ON THE STRICT CLASS NUMBER OF $\mathbf{Q}(\sqrt{\mathbf{2 p}})$ MODULO $16, p \equiv I(\bmod 8)$ PRIME

Pierre KAPLAN and Kenneth S. Williams

(Received August 6, 1982)

Let $p \equiv 1(\bmod 8)$ be prime so that there are integers a, b, c, d, e, f with

$$
\left\{\begin{align*}
& p=a^{2}+b^{2}=c^{2}+2 d^{2}=e^{2}-2 f^{2} \tag{1}\\
& a \equiv 1(\bmod 4), b \equiv 0(\bmod 4), c \equiv 1(\bmod 4), \\
& d \equiv 0(\bmod 2) \\
& e \equiv 1(\bmod 4), f \equiv 0(\bmod 4)
\end{align*}\right.
$$

Throughout this note we consider only those primes p for which the strict class number $h^{+}(8 p)$ of the real quadratic field $\boldsymbol{Q}(\sqrt{2 p})$ (of discrimanant $8 p$) satisfies

$$
\begin{equation*}
h^{+}(8 p) \equiv 0(\bmod 8) \tag{2}
\end{equation*}
$$

These primes have been characterized by Kaplan [4]. Indeed such primes must satisfy [5]

$$
\left\{\begin{array}{l}
p \equiv 1(\bmod 16), a \equiv 1(\bmod 8), b \equiv 0(\bmod 8), c \equiv 1(\bmod 8),\left(\frac{c}{p}\right)=1 \tag{3}\\
d \equiv 0(\bmod 4), e \equiv 1(\bmod 8),\left(\frac{e}{p}\right)=+1
\end{array}\right.
$$

In this note we give a new determination of $h^{+}(8 p)$ modulo 16 , and compare it with the determination given by Yamamoto in [15].

We begin by introducing some notation. We denote the fundamental unit (>1) of $\boldsymbol{Q}(\sqrt{2 p})$ by $\eta_{2 p}$. As one and only one of the equations $V^{2}-2 p W^{2}$ $=-1,-2$, or +2 is solvable in integers V, W, we define

$$
E_{p}= \begin{cases}-1, & \text { if } V^{2}-2 p W^{2}=-1 \text { solvable } \\ -2, & \text { if } V^{2}-2 p W^{2}=-2 \text { solvable } \\ +2, & \text { if } V^{2}-2 p W^{2}=+2 \text { solvable }\end{cases}
$$

Clearly the norm $N\left(\eta_{2 p}\right)$ of $\eta_{2 p}$ satisfies

$$
N\left(\eta_{2 p}\right)= \begin{cases}+1, & \text { if } E_{p}= \pm 2 \\ -1, & \text { if } E_{p}=-1\end{cases}
$$

Further we let

$$
\varepsilon_{2}=1+\sqrt{2}, \varepsilon_{p}=T+U \sqrt{p}
$$

denote the fundamental units (>1) of $\boldsymbol{Q}(\sqrt{2})$ and $Q(\sqrt{p})$ respectively, and set

$$
\begin{align*}
& e_{2}=-\sqrt{2} \varepsilon_{2}^{\prime}=-\sqrt{2}(1-\sqrt{2})=2-\sqrt{2} \tag{4}\\
& e_{p}=-\sqrt{p} \varepsilon_{p}^{\prime}=-\sqrt{p}(T-U \sqrt{p})=p U-T \sqrt{p}
\end{align*}
$$

Finally the fundamental unit of $\boldsymbol{Q}(\sqrt{2 p})$ of norm +1 is denoted by $R+S \sqrt{2 p}$ so that

$$
R+S \sqrt{2 p}= \begin{cases}\eta_{2 p}, & \text { if } N\left(\eta_{2 p}\right)=+1 \\ \eta_{2 p}^{2}, & \text { if } N\left(\eta_{2 p}\right)=-1\end{cases}
$$

