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If & is an integrable 1-form, under certain circumstances, & is given as
the pull back of a 1-form » on a lower dimensional space by a submersion,
that is, @ is a trivial unfolding of » (Kupka-Reeb phenomenon). Especially,
if we have an integrable 1-form » which is a universal unfolding of some other
1-form, then every unfolding of « is trivial. Thus we obtain “stable” singu-
larities as universal unfoldings.

In this note, we construct universal unfoldings of some complex foliation
singularities as an application of the versality theorem proved in [5]. For
generalities on unfolding theory of complex analytic foliations, we refer to [4]
and [5]. We briefly discuss universal unfoldings in section 1. In section 2,
we consider the form o=(ax+RBy)ydx—(vx+38y)xdy on C*={(x,y)} and show
that, under some condition on ¢, B, v and 8, we can construct a universal un-
folding & of & (Theorem 2.1). As a foliation singularity, & turns out to be
a simple one (Remark 2.2). This fact can be used, for example, to find the
solutions of the differential equation =0 and its “perturbations”. In section 3,

we take up the form 6=x1---x,,ﬁ aid—x‘ studied by Cerveau and Neto in [1].
i=1 X

They proved, among others, that eve;y unfolding of (a form whose n—1 st
jet is equal to) @ is trivial, provided that a;%a;%0. We give (Theorem 3.2)
an alternative proof of this using the versality theorem in [5]. When n=3
and two of the @;’s are the same, we show that some unfolding of @ is identical
with one of the universal unfoldings constructed in section 2. We also indicate
how to ‘“‘stabilize” @ in general when two or more of the a,;’s are the same (Pro-
position 3.8).

1. Universal unfoldings. Let F=(w) be a codim 1 local foliation at the
origin 0 in C” ([5] section 1).
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DeriNiTION 1.1. An unfolding &F of F is universal if it is versal and if
the infinitesimal unfolding map of & ([5] section 1) is injective.

DEFINITION 1.2. An unfolding & of F is trivial if there is a local halo-
morphic submersion @:(C"x C", 0) — (C", 0) such that & is generated by the
pull back ®*w of w by ®, where C™ is the parameter space of Z.

Proposition 1.3. Let F be a local foliation at 0 in C". If F=(&) is a uni-
versal unfolding of F, then every unfolding of F is trivial.

Proof. Let x=(x, -+, x,) be a coordinate system on C" and let C"= {t=
(t, **+, tn)} be the parameter space of &. Thus & is a local foliation at the
origin in C"XC". Let &’ be an arbitrary unfolding of & with parameter space
C'= {s=(s;,***,5,)}. Then we may think of & as an unfolding of F with para-
meter space C" X C'. By the universality of &’ there are map germs ® and ¢
such that (i) the diagram

D
(C"xC"x C', 0) — (C"x C™, 0)
7’ b3

(c"xc, 0 -2 ("0,
where z’ and = are canonical projections, is commutative, (ii) for each (¢, s),
the restriction of @ to z'~Y(¢,s) is a biholomorphic map into z7Y(¢(¢, s)) and
(i) &' is generated by ®*&. In order to prove the proposition, it suffices
to show that @ is a submersion. We may write ®(x, ¢, s)=(y(, t, 5), @(t, 5)),
where 4 is a local map (C"x C"x C',0)—(C" 0). By the above property (i),
4 is a submersion. Consider the diagram
dp
Temxgtoe—= Temy
P’\\ ‘ //P
U(r),

where p and p’ are the infinitesimal unfolding maps ([4] (2.9), (4.3), [5] section
1) of & and ' respectively, de is the differential of ¢ and . is the natural in-
clusion. Since "' is an unfolding of &, we have p’ot=p. Also, by the natural-
ity of infinitesimal unfolding maps, we have p’=podp. Hence p=podpo..
Since & is a universal unfolding, p is injective. Therefore, dp must be surjective
and ¢ is a submersion, Q.E.D.

