THE GROUP OF UNITS OF THE INTEGRAL GROUP RING OF A METACYCLIC GROUP

Katsusuke SEKIGUCHI

(Received February 6, 1980)

We denote by $U(\Lambda)$ the group of units of a ring Λ . Let G be a finite group and let $\mathbb{Z}G$ be its integral group ring. Define $V(\mathbb{Z}G) = \{u \in U(\mathbb{Z}G) \mid \mathcal{E}(u) = 1\}$ where \mathcal{E} denotes the augmentation map of $\mathbb{Z}G$. In this paper we will study the following

Problem. Is there a torsion-free normal subgroup F of $V(\mathbf{Z}G)$ such that $V(\mathbf{Z}G) = F \cdot G$?

Denote by S_n the symmetric group on n symbols, by D_n the dihedral group of order 2n and by C_n the cyclic group of order n. The problem has been solved affirmatively in each of the following cases:

- (1) G an abelian group (Higman [4]),
- (2) $G=S_3$ (Dennis [2]),
- (3) $G=D_n$, n odd (Miyata [5]) or
- (4) G a metabelian group such that the exponent of G/G' is 1, 2, 3, 4 or 6 where G' is the commutator subgroup of G ([7]).

The purpose of this paper is to solve the problem for a class of metacyclic groups. Our main result is the following

Theorem. Let $G=C_n \cdot C_q$ be the semidirect product of C_n by C_q such that (n,q)=1, q odd, and C_q acts faithfully on each Sylow subgroup of C_n . Then there exists a torsion-free normal subgroup F of V(ZG) such that $V(ZG)=F \cdot G$.

1. Lemmas

We begin with

Lemma 1.1. Let r, k, n be non negative integers and h be a positive integer. Then

(1)
$$\sum_{r=0}^{n} (r+1) \cdots (r+k) = (n+1) \cdots (n+k+1)/(k+1)$$
, and

(2)
$$\sum_{r=0}^{n} r^{h}(r+1) \cdots (r+k) = \frac{n(n+1) \cdots (n+k+1) f(n, k, h)}{(k+2) \cdots (k+h+1)}$$
,

where f(n,k,h) is a polynomial with respect to n, k and h whose coefficients are in \mathbb{Z} , and its degree with respect to n is h-1. (Notation: $\deg_n f(n,k,h) = h-1$)

Proof. (1) is well known. (2) is also known for h=1. In fact, we have

$$\sum_{r=0}^{n} r(r+1) \cdots (r+k) = n(n+1) \cdots (n+k+1)/(k+2).$$

For $h \ge 2$ (2), can be shown by induction on h.

For integers a, b such that a>0, $b\ge 0$ and $a\ge b$, we denote by $\binom{a}{b}$ the binomial coefficient. We extend this notation formally to the case where $0\le a< b$ as $\binom{a}{b}=0$ and set $\binom{0}{0}=1$. Let $N=\{x\in \mathbb{Z}|x>0\}$ and $\overline{N}=N\cup\{0\}$.

For $(t, k_{t+1}, u_1, \dots, u_t, w_1, \dots, w_t) \in \mathbb{N} \times \overline{\mathbb{N}}^{2t+1}$, define

$$\begin{split} B_{t,k_{t+1},u_1,\cdots,w_t} &= \sum_{k_t=0}^{k_t+1} \binom{k_t}{u_t} \binom{k_t}{w_t} \binom{\sum_{k_t=1}^{k_t} \binom{k_{t-1}}{u_{t-1}} \binom{k_{t-1}}{w_{t-1}} \binom{k_{t-1}}{w_{t-1}} \binom{k_t}{w_t} \binom{k_2}{u_2} \binom{k_2}{w_2} \binom{k_2}{w_2} \binom{k_2}{w_2} \binom{k_1}{w_1} \binom{k_1}{w_1} \binom{k_1}{w_1} \cdots \binom{k_t}{w_t} \binom{k_t}{w_$$

For simplicity we write $B_t = B_{t,k_{t+1},u_1,\dots,w_t}$.

Lemma 1.2. Let s be a positive integer, and let u_i , w_j , $1 \le i$, $j \le s$, be non negative integers.

