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If ώ is an integrable 1-form, under certain circumstances, ώ is given as
the pull back of a 1-form ω on a lower dimensional space by a submersion,
that is, ώ is a trivial unfolding of ω (Kupka-Reeb phenomenon). Especially,
if we have an integrable 1-form ω which is a universal unfolding of some other
1-form, then every unfolding of ω is trivial. Thus we obtain "stable'' singu-
larities as universal unfoldings.

In this note, we construct universal unfoldings of some complex foliation
singularities as an application of the versality theorem proved in [5]. For
generalities on unfolding theory of complex analytic foliations, we refer to [4]
and [5]. We briefly discuss universal unfoldings in section 1. In section 2,
we consider the form ω=(ax-{-βy)ydx—(cγx-\-Sy)xdy on C2={(x,y)} and show
that, under some condition on α, /3, 7 and δ, we can construct a universal un-
folding ώ of ω (Theorem 2.1). As a foliation singularity, ώ turns out to be
a simple one (Remark 2.2). This fact can be used, for example, to find the
solutions of the differential equation ω=0 and its "perturbations". In section 3,

we take up the form ω ^ " ^ ^ ^ — studied by Cerveau and Neto in [1],
«'=i Xf

They proved, among others, that every unfolding of (a form whose n—ί st
jet is equal to) ω is trivial, provided that β ΦtfyΦO. We give (Theorem 3.2)
an alternative proof of this using the versality theorem in [5]. When n=3
and two of the αf 's are the same, we show that some unfolding of ω is identical
with one of the universal unfoldings constructed in section 2. We also indicate
how to "stabilize" w in general when two or more of the α/s are the same (Pro-
position 3.8).

1. Universal unfoldings. Let F=(ω) be a codim 1 local foliation at the
origin 0 in Cn ([5] section 1).
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DEFINITION 1.1. An unfolding 3Ϊ of F is universal if it is versal and if
the infinitesimal unfolding map of £F ([5] section 1) is injective.

DEFINITION 1.2. An unfolding £F of F is trivial if there is a local holo-
morphic submersion Φ:(C"χC"", 0) -> (CM, 0) such that 9" is generated by the
pull back Φ*ω of ω by Φ, where Cm is the parameter space of £F.

Proposition 1.3. Let F be a local foliation at 0 in Cn. If £F=(ώ) w a uni-
versal unfolding of F, then every unfolding of ΞF is trivial.

Proof. Let x=(xl9 •••, xn) be a coordinate system on Cn and let Cm= {t=
(t\, ••*, *»)} be the parameter space of £F. Thus £F is a local foliation at the
origin in CnχCm. Let £?' be an arbitrary unfolding of £F with parameter space
Cι= {s=(sly •••,*/)}. Then we may think of £?' as an unfolding of F with para-
meter space Cm X Cι. By the universality of £F' there are map germs Φ and <p
such that (i) the diagram

(Cn xCmX C\ 0) -^-+ (Cn X Cm, 0)

7Γ 7Γ

(CmxC\ 0) -^ (Cm, 0),

where TΓ' and TΓ are canonical projections, is commutative, (ii) for each (ty s),
the restriction of Φ to π'~\ty s) is a biholomorphic map into π~\φ(ty s)) and
(iii) £?' is generated by Φ*ώ. In order to prove the proposition, it suffices
to show that Φ is a submersion. We may write Φ(xy ty s)=(ψ(xy ty s)y φ(ty s))y

where ψ is a local map (Ctt xCmX Cι

y 0)->(Cn

y 0). By the above property (ii),
ΛJΓ is a submersion. Consider the diagram

dφ

U(F),

where p and p' are the infinitesimal unfolding maps ([4] (2.9), (4.3), [5] section
1) of £? and £?' respectively, dφ is the differential of φ and t is the natural in-
clusion. Since £F' is an unfolding of £F, we have pΌt=p. Also, by the natural-
ity of infinitesimal unfolding maps, we have p'=podφ. Hence p=p°dφoι.
Since £F is a universal unfolding, p is injective. Therefore, dφ must be surjective
and φ is a submersion, Q.E.D.