RemaRrks 1.4. 1°. For Proposition 1.3, the codimension of F need not
be one.
2°. For the universal unfoldings given in this note, we could use [5] (4.1)
Corollary instead of Proposition 1.3.
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2. Universal unfoldings of some singularities on C?. We consider
the 1-form

o = (ax+By)ydx—(vx+38y)xdy

on C*={(x,y)} with «, B, v and & complex numbers. We assume that the
set of zeros of » consists only of the origin 0, that is, we assume that

B=+0, v+0 and D=ad—By=*0.

Let F=(w) be the codim 1 local foliation at 0 in C? generated by the germ of
o at 0 ([5] section 1). We set

A= v{D+B(a—7)}, B=RB{D+v(8—p)} and C=aB—7$§.

Then it is not difficult to show that F is a Haefliger foliation ([4] (1.10) Defini-
tion), that is, w admits an integrating factor, if and only if 4=B=0.

We assume that F is non-Haefliger hereafter. Furthermore, we consider
only the following three cases:

(1) A=0, B+0,
(11) A+0, B=0,
(I11) A+0, B0, C=0.

In the case (I), we may set a¢=2ak, B=a, y=>bk, =b—a. Then we have
D=—a(2a—b)k and B=—a(a+b)(2a—b)k. The constants a, b and %k are
arbitrary as long as abk=+0, a3 —b and 2a=b.

In the case (II), we may set a=a—b, B=ak, v=>b and §=2bk. 'Then we have
D=—b(2b—a)k and A=-—b(b+a)(2b—a)k. The constants a, b and k are
arbitrary as long as abk=0, b= —a and 2b=a.

In the case (III), we may set a=ak, 8=b, Y=a and 8=bk. Then we have
D=ab(k*—1), A=a’h(k—1) (k+2) and B=ab*(k—1)(k+2). The constants
a, b and k are arbitrary as long as ab=0, k*%1 and k4 —2.

Theorem 2.1. If one of the conditions (1), (II) and (I11) is satisfied, then
there is a universal unfolding F=(&) of the foliation F=(w). & is a (codim 1,
local) foliation at 0 in C*={(x, y, s, t)}. In each case we may choose the follow-
ing as a generator & of ¥ :

(1) &= (2akx+ay+as)ydx— {bkx*-+(b—a)xy+bxs+bt} dy-+axyds-+aydt .
(II) &= {(a—b)xy+aky*—ays— at} dx—(bx—+2bky—bs)xdy-+bxyds+bxdt .
(III) & = {akxy+by*—ys—(k-+1)at} dx— {ax’+bkxy+xs—(k-+1)bt} dy

+ (k1) (xy—1t)ds+(ax—by+-s)dt .
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Proof. Let O be the ring of germs of holomorphic functions at 0 in C?
and let Q be the @-module of germs of holomorphic 1-forms. We set Q.=
Q/F. If we denote by f and g the germs of the functions (ax-+By)y and —(vx
+8y)x, respectively, we have ([4] (4.5), [5] section 1) Extyp(Qs O)=0/(f, 8),
where (f, £) is the ideal generated by f and g. For any element 4 in O, we de-
note by [A] the class of 4 in O/(f,g). In our case, since 8+0 and =0, we
have

Exty(Qy, O) = C*

and we may take [1], [x], [y] and [xy] as basis elements. Next we determine
the set U(F) of equivalence classes of first order unfoldings of F, which is given
by ([4] (6.1) Theorem, (6.8) Remark)

U(F) = {[h]€Extp(Qf, O) | hkdo=7 A w for some n=Q} .
First we have
do = — {(a+27)x+(8+2B8)y}dx Ady .

If a+2y=38+2B8=0, then A=B=0. Hence by our assumption, dew=0.
Since the coefficients of w are homogeneous polynomials of degree 2, if an
element of the form N,[1]-4y[x]+As[y]+ A [xy] is in U(F), then we must have
Mm=0. Now the element [xy] is in U(F), since if we set s, —=Dxy, we have

hdow = nmN\w

with 7= {D+RB(a—)} ydx+ {D+v(8—B)}xdy. We now look for elements
of the form A=nx+py such that [f]e U(F). It is not difficult to see that the
equation Adw=mn A  has a solution for 7 if and only if

v 0 (a+27)n
3 a O+28)n+(a+27)p|=0
o 8 (+28)

or equivalently Ap+Bx=0. Thus if we set h,=Ax— By, then
hdow = pAheo
with %,= (Z—i-%)Adx—(Z—l—%)de. Hence we see that U(F)=C? and we may

take [A,]=[Dxy] and [h,)=[Ax—By] as basis elements. The element %, deter-
mines a first order unfolding

&, = o+o{Vs+hds
with o{¥=dh,—n=06(Y—a)ydx+v(8—8)xdy, where s is a parameter. The
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second order (in §) term in d&, A &, is
doi’ N &V’ +(hdw® —dhy A ofP)sds .