Our starting point is the following result of Bucher [1:p.8].
Lemma 1. If $p \equiv 1(\bmod 8)$ is a prime such that $h^{+}(8 p) \equiv 0(\bmod 8)$ then

$$
\begin{align*}
& (-1)^{\lambda(p)}\left(\frac{e_{2}}{p}\right)_{4} \equiv R^{h^{+(8 p) / 8}(\bmod p)} \tag{6}\\
& (-1)^{\lambda(p)}\left(\frac{e_{p}}{2}\right)_{4} \equiv R^{h+(8 p) / 8}(\bmod 4) \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda(p)=\text { number of quadratic residues of } p \text { less than } p / 8 \tag{8}
\end{equation*}
$$

[In the biquadratic residue symbols e_{2} and e_{p} are to be taken modulo p and 16 respectively.]

It is convenient to set

$$
\begin{equation*}
\alpha=(-1)^{\lambda(p)}\left(\frac{e_{p}}{2}\right)_{4}, \quad \beta=(-1)^{\lambda(p)}\left(\frac{e_{2}}{p}\right)_{4} . \tag{9}
\end{equation*}
$$

As (see for example [1: p. 4] or [8])

$$
\left\{\begin{array}{l}
E_{p}=-1 \Rightarrow R \equiv-1(\bmod p), R \equiv-1(\bmod 4) \tag{10}\\
E_{p}=-2 \Rightarrow R \equiv-1(\bmod p), R \equiv 1(\bmod 4) \\
E_{p}=+2 \Rightarrow R \equiv 1(\bmod p), R \equiv-1(\bmod 4)
\end{array}\right.
$$

we note that Lemma 1 together with (10) gives immediately the following supplement to the biquadratic reciprocity law of Scholz type proved in [2].

Corollary 1. If $p \equiv 1(\bmod 8)$ is a prime such that $h^{+}(8 p) \equiv 0(\bmod 8)$ then

$$
\left(\frac{e_{2}}{p}\right)_{4}\left(\frac{e_{p}}{2}\right)_{4}= \begin{cases}+1, & \text { if } N\left(\eta_{2 p}\right)=-1 \\ (-1)^{k+(8 p) / 8}, & \text { if } N\left(\eta_{2 p}\right)=+1\end{cases}
$$

Next we examine each of the three quantities $\lambda(p),\left(\frac{e_{2}}{p}\right)_{4},\left(\frac{e_{p}}{2}\right)_{4}$, which appear in α and β.
First, from (8), we have

$$
\lambda(p)=\frac{1}{2} \sum_{0<x<p / 8}\left\{1+\left(\frac{x}{p}\right)\right\},
$$

that is

$$
\begin{equation*}
\lambda(p)=\frac{1}{16}(p-1)+\frac{1}{2} \sum_{0<x<p / 8}\left(\frac{x}{p}\right) . \tag{11}
\end{equation*}
$$

Now it is well-known that for primes $p \equiv 1(\bmod 8)$ (see for example [3: p. 694])

$$
\begin{equation*}
\sum_{0<x<p / 8}\left(\frac{x}{p}\right)=\frac{1}{4}(h(-4 p)+h(-8 p)), \tag{12}
\end{equation*}
$$

where $h(-4 p)$ and $h(-8 p)$ are the class numbers of $\boldsymbol{Q}(\sqrt{-p})$ and $\boldsymbol{Q}(\sqrt{-2 p})$ respectively. Hence, from (11) and (12), we obtain

$$
\lambda(p)=\frac{1}{16}(p-1+2 h(-4 p)+2 h(-8 p)) .
$$

Then appealing to the easily proved result

$$
\begin{equation*}
\frac{p-1}{16} \equiv \frac{a-1}{8}(\bmod 2) \tag{13}
\end{equation*}
$$

we have

$$
\begin{equation*}
(-1)^{\lambda(p)}=(-1)^{(a-1+h(-4 p)+h(-8 p)) / 8} . \tag{14}
\end{equation*}
$$