(1) Suppose that there exists s_0 , $1 \le s_0 \le s$, such that $u_i + w_i = 0$ for any i, $1 \le i \le s_0$, and $u_{s_0+1} + w_{s_0+1} \ge 1$. Then

$$B_{t} = \begin{cases} (k_{t+1}+1)\cdots(k_{t+1}+t)/t! & \text{if } t \leq s_{0} \\ \frac{k_{t+1}(k_{t+1}+1)\cdots(k_{t+1}+t)f_{t+1}(k_{t+1})}{(\prod_{i=1}^{t}u_{i}!w_{i}!)s_{0}!(s_{0}+2)\cdots(\sum_{i=1}^{s_{0}+1}(u_{i}+w_{i})+s_{0}+1)\cdots(t+1)\cdots(\sum_{i=1}^{t}(u_{i}+w_{i})+t)} & \text{if } s_{0}+1 \\ \leq t \leq s_{0} \end{cases}$$

where $f_{t+1}(k_{t+1})$ is a polynomial with respect to k_{t+1} whose coefficients are in \mathbb{Z} , and $\deg_{k_{t+1}} f_{t+1}(k_{t+1}) = \sum_{i=1}^{t} (u_i + w_i) - 1$.

(2) Suppose that $u_1+w_1 \ge 1$. Then

$$B_{t} = \begin{cases} \frac{k_{t+1}(k_{t+1}+1)\cdots(k_{t+1}+t)f_{t+1}(k_{t+1})}{(\prod_{i=1}^{t}u_{i}!w_{i}!)2\cdots(\sum\limits_{i=1}^{t}(u_{i}+w_{i})+1)\cdots(t+1)\cdots(\sum\limits_{i=1}^{t}(u_{i}+w_{i})+t)} & \text{for } 1 \leq t \leq s \end{cases}$$

where $f_{t+1}(k_{t+1})$ is a polynomial with respect to k_{t+1} whose coefficients are in \mathbb{Z} , and $deg_{k_{t+1}}f_{t+1}(k_{t+1}) = \sum_{i=1}^{t} (u_i + w_i) - 1$.

Proof. (1) We use the induction on t. First, assume that $t \le s_0$. If t=1,

the assertion is clearly valid. Suppose that the following equality holds:

$$B_t = (k_{t+1}+1)\cdots(k_{t+1}+t)/t!$$
.

Since $B_{t+1} = \sum_{k_{t+1}=0}^{k_{t+2}} B_t$, $B_{t+1} = (k_{t+2}+1) \cdots (k_{t+2}+t+1)/(t+1)!$ by (1.1), as desired. In particular, $B_{s_0} = (k_{s_0+1}+1) \cdots (k_{s_0+1}+s_0)/s_0!$.

Next, we will consider the case where $t > s_0$.

Since
$$B_{s_0+1} = \sum_{k_{s_0+1}=0}^{k_{s_0+2}} {k \choose u_{s_0+1}} {k_{s_0+1} \choose w_{s_0+1}} B_{s_0}$$
, we have

$$B_{s_0+1} = \frac{1}{s_0! \ u_{s_0+1}! \ w_{s_0+1}! \ w_{s_0+1}!} \sum_{k_{s_0+1}=0}^{k_{s_0+2}} k_{s_0+1} (k_{s_0+1}+1) \cdots (k_{s_0+1}+s_0) g_{s_0+1} (k_{s_0+1})$$

for some $g_{s_0+1}(k_{s_0+1})$ with $\deg_{k_{s_0+1}}g_{s_0+1}(k_{s_0+1})=u_{s_0+1}+w_{s_0+1}-1$. Hence, by (1.1),

$$B_{s_0+1} = \frac{1}{s_0! \ u_{s_0+1}! \ w_{s_0+1}!} \cdot \frac{k_{s_0+2}(k_{s_0+2}+1) \cdots (k_{s_0+2}+s_0+1) f_{s_0+2}(k_{s_0+2})}{(s_0+2) \cdots (u_{s_0+1}+w_{s_0+1}+s_0+1)}$$

for some $f_{s_0+2}(k_{s_0+2})$ with $\deg_{k_{s_0+2}}f_{s_0+2}(k_{s_0+2})=u_{s_0+1}+w_{s_0+1}-1$. Suppose that the following equality holds:

$$B_{t} = \frac{k_{t+1}(k_{t+1}+1)\cdots(k_{t+1}+t)f_{t+1}(k_{t+1})}{(\prod_{i=1}^{t} u_{i}! w_{i}!)s_{0}!(s_{0}+2)\cdots(u_{s_{0}+1}+w_{s_{0}+1}+s_{0}+1)\cdots(t+1)\cdots(\sum_{i=1}^{t} (u_{i}+w_{i})+t)}$$

for some $f_{t+1}(k_{t+1})$ with $\deg_{k_{t+1}} f_{t+1}(k_{t+1}) = \sum_{i=1}^{t} (u_i + w_i) - 1$. Then

$$B_{t+1} = \sum_{k_{t+1}=0}^{k_{t+1}} {k_{t+1} \choose u_{t+1}} {k_{t+1} \choose w_{t+1}} B_t = \frac{1}{(\prod_{i=1}^{t+1} u_i! \ w_i!) s_0! (s_0+2) \cdots (\sum_{i=1}^{t} (u_i+w_i)+t)} \sum_{k_{t+1}=0}^{k_{t+2}} k_{t+1} (k_{t+1}+1) \cdots (k_{t+1}+t) g_{t+1} (k_{t+1})$$

for some $g_{t+1}(k_{t+1})$ with $\deg_{k_{t+1}}g_{t+1}(k_{t+1}) = \sum_{i=1}^{t+1}(u_i + w_i) - 1$. Hence

$$B_{t+1} = \frac{k_{t+2}(k_{t+2}+1)\cdots(k_{t+2}+t+1)f_{t+2}(k_{t+2})}{(\prod\limits_{i=1}^{t+1}u_i!\ w_i!)s_0!(s_0+2)\cdots(t+2)\cdots(\sum\limits_{i=1}^{t+1}(u_i+w_i)+t+1)}$$

for some $f_{t+2}(k_{t+2})$ with $\deg_{k_{t+2}} f_{t+2}(k_{t+2}) = \sum_{i=1}^{t+1} (u_i + w_i) - 1$, as desired.

(2) The proof can be done in the same way as in (1), hence we omit it.

Let q be an odd positive integer and let Γ be a commutative ring. Set (q+1)/2=s. For a non negative integer i, we define the subset L_i of $\mathbb{Z}\times\mathbb{Z}$ as follows:

$$L_{i} = \begin{cases} \{(1, 1+i), \cdots, (s-i, s), (s-i, s+1), \cdots, (s, s+i+1), \\ (s+1, s+i+1), \cdots, (q-i, q) \end{cases} & \text{if } 1 \leq i \leq s-2, \\ \{(1, s), (1, s+1), \cdots, (q-i, q)\} & \text{if } i = s-1 \\ \{(1, i+2), (2, i+3), \cdots, (q-i-1, q)\} & \text{if } s \leq i \leq q-2, \\ \phi & \text{if } q-1 \leq i \\ \{(k, h)\}_{1 \leq k, h \leq q} \setminus \bigcup_{i=1}^{q-2} L_{i} & \text{if } i = 0. \end{cases}$$

For each L_i , define $W_i(q, \Gamma) = \{(x_{k,h}) \in M_q(\Gamma) | x_{c,d} = 0 \text{ if } (c,d) \notin L_i\}$ and set $\overline{W}_i(q, \Gamma) = \bigcup_{i=1}^{n} W_i(q, \Gamma)$ $\bar{W}_{k}(q,\Gamma) = \bigcup_{i > k} W_{i}(q,\Gamma).$

Lemma 1.3. Let i, j be positive integers. Suppose that $X_i \in W_i(q, \Gamma)$ and $Y_i \in W_i(q,\Gamma)$. Then $X_i Y_i \in W_{i+1}(q,\Gamma)$.

Proof. When $i \ge (q-1)/2$ or $j \ge (q-1)/2$, the assertion can easily be veri-Hence we have only to consider the following cases:

Case 1. i, j < (q-1)/2 and i+j < (q-1)/2.

Case 2. i, j < (q-1)/2 and i+j=(q-1)/2.

Case 3. i, j < (q-1)/2 and i+j > (q-1)/2.

