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1. Introduction

In [2], a pseudo-symmetric set is defined as a binary system (Sy o) satisfy-
ing (1) aoa=a, (2) (aob)oc=(aoc)o(boc) and (3) a mapping σa: x*->χoa is a permu-
tation on S. The object of this paper is to develop a structuie theory for pseu-
do-symmetric sets. Denote σa by σ(a). Then σ is considered as a mapping of
S to the group of permutations on S satisfying the fundamental identity σ(aσ(b))
= σ(b)~lσ(a)σ(b), which results from (2). The mapping σ is called a pseudo-
symmetric structure on S. The group of automorphisms generated by all
σa is denoted by G(S) or simply by G. The subgroup of G generated by all
σϋlσb is denoted by H(S). H(S) is called the group of displacements of S
according to the terminology in the theory of symmetric sets. It was found
in previous works (See [1] and [2]) that there is a close connection between
the structure of S and that of H(S). In this paper, we shall investigate this
connection more closely to find some structure theorems on S. To develop
structure theory, we start with the concept of homomorphisms of our sets,
which can be defined in a natural way. However, the concept of the kernel
of a homomorphism is not available. To replace it, we introduce the concept
of normal decompositions, which was already used in previous works (it was
called coset-decompositions). Then, a more important concept is introduced.
It is that of the group of displacements for a normal decomposition. As in
the usual structure theory of groups, then, we proceed to consider sub- and
factor-normal decompositions and the group of displacements for them. In
the previous works, the structure of simple pseudo-symmetric sets was dis-
cussed. In this paper, we shall obtain a structure theorem on solvable (or
nilpotent) pseudo-symmetric sets: S is solvable (or nilpotent) if and only
if H(S) is so. Lastly we remark that the theory developed here is more general.
We do not need the conditions "effectiveness'' and "transitivity". Also the
condition (1) of the pseudo-symmetric set is not needed except for the main
theorem of simple pseudo-symmetric sets. It should be also noted that the
concept of normal decompositions can be applied for more general binary sys-
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terns, for example, for groupoids.

2. Homomorphisms and normal decompositions

A homomorphism / of a pseudo-symmetric set S to a pseudo-symmetric
set T is a mapping/ of S to T such that f(a°b)=f(a)°f(b). The pseudo-sym-
metric structure σ is a homomorphism of S to G, the latter being considered
as a pseudo-symmetric set by definition: χoy=y~1χy. (x, y^G.) This is

clear from the fundamental identity given in 1. Denote the image of S by
σ by I(S) or simply by /, i.e., I={σa\a^S}. Let K and L be groups, which
are also considered as pseudo-symmetric sets as above. A group-homomor-
phism of K to L is naturally a pseudo-symmetric set-homomorphism. Es-
pecially, the natural homomorphism v\ G->G/N for a normal subgroup N
is a (pseudo-symmetric set-)homomorphism. More geneially, let T be a pseudo-

symmetric subset of G. Then, the mapping T -» TN/N is a homomor-
v

phism. Thus, we have a homomorphism of S to IN/N through S-+I-+INJN.

Let/: S-*T be a homomorphism. We define an equivalent relation on S:
a~b if and only if f(a)=f(b). Then, S is decomposed into equivalent classes:

S=\jSh where S^f'1^) for some /$ eT. It satisfies that (i) G induces a
group of pei mutations on X—{Si}i9 the set of classes Si9 and (ii) σa and σ$
induce the same permutation on X if a and ό belong to a same class 5, . Con-

versely, suppose that S= \jSf with SiΓiSj=φ if ίΦj" and that the above con-
ditions (i) and (ii) are satisfied. Then, we can define a pseudo-symmetric
structure σ on X such that σ(Si) is the permutation on X induced by σ(ai)

where a^S^ In this case, the mapping tfί H->5ί is a homomorphism of S
to X9 and the decomposition 5= U 5, coincides with the decomposition of S
relative to the homomorphism S-+X. We call a decomposition of S satis-

fying (i) and (ii) a normal decomposition of 5 and denote it by D: S= U Sf . The
pseudo-symmetric set X={5f} will be denoted by S/D. Thus, there is a

homomorphism of S onto S/D and the decomposition associated with it is D.
Two trivial examples: Let {e} be a one-point trivial pseudo-symmetric set
and consider the trivial homomorphism S-* {e} . The normal decomposition
associated with it is S=S. We denote this decomposition by S, which will
give no complication. Thus, S: S—S. The factor pseudo-symmetric set
in this case is trivial; S/S^{e}. The second trivial example comes from the
identity homomorphism S-+S. We denote the normal decomposition associ-
ated with it by E. Thus, E: S— U {#}, i.e., each class is a one-point set {a}
(a<=S). We have S/E—S.