REMARKS 1.4. 1°. For Proposition 1.3, the codimension of F need not
be one.
2°. For the universal unfoldings given in this note, we could use [5] (4.1)
Corollary instead of Proposition 1.3.
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2. Universal unfoldings of some singularities on C2. We consider

the 1-form

ω = (ax+βy)ydx—(yx+δy)xdy

on C2= {(x, y)} with α, /?, Ύ and δ complex numbers. We assume that the

set of zeros of ω consists only of the origin 0, that is, we assume that

βφO, γφO and D=aδ—βγΦO .

Let F=(ω) be the codim 1 local foliation at 0 in C2 generated by the germ of

ω at 0 ([5] section 1). We set

A = 7{D+β(a-Ύ)}y B = β{D+γ(δ-β)} and C=aβ-jh .

Then it is not difficult to show that F is a Haefliger foliation ([4] (1.10) Defini-

tion), that is, ω admits an integrating factor, if and only if A=B=0.

We assume that F is non-Haefliger hereafter. Furthermore, we consider

only the following three cases:

(III) i φ O , S φ 0, C = 0.

In the case (I), we may set a=2ak, β=a, j=bk, 8=b—a. Then we have

D=—a(2a—b)k and B=—a(a-{-b)(2a—b)k. The constants a> b and k are

arbitrary as long as abk^O, a^—b and 2αΦi.

In the case (II), we may set a=a—b, β=ak9 y=b and δ=2bk. Then we have

D=—b(2b—a)k and A=—b(b+a)(2b—a)k. The constants a, b and k are

arbitrary as long as #δ&Φθ, b^F—a and 2bΦa.

In the case (III), we may set a=ak, β=b, rγ=a and δ=bk. Then we have

D=ab(k2-1), A=a2b(k-l)(k+2) and B=aW(k-l) (k+2). The constants

a> b and k are arbitrary as long as <zόφθ, &2Φl and £ φ — 2.

Theorem 2.1. // orce of the conditions (I), (II) and (III) £y satisfied, then

there is a universal unfolding £F=(ώ) (?/ the foliation F=(ω). 3 is a {codim 1,

/#£#/) foliation at 0 m C 4 = {(x, y> s, t)}. In each case we may choose the follow-

ing as a generator ώ of 3?:

( I ) ώ = (2akx+ay-\-as)ydx— {bkx2-{-(b—a)xy-[-bxs-\-bt}dy+axyds-{-aydt.

( I I ) ώ = {(a—b)xy+aky2—ays—at} dx—(bx -\- 2bky—bs)xdy+bxyds -\- bxdt.

(III) ώ = {akxy+by2-ys-(k+ί)at}dx- {ax2+bkxy+xs-(k+l)bt}dy

-t)ds+(ax-by+s)dt.
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Proof. Let 0 be the ring of germs of holomorphic functions at 0 in C2

and let Ω be the 0-module of germs of holomorphic 1-forms. We set Ω F =
Ω/F. If we denote by/ and g the germs of the functions (ax+βy)y and — (<γx
+δy)x, respectively, we have ([4] (4.5), [5] section 1) Ext^Ω^, O)=OI(f,g),
where (/, g) is the ideal generated by/ and g. For any element h in Oy we de-
note by [h] the class of h in Oj(f,g). In our case, since /3Φ0 and γφO, we
have

Extyμp, O) = C4

and we may take [1], [x], [y] and [xy] as basis elements. Next we determine
the set U(F) of equivalence classes of first order unfoldings of F, which is given
by ([4] (6.1) Theorem, (6.8) Remark)

U(F)= {[h]£ΞExtι

0{ΩIFyQ)\hdω=η/\ω for some ^EΩ} .

First we have

dω= - {(a+2y)x+(8+2β)y}dx Λ dy .

If a+2y=δ+2β=0, then A=B=0. Hence by our assumption, 4 φ O .
Since the coefficients of ω are homogeneous polynomials of degree 2, if an
element of the form λi[l]+λ 2 M+λ 3 [j]+λ 4 [xy] is in U(F), then we must have
\1=z0. Now the element [xy] is in U(F), since if we set h1=Dxyy we have

hxd(ύ = ηι Λ ω

with Vl={D+β(a—y)}ydx+{D+rγ(δ—β))xdy. We now look for elements
of the form h=\x+μy such that [h]^U(F). It is not difficult to see that the
equation hdω=η Λ ω has a solution for -η if and only if