Secondly, by a theorem of Emma Lehmer [9], we have

$$
\left(\frac{\varepsilon_{2}}{p}\right)_{4}=(-1)^{d / 4}
$$

and so by (4) we obtain

$$
\left(\frac{e_{2}}{p}\right)_{4}=\left(\frac{2}{p}\right)_{8}(-1)^{d / 4}
$$

Now by the Reuschle [11]-Western [12] criterion for 2 to be an eighth power (see also [13]), we haae

$$
\left(\frac{2}{p}\right)_{8}=(-1)^{b / 8}
$$

so

$$
\begin{equation*}
\left(\frac{e_{2}}{p}\right)_{4}=(-1)^{(b+2 d) / 8} \tag{15}
\end{equation*}
$$

Thirdly, as $h^{+}(8 p) \equiv 0(\bmod 8)$, we have $h(-4 p) \equiv 0(\bmod 8)$ [4], and so $T \equiv 0(\bmod 8)[6]$. Moreover, as $p \equiv 1(\bmod 8), \sqrt{p}$ is defined modulo 16 and is odd, so that $T \sqrt{p} \equiv T(\bmod 16)$, and we have from (5), as $p \equiv 1(\bmod 16)$,

$$
\left(\frac{e_{p}}{2}\right)_{4}=(-1)^{(p U+T-1) / 8}=(-1)^{(T+U-1) / 8}
$$

Appealing to (13) and the easily-proved result

$$
U \equiv \frac{1}{2}(p+1)(\bmod 16)
$$

as well as a theorem of Williams [14]

$$
h(-4 p) \equiv T(\bmod 16)
$$

we obtain

$$
\begin{equation*}
\left(\frac{e_{p}}{2}\right)_{4}=(-1)^{(a-1+h(-4 p)) / 8} \tag{16}
\end{equation*}
$$

From (9), (14), (15), (16), we see that

$$
\begin{equation*}
\alpha=(-1)^{h(-8 p) / 8}, \beta=(-1)^{(a-1+b+2 d+h(-4 p)+h(-8 p)) / 8} . \tag{17}
\end{equation*}
$$

Then by Lemma 1 we obtain the following theorem.
Theorem. If $p \equiv 1(\bmod 8)$ is a prime such that $h^{+}(8 p) \equiv 0(\bmod 8)$ and α and β are as given in (17), then

$$
\begin{aligned}
& \alpha=\beta=1 \quad \Rightarrow h^{+}(8 p) \equiv 0(\bmod 16) \\
& \alpha=1, \beta=-1 \Rightarrow h^{+}(8 p) \equiv 8(\bmod 16), E_{p}=-2 \\
& \alpha=-1, \beta=1 \Rightarrow h^{+}(8 p) \equiv 8(\bmod 16), E_{p}=+2 \\
& \alpha=\beta=-1 \quad \Rightarrow h^{+}(8 p) \equiv 8(\bmod 16), E_{p}=-1
\end{aligned}
$$

As an immediate consequence of our Theorem we have the following corollary.

Corollary 2. If $p \equiv 1(\bmod 8)$ is a prime such that $h^{+}(8 p) \equiv 0(\bmod 8)$ then

$$
\left\{\begin{array}{c}
h^{+}(8 p) \equiv T+a+b+2 d-1(\bmod 16), \text { if } N\left(\eta_{2 p}\right)=+1 \tag{18}\\
0 \equiv T+a+b+2 d-1(\bmod 16), \text { if } N\left(\eta_{2 p}\right)=-1
\end{array}\right.
$$

and

$$
\begin{cases}h(-8 p) \equiv 0(\bmod 16), & \text { if } E_{p}=-2 \tag{19}\\ h(-8 p) \equiv h^{+}(8 p)(\bmod 16), & \text { if } E_{p}=-1,+2\end{cases}
$$

We remark that the congruences in (18) appear to be new but that those of (19) are contained in [7], [8].