Let TV be a normal subgroup of G. As was given before, there is the homo-

morphism S-+ININ. We denote the normal decomposition associated with

it by DN. We have
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(i) SIDN^ININ.
Note that DN is given by the equivalence: a~b if and only if σa~σι, mod N.
If JV=G, then DG=S (the trivial decomposition). If N=(l) (the identity),
then the decomposition D^ is given by S= \JS{ with Si={a&S\σa=σa{} for
fixed a{. We have S/Dω^I.

Let/: S->T be a homomorphism of 5 onto Γ. Then S/D^T, where
Z) is the normal decomposition associated with /. G(S) induces a group of
automorphisms on S/D in a natural way. So, we have a homomorphism/*:
G(S)-+G(T). /* is onto because /*(σβ)=σ(/(α)) (if αe 5) by definition and
G(T) is generated by σ(f(a)) (note that /is onto.).

Lemma 1. Let N be a normal subgroup of G, and f the homomorphism
S-*S/DN. Then, the kernel Koff*: G-*G(SIDN) is a normal subgroup of G
containing N and K/N^Z(G/N)y the center of G/N.

Proof. We have the homomorphism /': S-»IN/N. Naturally, K coin-
cides with the kernel of (/')*. If peG, then (/')*(/>) is the conjugation by p
on IN/N. (This is seen by taking p— <rβ.) It is clear that K contains N. Since
IN/N generates G/N9 the latter part of Lemma 1 is also clear.

3. Subdecompositions, factor decompositions and groups of dis-
placements of normal decompositions

Let Dλ: S= (JS{ and D2: S= U T} be two normal decompositions of S.
When the decomposition D2 is finer than Dly i.e., Si^T — Tj or φ, we say
that D2 is a (normal) subdecomposition of D1 and denote D2<D±. So, we
have E<D<S for every normal decomposition D. Let M and N be normal
subgroups of G. Then,

(2) DM<DN if MC

Suppose that D2<Dlt Then, there exists a homomorphism S/D2-*-S/Dly

where an element Tj of S/D2 is mapped to an element S, of S/Di if Tj^Si.
The normal decomposition of S/D2 associated with the homomorphism is de-
noted by A/A> and is called a factor normal decomposition. Thus, A/^2:

2^= U ̂  where S,-= {Γy | Tj^St} . We have

(3)

Now we define the group of displacements of a normal decomposition
D: S=\jSi by H(D}=^lσb\a, b<=Siy ί=l, 2, •->. ff(Z>) is a normal sub-
group of G contained in H(S). Note that H(S) for the decomposition S co-
incides with the group of displacements H(S) of the pseudo-symmetric set S.
Let /: S-»S/D and /* : G-*G(S/D) for a normal decomposition D. Then,
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is contained in the kernel of /*. Besides the trivial example H(S), we

have another trivial example: H(E)=(l). There is another interesting exam-
ple. Let S' denote the orbit-decomposition of S', S': S=\J(aG). It is easy
to see that it is a normal decomposition. 5/5' is the set of G-orbits and is

a trivial pseudo-symmetric set. In this case, we have H(S')=G', the com-

mutator subgroup of G. For, σ71σΐlσ aσt=σ71σ(aσ(*>)GH(S'). Clearly we
have

(4) 7Γ(Z>2)^#(A) if A<

Especially, G'=H(S')^H(S), which is also clear from definition. Let N be

a normal subgroup and D a normal decomposition. Then,

(5) H(DN)c:N.

(6)

Generally, D is not equal to DH(D). But, we have that H(DH(D)/D)=(ί). For,

H(DH(D)ID) is a subgroup of G(S/D) generated by f*(σ71)f*(σt) with σa = <τb

mod H(D), where/: S-+S/D, and hence σ7lσb<ΞH(D) and f*(σ7
l}f*(σb)= 1.

4. Some structure theorems

Theorem 1. Let N be a normal subgroup of G and D a normal decomposi-
tion of S. Then, Dff(D^=DN and H(Dff(D))=H(D).

Proof. (5) and (2) imply DH(DN}<DN. Conversely, DN<DH(DN) by (6).

Therefore, the first identity follows. (6) and (4) imply H(D)^H(DHM). Con-

versely, H(DH(D^<^H(D) by (5). Therefore, the second identity follows.

Theorem 2. Let K be the kernel off*: G->G(S/Z>). Then, K contains

H(D) and K/H(D)^Z(G/H(D)).

Proof. Apply Lemma 1 for N=H(D), and we have K'/H(D)^Z(G/H(D)),

where K' is the kernel of the homomorphism G-*G(S/DN). But, K^K'

since D<DN by (6).