=0

7 0 (a+2y)χ

δ a (δ+2β)\+(a+2<γ)μ

0 β (δ+2β)μ

or equivalently Aμ-\-B\=0. Thus if we set h2=Ax—By> then

h2dω = η2 Λ ω

with V2=[2+— )Adx—(2+-^-Wj;. Hence we see that U(F)=C2 and we may
\ 7 / \ β I

take [AJ=[Z)ary] and [h2] = [Ax—By] as basis elements. The element hx deter-
mines a first order unfolding

with ω\1)=dh1—Vl=β(y—a)ydx+fγ(β—δ)xdyf where s is a parameter. The
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second order (in s) term in dώx Λ ώλ is

dω[1)

We have dω^ Λ ω ^ O , since ω(iυ is a 1-form on C2. Using dω[ι)=Cdx Λdy,
we have h1dω{1)—dh1Λω{i1)=(DC~DC)xydxΛdy=O. Hence ωx satisfies the
integrability condition dώ1Aώ1=0. Thus ωγ is actually an unfolding of ω.
The element h2 determines a first order unfolding

with ω(

2

1} - dh2-V2 =

where t is a parameter. Since dω(21)=0f the second order term in dώ2Aώ2

is — dft2 Λ ω2

ι) A tdt=—ABCdx ΛdyΛ tdt. Hence under the condition (I), (II)
βΎ

or (III), this vanishes. Thus ώ2 is actually an unfolding of ω.
(I) A=0, J3Φ0. In this case, we have hι=Dxy=—a(2a—b)kxy, ω\l)=—(2a
—b)k{aydx—bxdy\ h2=—By=aCy and ω(

2

υ=—bCdy. We set h[=axy, ω[iy=
aydx—bxdyy h'2—ay and co2iy=— bdy. Then clearly

ω{ = ω+ω[ιys+hlds and ωj = ω+ω{

2

iyt+hf

2dt

are unfoldings of ω. We combine ώί and α>2 to obtain a form on C 4 = {(x, y,

We now show that ώ satisfies the integrability condition and is thus an un-
folding of ω. Noting that rfω^1)/=0, we have

rfω = dω+dωP's-iωP'-dhί) /\ds-(ωP'-dh'2) Λdt.

For our purpose, it suffices to show that the terms in dώΛώ involving sdt,
tds or ds Λ dt vanish. First, the coefficient of sdt is

(ωP'-dh'2) Λ ωP'+h'idωP' = a(a+b)ydx Λ φ - α ( t z + % Λ Λ rfy = 0 .

The coefficient of tds is

(ωί i y-έftί) Λ ω2

1)f = δ(α+%rfj Λ rfy = 0 .

Finally the coefficient of ds Λ Λ is

h[{ω^-dhf

2)-hf

2{ω^)f-dh[) = -a(a+b)xydy+a(a+b)xydy = 0 .

Therefore, ώ is integrable. Let £F=(ω) be the unfolding of JF=(ω) generated
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by ώ. The infinitesimal unfolding map of £F sends the tangent vectors — and
as

— of the parameter space C2= {(sy t)} to the classes [h{] and [h2] in U(F). Since
ot

[hi] and [h2] form a basis of U(F)y by the versality theorem in [5], £F is a uni-

versal unfolding of F.

(II) AΦO, B=0. Similar to the case (I).

(III) ^4ΦO, # Φ θ , C=0. In this case, we have hι=Dxy=ab{k2—\)xyy ω (iυ=

-α*(β- l ) i ( ry) , h2=ab(k-\) (k+2) {ax-by) and ω (

2

υ= -αέ(& 2 -l) (£+2) (flΛc-

bdy). We set « ' = ( * + l ) * y , ω ( i υ / / - - φ j > ) , h'2
f=ax-by and α # > " = - ( Λ + l )

(adx—bdy). Then clearly

ω{' - ω+ωί^' ί+Aί 'Λ and ω'2' = ω+ωψ"t+h¥dt

are unfoldings of ω. We construct a universal unfolding of ω by combining

ωί/ and ώ^. If we simply add them as in the case (I), we do not get an in-

tegrable form. However, again by a straightforward computation, it can be

shown that the form

on C 4 = {(#, yy sy t)} is integrable (see also Remark 2.2 below). Thus ff—

(ώ) is an unfolding of F. Moreover, since [h['] and [h'2
f] form a basis of

), by the versality theorem in [5], ΞF is a universal unfolding of F, Q.E.D.