We have do{’ A w{’=0, since " is a 1-form on C% Using do{’=Cdx A dy,
we have hdo¥—dh A wi"=(DC—DC)xydx Ndy=0. Hence &, satisfies the
integrability condition d&,A®=0. Thus &, is actually an unfolding of o.
The element h, determines a first order unfolding

&y = ot wit-+hdt
with of? = dh,— (1+ )Adx+(1+ B>de’
where ¢ is a parameter. Since do$’=0, the second order term in d@,A &,
is —dh, A w§" Atdt =6LABCdx Ady Atdt. Hence under the condition (I), (II)
v

or (III), this vanishes. Thus &, is actually an unfolding of w.

(I) 4=0, B+0. In this case, we have & =Dxy=—a(2a—b)kxy, v{’=—(2a
—b)k(aydx—bxdy), h,——By=aCy and o$"=—bCdy. We set hi=axy, o{"’'=
aydx—>bxdy, hy=ay and »$"”’=—>bdy. Then clearly

&) = wt+ols+hids and 5 = wt+o$Vt-+hidt

are unfoldings of w. We combine @] and &} to obtain a form on C*= {(x,y,

s )}
& = wtoi"s+wi 't+hids+hidt .

We now show that @& satisfies the integrability condition and is thus an un-
folding of . Noting that dw$"’'=0, we have

do = dco-{—dcom, (w(l)' dh’) /\ds—(co(”' dhé) Adt.

For our purpose, it suffices to show that the terms in d&A & involving sd,
tds or ds A dt vanish. First, the coefficient of sdt is

(08" —dhj) N 0™ +hidei = a(a+b)ydx Ady—a(a+b)ydx Ndy = 0.
The coefficient of tds is
(0§ —dh}) A s = b(a+b)xdy Ndy =0 .
Finally the coefficient of ds A dt is
k(" —dhy)— byl —dh}) = —a(a+b)xydy+a(a+b)xydy = 0.
Therefore, & is integrable. Let F=(&) be the unfolding of F=(w) generated



378 T. Suwa

by &. The infinitesimal unfolding map of & sends the tangent vectors 56— and
s

£— of the parameter space C?= {(s, #)} to the classes [#{] and [A5] in U(F). Since

[#1] and [A5] form a basis of U(F), by the versality theorem in [5], & is a uni-
versal unfolding of F.

(II) A=0, B=0. Similar to the case (I).

(III) A=0, B0, C=0. In this case, we have h=Dxy=ab(k*—1)xy, oi"=
—ab(k—1)d(xy), h,=ab(k—1) (k-+2) (ax—by) and o= —ab(k*—1) (k+2) (adx—
bdy). We set hi’=(k+1)xy, o{""'=—d(xy), by =ax—by and w§"'=—(k+1)
(adx—bdy). 'Then clearly

&) = o+wiV's+hi’ds and &) = o+ t-+hs dt

are unfoldings of w. We construct a universal unfolding of » by combining
@1’ and @;’. If we simply add them as in the case (I), we do not get an in-
tegrable form. However, again by a straightforward computation, it can be
shown that the form

& = wto"'s+wit+hi'ds+hy' dt—(k-+1)tds+-sdt

on C'={(x,y,s,t)} is integrable (see also Remark 2.2 below). Thus F=
(&) is an unfolding of F. Moreover, since [#{’] and [A%’] form a basis of
U(F), by the versality theorem in [5], & is a universal unfolding of F, Q.E.D.

