (23), we shall change X" by X in the same way as above:

k =)
(25) UP(w, CK) = B || e Lpyo Xtdt4+ B | T ppoX,dt
k
The second term in the sum is dominated by e™#*. The first one is dominated
by

k
B3 ([, 1o Xtdt; T,,”>k>+lpz (e, <F).
a

By Lemma 3.a we may ignore the second term in the above sum. The first
one is dominated by
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x t‘ll -t o n
E(L e o Xt dt)
which by (22) is dominated by

o %
B ([ 1epe ,dt><E’(S fIcRoX,dt;ag_<k')
0 0

aﬂ
—{—Ex(sok" IogoXidt; a'ﬁﬂ?k') -

Ok
So "logeXidt <o},

and therefore we may dominate the second term in the sum by E*(a%,; ok, 2£')
which we may ignore (see Lemma 3.¢). To dominate the first term we note
that on o} <k’

ol 1’4 1’4
S o ICI?OX,dt< S ICROX,dt<e‘”k/ S e""“ICi{oX,dt
0 0 0
and therefore
/rok , .
B ([ 1egoX, dt; o, <k')<e* Uyx, CK).

The proof of (23) is complete and also that of (c).
We verify now the last condition in Lemma 3, Appendix 3. For every >0,
f € Uy(E) (uniformly continuous and bounded) and £€>0, there is some §,>0

such that
(26) lim sup Ef(| A(X7)—f(X?)|)<é

where the supremum is over all s such that t<<s<t+8,. We choose %,>>0 such
that

d(x. ) <me=> 1 f&)—F0) | <5

EX(IX)—AX)D<E(| (XN—AXD); d( X7, X7)<n.)
+ 2/ fIE((X5,X7)>7,) -

The first term is less as % and therefore
Iim sup E4(| f(XD)—A(X2)1)< < +2fIl Fm Ef(sup d(X7, X7)>7,)

(the supremum like above). (22) assures that we may choose 8, needed in
(26) and the proof is complete.

4. Appendices

Appendix 1.

Lemma 1. Let (F,),en be a sequence of distributions on R., (k,).ey a
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sequence of positive integers suck that lim k,a,—I with a,— Sw z2F,(d?). If
" 0

(a) lima,=0,

(b) lim 1 Sm 2F,(dz) =0 for every a>0,

a,

then
limF:('k' - 61 .

Proof. It will suffice to show that lim ¢,(¢)*»=¢~* with

D) = S: e F (dz) .

By (a), lim F,=¢&p and so lim ¢,(¢)=1. We may organize the above limit in
an exponential form and it remains to show that lim &,(@,()—1)=—:lt. By

1
the choose of %, that is lim __“(1—g,(¢))=1i. We write 1—g,(¢) in the follow-
ing form: ’

it s: oF(dz)+ S: z<i;StE>F,,(dz)+i [ z(s“‘_;—z — t)F,,(dz) .

1—cos tz sin 2
— "7 and z—
2 2

vanishes when z—0, therefore it will suffice to show that for such a function

a, lim S: za(2)F,(dz) =O0.

Both z2—

—t are bounded continuous functions which

Let M be such that |a(z)| <M for 2>0, and for a fixed £>0, a,>0 such
that 2<a,=|a(2)| <€.

1, S” sa(2)F(dz)| <L S 2 a(z) | Fo(dz)+ M S“ 3F(dz) .
a, Jo a, Jo ay Yoy

By (b) the second term of the sum vanishes when #—co. The first one is
dominated by &, which is arbitrary small, and so the proof is complete.

Corollary 2. [im k,a,<<I=> lim F}¥*s(l4-¢, o0)=0.

Lemma 3. If a,% o and lim}—el'=l+8 with k, &N, £€>0, then
lim kyef?+(0, 1)=0. @

Proof. Let (E, K, P) be a probability space and f,: E->R, nEN, a se-
quence of independent variables, e, distributed (e, is the exponential distribu-
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tion with parameter a). 1 fi» 1EN are independent and e, distributed and so
a

ef:"(O, l) — P(%ﬂf1+"'+‘;—”fk"<l) (fl"’ +fk an <l) ‘

tl n

By the choice of %,, for a sufficiently large #, we may dominate this term by

P(f—‘-——+ ',;;Jrf e (1+5)")<p( f———‘+',;;+f k—1]> ) = P (i Dy > i)
with
— %(1+ )_l.

1
By Chebyshev’s inequality we may dominate it by Eict S (E (fi—1))'dP. Be-
cause f; are independent with mean value 0, this is

k‘l 4(2 S (fi—1)*dP+ 2 S (f—l)zdPS (f]_l)zdp)

This sum is dominated by (Mk2) (kic)™! for a sufficiently large M. So,
lim k,e¥*%(0, 1)< lim k,M(kic)™* = 0.