REMARK 2.2. For each ώ in Theorem 2.1, we have </ω(O)Φθ. Hence

there must be a coordinate system on C4 in terms of which the form ώ involves

only two variables (Kupka-Reeb phenomenon [3], [1] p. 2). In fact, in each

case, such a coordinate system (x'y y'y s'', t') is given as follows:

( I ) lί x' = xyy' =yys' = s and tf = kx2+xy+xs+ty then

ώ == ay'dt'—bt'dy'.

( I I ) If xr = Λ;, y ' = yy s' = s and t' = — xy—Ay2+Jtf+*, then

ώ = bx'dt'-at'dx'.

(III) If #' = xy y' = j , ί' = <z#+fry+s and £' = — xy-\-ty then

From this we can readily find the singular set and the leaves of the foliation

^F=(ω). The leaves of ΞF are given, in terms of the old system (xy yy sy t)y by

({ I ) cyb = (kx2+xy+xs+t)a

 y

(2.3) (II) ex* = (-xy-kf+ys+t)b

 y

((III) c(xy-t) = (ax-by+s)k+1,
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where c is an arbitrary constant. Also, if we consider, for each fixed (sy t)y

the foliation Fst=(ωs>t) on C 2 = {(xy y)} generated by

( I ) ωs,t = (2akx-{-ay-\-as)ydx— {bkx2+(b—a)xyJ\-bxs-[-bt}dy ,

( I I ) ωStt = {(a—b)xy+aky2—ays—at}dx—(bx+2bky—bs)xdy ,

(III) ωsj = {akxy+by2— ys—(k+l)at}dx— {ax2+bkxy+xs—(k+l)bt}dy ,

then (2.3) also gives the leaves of Fsty or solutions of the differential equation

EXAMPLES 2.4. 1°. If a=0y β=ly γ = l and 8-0, then D=-ίy A=B=
-2 and C=0. Hence (III) is satisfied and a=b=\y k=0. Thus

to = (y2—yS—t)dx—(x2+xs—t)dy+{xy—t)ds+(x—y+s)dt

is a universal unfolding of ω=y2dx—x2dy.
2°. If a=2y β=ly 7=1 and 8=2, then D=3y A=B=\ and C=0. Hence
(III) is satisfied and a=b=l, k=2. Thus

to = (2xy+f— ys—3t)dx—(x2+2xy+xs—3t)dy+3(xy—t)ds+(x—y+s)dt

is a universal unfolding of ω={2x-\~y)ydx—(x-\-2y)xdy.
3°. If α = 2 , / 3 = - l , 7 = 1 and 8=0, then D=\y A=0y B=-2 and C=-2.
Hence (I) is satisfied and a=b=k= — 1. Thus

ω = (2#— y—s)ydx—(x2—xs— t)dy—xyds—ydt

is a universal unfolding of ω=(2x—y)ydx—x2dy.
Examples 2° and 3° give universal unfoldings of singularities of Dumortier

[2] p. 95.

3. Singularity of Cerveau and Neto. Consider the integrable 1-form

(3.1) ω = x -" x ^2 a ^Xi

on Cn= {(xly •••, xn)). First we give an alternative proof, which uses the versal-
ity theorem in [5], of the following result of Cerveau and Neto [1].

Theorem 3.2. Let F be the foliation generated by w in (3.1). If af-#=ay=t=0,
then the set U(F) of first order unfoldings of F is zero. Thus F is a universal
unfolding of F itself and every unfolding of F is trivial.

Proof. Let O be the ring of germs of holomorphic functions at 0 in C"
and let Ω be the (5-module of germs of holomorphic 1-forms. We set Cίf =
ΓίjF. Also we denote by /f the germ of the function xι-'Xi*"Xn (omit #,)
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at 0. Then we have

(3.3) Ext1

o(Cl-F,0) = 0l(f1,-,fn),

where (fly ••-,/») is the ideal generated by/i, •••,/„. Now we find the set U(F),
which is given by

U(F) = {[h]^Extι

o(CίFy O)Ihdω = ηΛω for some 77eΩ} .

We have dω=x1' 'Xn^(aj—a{)—'- i and, if we write η=^2gidxiy ηΛω=

^i* f φ Λ !nΣ I ~ ~ ~ F » Λ ώ Hence hdω—ηΛw is equivalent to
i<i \ Xj Xi I

(3.4) (aj—Ui)h == djXigi—UiXjgj for all /, j with 1 < i<j < n .