Corollary 1. Let N be a normal subgroup of G. Then, N/H(DN)
ciZ(G/H(DN)).

When σ is one to one, we say that S is effective. This means S^I, or

D(l)=E. In this case, Z(G)=(1). For, if peZ(G), p induces the trivial
automorphism on 7 (by conjugation). 7^5 implies p=l. When S=aG,

we say that S is transitive. This means S=S'. So, in this case, H(S)=G'.

Corollary 2. (1) Suppose that S is effective. If N is a normal subgroup

of G such that (l)dNc:H(S), then E<DN<S. (2) Suppose that S is transί-
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tive. If D is a normal decomposition of S such that Z>d)<Z)<S, then (l)dH(D)

Proof. (1) DN*S, since H(S)-DN^H(DN). Suppose DN=E. Then,
N=NIH(DN) is contained in Z(G)=Z(GIH(DN)) by Corollary 1. But Z(G)=
(1), and hence N= (1), which is a contradiction. (2) First, we remark that
S=aG implies S=a*<s>. For, by definition of H(S), G=<σh tf(S)> for any
element b. Let b be any element in 5, and we have b=ar with reG. Then,
we can replace r by p (if necessary) such that aτ—ap and p^H(S), because
ar=aτσi (i is any integer) and rσί (=p) can be an element in //(S) for a suit-
able /. Now we prove (2). Jf/(Z))Φ(l), since DH(D)>D>Dω. Suppose that
H(D)=H(S). Then, S=aH<D\ which implies that D is the trivial decomposi-
tion S=S. This contradicts the assumption Z)Φ5.

From Corollary 2, we can derive the main theorem on a simple pseudo-
symmetric set: Suppose that S is effective and transitive. Then, 5 has no
normal decomposition D such that E<D<S if and only if there is no normal
subgroup N such that (l)cΛΓc/f(S). We also note that in the above dis-
cussion we used the condition (1) aoa=a (actually ft°*=i), and this is the only
place we use (1).

When D=DN, Theorem 2 can be strengthen:

Theorem 3. Let K be the kernel of f*: G-*G(SIDN) for a normal sub-
group N. Then, KIH(DN)=Z(G/H(DN)).

Proof. Let τ^G be such that τH(DN)^Z(G/H(DN)). r induces the
trivial automorphism on IH(DN)/H(DN). Since DN=DH(DN) by Theorem 1, we
have S/DN=S/DH(D^. But, the latter is isomorphic with IH(DN)IH(DN). So,
f*(r)=l and hence r^K. This with Theorem 2 implies Theorem 3.

Theorem 4. Let M and N be normal subgroups of G such that N^M. Then,
there exist a subgroup MJN of M/N and an onto-homomorphism Mι/N-*H(DM/
DN).

Proof. Let K be the kernel of/*: G-*G(S/DN), and / the kernel of A*:
H(DM)-»H(DMIDN\ where A* is the restriction of /* on H(DM). Then, /=
KΓ\H(DM). Since K^N, we have J^NΓίH(DM). On the other hand,
H(DM)/H(DM)nN^H(DM)N/N. Let M^HφJN. Clearly, M^M. We
have the canonical homomorphism M!/Λ

Corollary 3. In Theorem 4, if M/N is abelian, so is H(DMIDN).

Theorem 5. Let M and N be as in Theorem 4, and assume that N^H(S).
IfMIN^Z(H(S)IN\ then H(DM/DN)^Z(H(SIDN)).

Proof. Let r^H(DM)^M9 and p&H(S). We want to show /*(τ)/*(p)
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T)> where f*: G-+G(S/DN). Let σ=τ-1p-1τp. Then, σ^Λ^ because
M/N^Z(H(S)/N). Hence, /*(σ)= 1, proving the above identity.

Theorem 6. If D2<Dl and
M am/ DN=DMy then M/N^Z(G/N).

Proof. Let D=DH^ (=D^(Z,2>). Then, />2<A<^ by (6) and Theorem 1.
By the remark given after (6), H(D/D2)=(l). Hence, flr(Z)1/D2)=(l). Let
T=H(DM) (=H(DN)). Then, T^N^M by (2) and Theorem 1. By Corollary 1,
M/T^Z(G/T). Considering the canonical homomorphism G/T-+G/N, we
can conclude that M/N^Z(G[N).

Although the correspondences D\-^H(D) and Nt->DN are not one to one,
Theorem 6 tells that their discrepancies are within trivial (or, abelian).

5. Solvable and nilpotent pseudo-symmetric sets

A normal decomposition D is called abelian if H(D) is abelian. A pseudo-
symmetric set S is called solvable if there exists a sequence of normal decom-
positions

(7) S = A>A>

such that A /A+i are abelian (f=0, 1, •••, n— -1).