Appendix 2. 'The first proposition follows from an idea exposed in [4].

Proposition 1. Let E be a L.C.C.B. space with a metric d such that B,(x)
is relatively compact, and X a standard process with semigroup (P,);50. If for every
fE€CLE), lim P,f=f uniformly on E, then for every compact set K ZE and §>0

t->»0

) lim sup P*( sup d( Xy, X)>€)=0.

h>0 *EK

Proof. We note first that to prove (1) will suffice to show that for every
LS GCE, L compact set and G relatively compact open set,
<h) =
(2) lhl_r’l;l sup P(Dpg<h) =0

(D4(w)=inf (t; X;(w) € 4) for any measurable set A4).

If (2) is true, the proof of (1) goes like this: for every x&K we choose
an open set V, and a compact one K, such that

xEV,CK,CByyx).
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We consider V,,, i€N, a finite covering for K. Then K,, i€N, will also
be a covering of K. For any x&K there is some <z such that x€ K, ,C B,,(x;),
therefore B, (x;) S By(x) and so DC’B,,(x)>DCB, (%:).  Because (S:lg,) (X, Xp)>
8)=(DCB!(x)<h) P* a.s., we may conclude that

sup P(sup d(Xo X) =&)< max sup P(Dep, iz <H) -

Now we take L;=K; and G;=B,;,(%;) (which is relatively compact), and (2)=>(1)
is proved.

_ To prove (2) we choose a relatively compact open set U such that LCUCS
UcCG and note that

() P Dpe<h)<PDgye<h, X,€U)+P(X,eCU).

Let be feC(E) such that I,;<f<I, Then PY(X,eCU)=(Pil y)(x)<
P, f(x) and for x L, f(x)=0. So,

sup P (X,eCU)< sup P, f(x)
= sup | P, f(x)—f(x) | = sup |Psg(x)—g(x)|

with g=1—f. Because U is compact, g&C,(E) and by our hypothesis this
term vanishes when 4—0.

To dominate the first term in (3) we note that X, » GEC’G and so if we de-
X
note Xp, cG
variables functions, we get

=Y and D ;=T by applying the strong Markov property for two

P(T<h X,€U) = PY(X, 10 € U)P*(dw)

(T<h, YECG)

<sup sup P'(X,€U).
t<h y= CG

For feC(E) such that Iy < f <],
P(X,el) = (PI))<P:f(y) = |Pf(y)—f)I
for every yeCG. supp. f ©G which is compact and the proof ends.

Lemma 2. Let Q be a kernel on E, L.C.C.B. space. If Q(Cy(E))<SCy(E),
then, for every compact LCE and >0, there is some compact set K, FE such
that

sup Q(x, CK,)<€ .
*eL

Proof. For every x&L we choose K,, K; compact sets and f,eCyE)
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such that Q(x,CK,)<¢, K,C IntK] and I, <f,<Ix;. It is obvious that
O(—f)(x)<e. y—=O(I—f.)(y) is a continuous function, so we may choose
V, such that Q(I—f,)(y)<<¢ for every yeV,. Let V,, i€N be a finite cover-
ing of L. Then, the compact K, will be U V,,. Indeed, for an x&L there
exists 7 such that xeV,, <

Q(x’ C’K,)QQ(x, CK,{,)<Q(x, 1~'f-’f.‘)<£ .

Appendix 3. We introduce first some notations:

Rt = (21, ==+, ); £;20), sF = (515 ***5 S2)
dsk — dsl .ee dsk

A(at, s*) = exp (— g: asi) -

For a permutation o on (1, 2, -++, k) we denote
Aﬁ = {(81, ) sIe); Ogsu-(l)g'" <s¢r(k)} .

If o is the identic permutation we ignore it and write A*. We consider a stand-
ard process and for 0<#<--<#, and f;EC,(E) i<n we define

Ush = fu = B* [, Ala, ) TLAX. )"

We note that Ugfi:f, is the Laplace transform for the distribution
F(dt*) = h(¢)dt* with A(t*) = E*( ,ng fi(X:) .
We define also
Hoatfirfo=B* [, A, &) TLAX. )5

If o is the identic permutation, we ignore it in our notation. Because m(0A%)=0
(m is the Lebesgue measure),
) Usfyreefo= S H, wfire-fy

Lemma 1. Let X" neN and X be standard processes with state space E,
L.C.C.B., such that:

(1) Us(CHE))<SCYE),
(ii) for every f&Cy(E), lim UL f=U,f uniformly on compacts.