ReMARK 2.2. For each & in Theorem 2.1, we have d&(0)#0. Hence
there must be a coordinate system on C* in terms of which the form & involves
only two variables (Kupka-Reeb phenomenon [3], [1] p. 2). In fact, in each
case, such a coordinate system (x', y’, s’, ¢’) is given as follows:

(I) If " =%,9"=y,s'=s and t' = kx’+xy+xs+¢, then
& =ay'dt'—bt'dy’ .

(II) If ' =x,y' =y,s' =5 and t' = —xy—ky’+ys+¢, then
& = bx'dt' —at'dx’ .

|

(I11)

[

f ' =x,9" =y,s =ax+by+s and t' = —xy+t, then
s'dt’—(k+1)t'ds" .

&

From this we can readily find the singular set and the leaves of the foliation
F=(®). The leaves of & are given, in terms of the old system (x, y, s, t), by

(I) ¢y = (kx*+xy+axs+t)°,
(2.3) (II) cx® = (—xy—ky*+ys+1)°,
(III)  c(xy—12) = (ax—by+s)**?,
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where ¢ is an arbitrary constant. Also, if we consider, for each fixed (s, ),
the foliation F, ;=(w, ) on C*= {(¥, y)} generated by

(1) o= (2akx+ay-+as)ydx— {bkx*+(b—a)xy-+bxs-+bi}dy ,
(I1)  w,,= {(a—b)xy+aky*—ays—at}dx—(bx+2bky—bs)xdy ,
(I1I) w,,= {akxy+by’—ys—(k+1)at} dx— {ax?+bkxy-t-xs—(k-+1)bt}dy ,

then (2.3) also gives the leaves of F,,, or solutions of the differential equation
(l)s,t:O.

ExampLes 2.4. 1°. If a=0, 8=1, y=1 and =0, then D=—1, A=B=
—2 and C=0. Hence (III) is satisfied and a=b=1, k=0. Thus

& = (y*—ys—t)dx—(x*4xs—t)dy+(xy—t)ds+(x—y-+s)dt

is a universal unfolding of w=y*dx—x?dy.
2°. If =2, B=1, y=1 and 8=2, then D=3, A=B=4 and C=0. Hence
(III) is satisfied and a=b=1, k=2. Thus

& = (2xy+y*—ys—3t)dx—(x®+2xy+xs— 38)dy+3(xy—t)ds+(x—y--s)dt

is a universal unfolding of w=(2x-+y)ydx—(x-2y)xdy.
3°. If a=2, B=—1, y=1 and 8=0, then D=1, A=0, B=—2 and C=—2.
Hence (I) is satisfied and a=¢=k=—1. Thus

& = (2x—y—s)ydx—(x*—xs—t)dy—xyds—ydt

is a universal unfolding of w=(2x—y)ydx—x?dy.
Examples 2° and 3° give universal unfoldings of singularities of Dumortier

12] p. 95.

3. Singularity of Cerveau and Neto. Consider the integrable 1-form

(3.1) ale---x,‘ga,- dt;
on C"= {(x,, ---, x,)}. First we give an alternative proof, which uses the versal-

ity theorem in [5], of the following result of Cerveau and Neto [1].

Theorem 3.2. Let F be the foliation generated by w in (3.1). If a;%a;=0,
then the set U(F) of first order unfoldings of F is zero. Thus F is a universal
unfolding of F itself and every unfolding of F is trivial.

Proof. Let O be the ring of germs of holomorphic functions at 0 in C”
and let Q be the O-module of germs of holomorphic 1-forms. We set Q=
Q/F. Also we denote by f; the germ of the function «x,---£;+--x, (omit x;)
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at 0. Then we have

(33) E‘xth(‘Q’F’ 0) = O/(fla ""fn) ’
where (fj, -+, f,) is the ideal generated by f,, -+, f,. Now we find the set U(F),
which is given by
U(F) = {[h]€Extp(QF, O)|hdo = nAw  for some nEQ} .

Ad.