Theorem 7. S is solvable if and only if H(S) is solvable.

Proof. Suppose that S is solvable as above. Then, we have a sequence

of normal subgroups of G: H(S)=H(DQ)^H(D1)^ -•• 3#(A,-ι) 2H(B)=(1).
Let /,- be the kernel of the homomorphism hf : H(Di)-*H(DijDi+1). J{ con-

tains H(Di+1) and /t./#(Z>m) is abelian by Theorem 2. #(A)//< (-H(Dil
Di+1)) is also abelian by assumption. Thus, (̂5) is solvable. Conversely,

suppose that H(S) is solvable. Let £r(S)=ΛΓ02ΛΓ12 ••• 2^II_12ΛΓΛ=(1) be
a sequence of normal subgroups of H(S) such that Ni/Ni+i are all abelian. We
may also assume that 7Vt are <7-normal. Let D~DNi, and we have S=DQ

>A> — >Dn=Dω>Dn+1=E. By Corollary 3, Di/Di+1 are abelian (ί=0,
1, •••,«—!). Also, H(Dn/Dn+1)=(l) implies Dn/Dn+1 is abelian. Thus, S is
solvable.

A normal decomposition D is called central if H(D)^Z(H(S)). S is

called nilpotent if there exists (7) such that Z^ /A +i are all central, i.e., AΓ(A7

Theorem 8. 5 z> nilpotent if and only if H(S) is nilpotent.

Proof. Suppose S is nilpotent as above. We have the sequence: H(S)



SOME STRUCTURE THEOREMS ON PSEUDO-SYMMETRIC SETS 733

- Again, let /,. be the kernel of hf : tf(Z),)^#(A/A+ι). Then,

Jί/H(Di+1)^Z(G/H(Di+1)) by Theorem 2. We must show that tf(Z>, )//.^
Z(H(S)IJi). For it, recall the assumption H(DilDi+1)^Z(H(SIDi+ί)) and the

two isomorphisms #(A/A+ι)~#(A)//, and #(S/A+ι)~#(S)/Jί, where /,=
KΓiHφt) and J\=KΓ(H(S) (K is the kernel of the homomorphism G->

G(S/Z>f+ι)) Hence, /,.=/{ Π #(/>,•)• Let re #(/>,-) and p*=H(S). We must
show that rp = ρτ mod /,-. Let σ=τ~lp~lτρ. Then, σ^J . <r is naturally

contained in H(Dj). Therefore, σ € Ξ j i y and hence rρ = pτ mod /,. We have

proven that #(£,.)//,- cZ(//(S)//, ), which finishes the proof that #(S) is nil-

potent. Conversely, suppose that H(S) is nilpotent and let H(S)=N0^N1^.

... ^Nn=(l) be such that Nf/Ni+l^Z(N0/Ni+1). We may assume that TV,- are

all G-normal. Then, let Df=DNr By Theorem 5, H(D{IDi+ί)^Z(H(SIDi+l)).

Thus, 5 is nilpotent.

EXAMPLE 1. Let G— 54, the symmetric group of degree 4. Let S be

the symmetric set consisting of transpositions in 54: ^^{(l, 2), (1, 3), (1, 4),

(2, 3), (2, 4), (3, 4)}. We have a normal decomposition D: S=S1US2US3,

where ^={(1, 2), (3, 4)}, S2={(1, 3), (2, 4)}, and S3={(1, 4), (2, 3)}. Then,

H(D)= {the identity, (1, 2) (3, 4), (1, 3) (2, 4), (1, 4) (2, 3)}, which is an abelian
group. It is also easy to see that H(S/D) is an abelian group of order 3. Thus,

S>D>E is a solvable sequence of normal decompositions. So, S is solvable.

H(S)=A4 is naturally solvable.

EXAMPLE 2. Let L be a nilpotent Lie algebra of finite dimension. Define

σ(a)=txρ(ad a) for a^L, and L is considered as a pseudo-symmetric set. We

can show that L is a nilpotent pseudo-symmetric set as follows. Let C be the

center of L. The (Lie algebra) homomorphism L-^L/C is seen to be a pseudo-
symmetric set homomorphism. Let D be the normal decomposition associated

with the homomorphism. D is the usual cosets decomposition L= U Sίy where

Si={ai+C}. If *<=C, then we see that σ(a+z) = σ(a). Therefore, H(D) =
(1). Next, we consider L/C in place of L and apply the above argument. We

obtain a normal decomposition D' such that D<D' and H(D'ID) = (l). Re-

peating this, we obtain a nilpotent sequence of normal decompositions L> •••
>Df>D>E. Thus, L is nilpotent.
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