Finally we compare our Theorem with the following result of Yamamoto [15].

Lemma 2. If $p \equiv 1(\bmod 8)$ is a prime such that $h^{+}(8 p) \equiv 0(\bmod 8)$ then

$$
\begin{aligned}
& \left(\frac{e}{p}\right)_{4}=\left(\frac{z-2^{h(p)}}{2}\right)_{4}=1 \Rightarrow h^{+}(8 p) \equiv 0(\bmod 16) \\
& \left(\frac{e}{p}\right)_{4}=1,\left(\frac{z-2^{h(p)}}{2}\right)_{4}=-1 \Rightarrow h^{+}(8 p) \equiv 8(\bmod 16), E_{p}=-2 \\
& \left(\frac{e}{p}\right)_{4}=-1,\left(\frac{z-2^{h(p)}}{2}\right)_{4}=1 \Rightarrow h^{+}(8 p) \equiv 8(\bmod 16), E_{p}=+2 \\
& \left(\frac{e}{p}\right)_{4}=-1,\left(\frac{z-2^{h(p)}}{2}\right)_{4}=-1 \Rightarrow h^{+}(8 p) \equiv 8(\bmod 16), E_{p}=-1
\end{aligned}
$$

where $h(p)$ is the class number of $\boldsymbol{Q}(\sqrt{p})$ and (z, w) is a solution of

$$
z^{2}-p w^{2}=2^{h(p)+2}, \quad z \equiv 2^{h(p)}+1(\bmod 4) .
$$

Clearly from our Theorem and Lemma 2 we have the following corollary.
Corollary 3. If $p \equiv 1(\bmod 8)$ is a prime such that $h^{+}(8 p) \equiv 0(\bmod 8)$ then

$$
(-1)^{h(-8 p) / 8}=\left(\frac{e}{p}\right)_{4}
$$

However corollary 3 is not quite as general as the following result of Leonard and Williams [10: Theorem 2] (since it is possible to have $h(-8 p) \equiv 0(\bmod 8)$ but $h^{+}(8 p) \equiv 0(\bmod 8)$, for example $\left.p=73\right)$:

$$
(-1)^{k(-8 p) / 8}=\left(\frac{e}{p}\right)_{4}
$$

if p is a prime such that $h(-8 p) \equiv 0(\bmod 8)$ and e is chosen so that $e \equiv 1(\bmod 8)$. We remark that Yamamoto [15] has shown that $(-1)^{h(-8 p) / 8}=\left(\frac{2 c}{p}\right)$, if $p \equiv 1$ $(\bmod 8)$ is a prime such that $h(-8 p) \equiv 0(\bmod 8)$.

We conclude with a few examples.
Example 1. $p=113$
Here $a=-7, b=8, c=9, d=4, e=25, f=16$,

$$
h(-4 p)=8, \quad h(-8 p)=8
$$

so

$$
\alpha=-1, \beta=-1
$$

Hence, by Theorem, $h^{+}(8 p) \equiv 8(\bmod 16)$ and $E_{p}=-1$.
Indeed $h^{+}(8 p)=8$ and $15^{2}-226 \cdot 1^{2}=-1$.
Example 2. $p=353$
Here $a=17, b=8, c=-15, d=8, e=49, f=32$,

$$
h(-4 p)=16, \quad h(-8 p)=24
$$

so

$$
\alpha=-1, \beta=+1
$$

Hence, by Theorem, $h^{+}(8 p) \equiv 8(\bmod 16)$ and $E_{p}=+2$.
Indeed $h^{+}(8 p)=8$ and $186^{2}-706 \cdot 7^{2}=+2$.
Example 3. $p=1217$
Here $a=-31, b=16, c=33, d=8, e=97, f=64$,