By (3.3), we may assume that each monomial in h involves at most n—2 different
x-i's. Thus, if α ΦαyΦO, (3.4) is satisfied only when A—0. Therefore U(F)=
0. By the versality theorem in [5], F is a universal unfolding of F itself and
every unfolding of F is trivial ([5] (4.1) Corollary), Q.E.D.

Now we consider the case where two or more of the a/s are the same.
First we assume that n = 3 and a^a^^a^ We may set a2=a3=l. Also
we set a1=\. Thus

(3.5) ω = \x2xzdx1-\-xιxzdx2-\-^ι^2dx2,

where λ φ l . We also impose a technical condition λ φ — 2. The following
proposition, which is a direct consequence of Theorem 2.1, shows that we
can "stabilize" ω in (3.5) by unfolding it suitably.

Proposition 3.6. Let ώ be the ί-form on C4— {(xly x2y x3, t)} given by

ω = \(x2x3-\-t)dx1-\-x1x3dx2-\-x1x2dx3-{-x1dty λφO, 1, —2 .

Then ώ is integrable; dω Λω=0, and the foliation 3r=(ώ) can be viewed as a
universal unfolding of a certain foliation on C2. Thus every unfolding of £F is trivial.

Proof. Consider the 1-form

ω = (—2x-\-y)ydx— {\x—(\+ί)y}xdy

on C2= {(x, y)}. Then we have D=\+2, A=0, B=-(\-l) (λ+2). Thus
by Theorem 2.1 (I),

ω = (—2x+y+s)ydx— {Xx2—(\+l)xy—Xxs—Xt}dy+xyds+ydt

is a universal unfolding of ω. By the coordinate transformation Xi=yy x2=xy

x3=— x-{-y+s, t=t of C4, ώ becomes the one in the statement, Q.E.D.
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REMARK 3.7. Let F be the foliation in C3= {(xlt x2y x3)} generated by w
in (3.5). If we set, for each integer p>ly hp=xp

u then [hp] is in U(F). In
fact, hp determines an actual unfolding

ώp = {λx2x3+(X+p—l)xpi''1t)dx1+x1x3dx2+x1x2dx3+xp

1dt

of ω. Moreover, if p^¥q, then [λj=t=[λj in U(F). Hence the unfoldings ωp

and ώq are not equivalent. However, the above proposition shows that essen-
tially it suffices if we unfold w to ώ1 which is the unfolding determined by hλ

=xx. Thus if we consider the form

3 = {χx2x3+Xt+(X+l)x1s}dx1

Ji-x1x3dx2+x1x2dx3+x1dt+xlds

on C5= {(xly x2y x3y ty s)}, which is readily checked to be integrable, as an un-
folding of ω, it contains the two independent unfoldings determined by A1=x1

and h2=x2ι. However, as an unfolding of ώ in Proposition 3.6, it is trivial.

More generally consider the form ω in (3.1) and assume that a1=Xu •••,
^m=λw, am+1=~ =an=ly m>\y λ ^ λ ^ φ O , 1. Thus

Let F be the foliation generated by ω. If h=x1 "Xm then it is not difficult
to show that [h] is in U(F) and is not obstructed. In fact, the following pro-
position shows that we can * Stabilize'' ω if we unfold ω to the unfolding ώ
determined by h=x1 "Xm.

Proposit ion 3.8. Let ώ be the l-form on Cn+1={(xly ••-, xny t)} given by

, 1 .

xM(xm+1... xn+t)Σ λt ^+Xι.- χn Σ ^
i = ί X. i = m + l X.

Then ώ is integrable. If ΞF=(ώ) is the foliation generated by ω, then
Thus £F is a universal unfolding of £F itself and every unfolding of £F is trivial.

Proof. We introduce a new coordinate system (yly * ,JV}-I) on Cn+1 by

y1=xl9 '~,ym=xm, ym+i=Xm+it"XnΛ-ty ym+2=xm+i> *"jJVfi—Xn- Then ω becomes

m+i dV•
ώ = yx... ym+i Σ ^ Ί ' ~J^ >

i=i y.

where we set λ m + i = l . The proposition is then proved by a similar argument

as in the proof of Theorem 3.2.
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