Case 1. Denote by $E_{k,h}$ a matrix unit (i.e. $E_{k,h}$ has an entry 1 at position (k,h) and zero elsewhere). Set (q+1)/2=s and write

$$X_{i} = x_{1}E_{1,1+i} + x_{2}E_{2,2+i} + \dots + x_{s-i}E_{s-i,s} + x_{s-i+1}E_{s-i,s+1} + \dots + x_{s+1}E_{s-s+i+1} + x_{s+2}E_{s+1} + \dots + x_{s-i+1}E_{s-i,s},$$

and

$$Y_{j} = y_{1}E_{1,1+j} + y_{2}E_{2,2+j} + \dots + y_{s-j}E_{s-j,s} + y_{s-j+1}E_{s-j,s+1} + \dots$$

$$\dots + y_{s+1}E_{s+j+1} + y_{s+2}E_{s+1} + \dots + y_{s-j+1}E_{s-j,s}, \text{ where } x_{r}, y_{t} \in \Gamma.$$

Then

$$\begin{split} X_i Y_j &= x_1 y_{1+i} E_{1,1+i+j} + \dots + x_{s-i-j} y_{s-j} E_{s-i-j,s} + x_{s-i-j} y_{s-j+1} E_{s-i-j,s+1} \\ &+ \dots + x_{s-i} y_{s+1} E_{s-i,s+j+1} + x_{s-i+1} y_{s+2} E_{s-i,s+j+1} + \dots \\ & \dots + x_{s+1} y_{s+i+2} E_{s,s+i+j+1} + x_{s+2} y_{s+i+2} E_{s+1,s+i+j+1} + \dots \\ & \dots + x_{q-i-j+1} y_{q-j+1} E_{q-i-j,q} \;. \end{split}$$

Therefore $X_i Y_j \subseteq W_{i+j}(q, \Gamma)$.

The assertion in Case 2 and Case 3 can be proved in the same way as in Case 1, and therefore we omit them.

Let X be an arbitrary element in $M_q(\Gamma)$. Since $W_i(q,\Gamma) \cap W_j(q,\Gamma) = \{0\}$ for $i \neq j$, X can be expressed uniquely as follows:

$$X = X_{0} + X_{1} + \cdots + X_{q-2}$$
, where $X_{i} \in W_{i}(q, \Gamma)$.

We call X_i the *i*-th component of X.

2. Proof of Theorem

Write $G=C_n\cdot C_q=\langle \sigma,\tau\,|\,\sigma^n=\tau^q=1,\,\tau\sigma\tau^{-1}=\sigma^r\rangle$. Consider the pullback diagram

where $\Sigma = \sum_{i=0}^{n-1} \sigma^i$ and $F_n = \mathbb{Z}/n\mathbb{Z}$.

Write $S = \mathbf{Z}[\sigma]/(\Sigma)$ and $\Lambda = \mathbf{Z}G/(\Sigma)$. Define the Λ -homomorphisms

$$f_k: S(1-h_1(\sigma))^k \to \Lambda, \ 0 \leq k \leq q-1$$
,

by $s(1-h_1(\sigma))^k \to s\left\{1+\left(\frac{1-h_1(\sigma)}{1-h_1(\sigma)^r}\right)^k h_1(\tau)+\cdots+\left(\frac{1-h_1(\sigma)}{1-h_1(\sigma)^{r^{q-1}}}\right)^k h_1(\tau)^{q-1}\right\}, s \in S,$ and set $f=f_0+\cdots+f_{q-1}\colon S\oplus\cdots\oplus S(1-h_1(\sigma))^{q-1}\to\Lambda$. Then f is a Λ -isomorphism ([3, Lemma 3.3]).