Then, for every a* <R’ and f,=C,(E) i<k
lim Ug’k) 1"'fk = Ua"fl"'fh
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(U$ is defined with respect to X" in the same way as Uy with respect to X. For
k=1 we shall write o instead of o', so U (UP) is the resolvent of X(X")).

Proof. (1) assures that it will suffice to prove
lim HOpfye fo = H, gifrefi

It is no loss of generality to do it only when & is the identic permutation.
We shall proceed by induction on k. For k=1, that is (ii). By the Markov
property we obtain

B TLA(X.) = B*( I fi(X)EX s Xopes, ) -
Then, applying twice Fubini’s theorem we get

Hofoby= | o= a(@ s 0B T A A([7 emnfi(X,,, s )}

Sk-1
By the changement s=s,—s,_, we get

[} e fioyms, s = oo [ e £ s
s 0

k-1

and therefore

EXsh—l(S e_w‘S‘f(Xsh—sk_l)dsk) =€ ‘Sk-lU"kf"(Xsh—l) '

Sk-1

Condition (i) assures that U,, f,& Cy(E) and we may write

Hypfyoo fo = Hgr-1fyo+ foop g4
with
Bt =(By 'y Br-1), Bi=oay for i<k—2,
Bi-1 = -1+ and g, :fk—an.fk'
We may establish an analogous relation for every n&N. In this case B*!
will be the same, but

gio1 = fia U.(.”,,) 3

which is no more continuous. Nevertheless the definition of H;’;’_1 makes
sense, and we write

H;":)‘1f1"'fk—zgz—l-‘Hﬁ”"fl‘"fk-zgk-1 = di+d;
with
di = H;”:)'lfl"'fk—zgz—l”‘H;’;)—1f1"'fk-2gk—1
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d; = H;'i)-xfl“'fk-zgﬂ-l“HB”'lfl'"fk-zgk—l

2-1EC,(E) and by the induction hypothesis we get limd;=0. For a fixed
&£>0, let K,C E be a compact such that
Hﬂ‘-lfl‘..fk—ZVIcK; <$ .

We choose another compact set K’ such that K< Int K’ and a function
@& Cy(E) such that

Ik, <p<Ix
di = HQL froo foo(8h-1—8e-)P)+Hip- fro fr-o (811 —1-) I—9)) -

We dominate the first term of the sum by
JL Al sup 1gioi—gia | < TL Il sup | URfu— U, fil
which by (ii) vanishes when #—oco. The second term is dominated by
211 fill W femsll HG s fro+Fump(1— ) -
which by the induction hypothesis converges to

2/l 1 femillHgr-1fro fo—a(1—) -
By the choice of K, and ¢ this term is dominated by 2||f,l|fe-.l|€. € is arbitrary
small and so the proof is complete.
Lemma 2. Let F,, nEN, and F be distributions on R of the form
F,(ds*) = h,(s")ds* and F(ds*) = h(s")ds* .

If
(i) lim F,=F,
(ii) A, nEN, are equal right continuous,
then
lim k(") = k(") ~ for every t*eR% .

Proof. Let us suppose that there is some #*&R% such that lim &,(¢*) =A(z*).

By passing to a subsequence we may assume that for some >0, k,(t*)>h(t")+&
for every n€N. Let §, be a constant such that for every s*=(s, -+, s;) with

t;<s;<t;+8, for every i<k, holds that |Ah(t*)—h(s")| <—§— and |&,(t*) — h,(s*)|
<§- for every nEN.

We define A=1] [¢; t;+38,]. Then F(0A4)=0 and therefore lim F,(4)=
. i<k ”
F(4), that is
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() lim | (h(H—h(sH)ds* =0,
() —h(5") = (o) —a (1)) Ui () — () () — B())

For s*€ A the first and the last term of the above sum are dominated by %,

and the middle term is greater than & So h,,(s")—h(s")?% for s*€4,
which is in contradictory with (2).

Lemma 3. Let X, nEN and X be standard processes. If

(1) Us(Cy(E)SCYE),
(i1) li”m UPf=U,f uniformly on compacts for every a>0 and f € CyE),

(iit) lérrg lim sup 8E,,( | (XD —f(X3))=0 for every f €Cy(E) and t>0,

"SI+

then, for every t,<t,---<t, and f,€ U,E) i<k,
©) lim Ez (11 f(X7)) = E*( L1 f(X4) -

Proof. Lemma 3 is a simple consequence of Lemma 1 and Lemma 2.

ReMARK. (3) is sufficient to assure the convergence of the marginal dis-
tributions.
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