We have dale---xnﬂ(aj—ai)u and, if we write »=>)g,dx;, nAo=
i<j ; i=1

XX ;

Xyoe Xy g} (%’% —a"?gf>dx,- Ndx;. Hence hdo=nAw is equivalent to
i<j T i

By (3.3), we may assume that each monomial in % involves at most n—2 different
x’s. 'Thus, if a;%a;=0, (3.4) is satisfied only when 2=0. Therefore U(F)=
0. By the versality theorem in [5], F is a universal unfolding of F itself and
every unfolding of F is trivial ([5] (4.1) Corollary), Q.E.D.

Now we consider the case where two or more of the a;’s are the same.
First we assume that =3 and a,#a,—a;. We may set a,—a;=1. Also
we set ¢,=\. Thus

(3.5) ® = AXXadX, - 20,00,dx, - X, X,dX,

where A3F1. We also impose a technical condition A% —2. The following
proposition, which is a direct consequence of Theorem 2.1, shows that we
can ‘“‘stabilize” @ in (3.5) by unfolding it suitably.

Proposition 3.6. Let & be the 1-form on C'={(x,, x,, x;, t)} given by
& = (X5 2)doy+x,00,d%, 4 20000,d %4200 dE, A0, 1, —2,

Then & is integrable; dé A &=0, and the foliation F=(&) can be viewed as a
universal unfolding of a certain foliation on C®. Thus every unfolding of F is trivial.

Proof. Consider the 1-form
o = (—2x-+y)ydx— {(Ae—(A+ 1)y} xdy

on C*={(x, y)}. Then we have D=x+2, A=0, B=—(\—1)(A+2). Thus
by Theorem 2.1 (I),

& = (—2x+y+s)ydx— {Aa®—(A+1)xy— Aas— e} dy+xyds—+ydt

is a universal unfolding of ». By the coordinate transformation x=y, x,=x,
x;=—ux-+y+s, t=t of C* & becomes the one in the statement, Q.E.D.
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REMARK 3.7. Let F be the foliation in C°= {(x;, x,, x;)} generated by @
in (3.5). If we set, for each integer p>1, h,=x%, then [k,] is in U(F). In
fact, k, determines an actual unfolding

&, = {Axx+(ANAp— )20t} dy+-x,x05d, + 0, 0,d; -+ 4 dt

of @. Moreover, if p=g, then [A,)=%[h,] in U(F). Hence the unfoldings &,
and &, are not equivalent. However, the above proposition shows that essen-
tially it suffices if we unfold @ to &, which is the unfolding determined by 4,
=x,. Thus if we consider the form

@ = Mg AN 1)xys} dy + e, x05dx, - x0yx,dxy +x, dE -+ xids

on C°={(x,, %, 3, t, 5)}, which is readily checked to be integrable, as an un-
folding of @, it contains the two independent unfoldings determined by A,=x,
and h,=x}. However, as an unfolding of & in Proposition 3.6, it is trivial.

More generally consider the form @ in (3.1) and assume that a,=2x,, -
A=Ay Ayy=-=a,=1, m>1, \;#\;#+0, 1. Thus

’

i=1 X; =il X,

Let F be the foliation generated by w. If h=ux;---x,, then it is not difficult
to show that [%] is in U(F) and is not obstructed. In fact, the following pro-
position shows that we can ‘“‘stabilize” @ if we unfold @ to the unfolding &
determined by hA=x,--x,,.

Proposition 3.8. Let & be the 1-form on C*"'={(x,, -+, x,, t)} given by

~ mo o dx; * dx;
B =y o0 Xy (Xpyyy o x”+t)-21 A ”x"‘I‘xl Tt Xy 1Tx—'+xi e xydt
1= i 3 i

=m 4

NiFEN;F0, 1.

Then & is integrable. If F=(&) is the foliation generated by &, then U(SF)=0.
Thus F is a universal unfolding of F itself and every unfolding of <F is trivial.

Proof. We introduce a new coordinate system (y,, ***, ¥,4;) on C**! by

N=X 5 Y= %y Yme1= %y * X, 11, Yme2=%mi1> ***s V1= %p- Then & becomes
m+1 d )

0 =Y "'ym+12 A o ’

4 i
i=1 i

where we set A,,;=1. The proposition is then proved by a similar argument
as in the proof of Theorem 3.2.
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