$$
h(-4 p)=32, \quad h(-8 p)=32
$$

so

$$
\alpha=+1, \beta=+1
$$

Hence, by Theorem, $h^{+}(8 p) \equiv 0(\bmod 16) . \quad$ Indeed $h^{+}(8 p)=16$.
Example 4. $p=257$
Here $a=1, b=16, c=-15, d=4, e=17, f=4$,

$$
h(-4 p)=16, \quad h(-8 p)=16
$$

so

$$
\alpha=+1, \beta=-1
$$

Hence, by Theorem $1, h^{+}(8 p) \equiv 8(\bmod 16)$ and $E_{p}=-2$.
Indeed $h^{+}(8 p)=8$ and $68^{2}-514 \cdot 3^{2}=-2$.

References

[1] J. Bucher: Neues uiber Pell'sche Gleichung, Naturforschende Gesellschaft Mitteilungen Luzern 14 (1943), 1-18.
[2] D.A. Buell and K.S. Williams: An octic reciprocity law of Scholz type, Proc. Amer. Math. Soc. 77 (1979), 315-318.
[3] C.F. Gauss: Untersuchungen über höhere Arithmetik, Chelsea, 1965.
[4] P. Kaplan: Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique, J. Math. Soc. Japan 25 (1973), 596-608.
[5] P. Kaplan: Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math. 283/284 (1976), 313-363.
[6] P. Kaplan: Unités de norme -1 de $\boldsymbol{Q}(\sqrt{p})$ et corps de classes de degré 8 de $\boldsymbol{Q}(\sqrt{-p})$ où p est un nombre premier congru à 1 modulo 8, Acta Arith. 32 (1977), 239-243.
[7] P. Kaplan: Nouvelle démonstration d'un congruence modulo 16 entre les nombres de classes d'idéaux de $Q(\sqrt{\overline{-2 p}})$ et $Q(\sqrt{2 p})$ pour p premier $\equiv 1(\bmod 4)$, Proc. Japan Acad. Ser. A 57 (1981), 507-509.
[8] P. Kaplan and K.S. Williams: On the class numbers of $\boldsymbol{Q}(\sqrt{ \pm 2 p})$ modulo 16 , for $p \equiv 1(\bmod 8)$ a prime, Acta Arith. 40 (1982), 289-296.
[9] E. Lehmer: On the quartic character of quadratic units, J. Reine Angew. Math. 268/269 (1974), 294-301.
[10] P.A. Leonard and K.S. Williams: On the divisibility of the classs numbes of $\boldsymbol{Q}(\sqrt{-p})$ and $\boldsymbol{Q}(\sqrt{\overline{-2 p}})$ by 16, Canad. Math. Bull. 25 (1982), 200-206.
[11] C.G. Reuschle: Mathematische Abhandlung, enthaltend neue Zahlen-theoretische Tabellen, Programm zum Schlusse des Schuljahres 1855-56 am Königlichen Gymnasium zu Stuttgart (1856), 61pp.
[12] A.E. Western: Some criteria for the residues of eighth and other powers, Proc. London Math. Soc. (2) 9 (1911), 244-272.
[13] A.L. Whiteman: The sixteenth power residue character of 2, Canad, J. Math. 6 (1954), 364-373.
[14] K.S. Williams: On the class number of $\boldsymbol{Q}(\sqrt{-p})$ modulo 16, for $p \equiv 1(\bmod 8)$ a prime, Acta Arith. 39 (1981), 381-398.
[15] Y. Yamamoto: Divisibility by 16 of class numbers of quadratic fields whose 2class groups are cyclic, Osaka J. Math. 21 (1984), 1-22.

Pierre Kaplan

U.E.R. de Mathématiques

Université de Nancy
Nancy, France
Kenneth S. Williams
Department of Mathematics and Statistics Carleton University
Ottawa, Ontario
Canada K1S 5B6