For a module M over a group H, we define $M^H = \{x \in M \mid hx = x \text{ for any } h \in H\}$. Set $R = S^{\langle \tau \rangle}$, $P_0 = (1 - h_1(\sigma))S$ and $P = P_0 \cap R$. Then

as R-algebras ([3, Proposition 3.4]). This isomorphism is the composite of the following two isomorphisms:

$$\varphi \colon \Lambda \to \operatorname{End}_{\Lambda}(\Lambda)^{\circ}$$
, where $\varphi(u)(\lambda) = \lambda u, u, \lambda \in \Lambda$,

and

$$\psi \colon \operatorname{End}_{\Lambda}(\Lambda)^{\circ} \cong \operatorname{End}_{\Lambda}(S \oplus S(1 - h_{1}(\sigma)) \oplus \cdots \oplus S(1 - h_{1}(\sigma))^{q-1})^{\circ}$$

$$\cong \{ \bigoplus_{0 \leq i, j \leq q-1} \operatorname{Hom}_{\Lambda}(S(1 - h_{1}(\sigma))^{i}, S(1 - h_{1}(\sigma))^{j}) \}^{\circ}$$

$$R \mapsto R$$

$$P \mapsto C$$

$$= \begin{pmatrix} R \cdot \cdot \cdot R \\ P \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \\ R = R \cdot R \end{pmatrix}$$

Here, $\operatorname{End}_{\Lambda}(\Lambda)^{\circ}$ denotes the opposite ring of $\operatorname{End}_{\Lambda}(\Lambda)$. Write

For $x \in \Lambda$, we set $\psi \circ \varphi(x) = (b_{i,j}(x)) \in \Delta$.

We now determine $\bar{b}_{i,i}(h_1(\tau))$, $1 \le i \le q$, where $\bar{b}_{i,i}(h_1(\tau))$ is the image of $b_{i,i}(h_1(\tau))$ under the map $R \to R/P$. Set

$$x_k = 1 + \left(\frac{1 - h_1(\sigma)}{1 - h_1(\sigma)^r}\right)^k h_1(\tau) + \dots + \left(\frac{1 - h_1(\sigma)}{1 - h_1(\sigma)^{r^{q-1}}}\right)^k h_1(\tau)^{q-1}.$$

Since g_1 is surjective and $\Lambda = Sx_0 + \cdots + Sx_{q-1}$, $F_n[\tau] = F_n g_1(x_0) + \cdots + F_n g_1(x_{q-1})$. Hence $g_1(x_i)$, $0 \le i \le q-1$, are linearly independent over F_n . Denote by π_k , $0 \le k \le q-1$, the projection from Λ to Sx_k . Then $\varphi(h_1(\tau)) \circ \pi_k$ is a Λ -homomorphism from Λ to Sx_k . If we put $\varphi(h_1(\tau))(x_k) = a_0x_0 + \cdots + a_{q-1}x_{q-1}$, $a_i \in S$, $(\varphi(h_1(\tau)) \circ \pi_k)(x_k) = \pi_k(\varphi(h_1(\tau))(x_k)) = a_kx_k$. Hence $a_k \in R$ and so $g_1(a_k) = \bar{b}_{k+1,k+1}(h_1(\tau))$, by the definition of ψ . We have $g_1(\varphi(h_1(\tau))(x_k)) = g_1(x_kh_1(\tau)) = g_1(a_0)g_1(x_0) + \cdots + g_1(a_{q-1})g_1(x_{q-1})$ in $F_n[\tau]$.

Write this equality explicitly as follows:

$$r^{-(q-1)k} + au + r^{-k} au^2 + \cdots + r^{-(q-2)k} au^{q-1} \ = g_1(a_0)(1 + au + au^2 + \cdots + au^{q-1}) \ + \cdots + g_1(a_k)(1 + r^{-k} au + r^{-2k} au^2 + \cdots + r^{-(q-1)k} au^{q-1}) \ + g_1(a_{q-1})(1 + r^{-(q-1)} au + r^{-2(q-1)} au^2 + \cdots + r^{-(q-1)^2} au^{q-1}) \ .$$

Since $g_1(x_i)$, $0 \le i \le q-1$, are linearly independent over F_n , $(g_1(a_0), \dots, g_1(a_{q-1}))$ is uniquely determined. If we set $g_1(a_k) = r^k$ and $g_1(a_j) = 0$ for every $j, j \ne k$, then this satisfies the equality. Thus we have $\bar{b}_{k+1,k+1}(h_1(\tau)) = g_1(a_k) = r^k$.

By a similar argument, we see that $\bar{b}_{i,i}(h_1(\sigma))=1$, $1 \le i \le q$.

Define a ring isomorphism $\Phi\colon F_n[\tau]\to F_n^q$ by $\tau\to (1,r,\cdots,r^{q-1})$, Further define $\Psi\colon \Delta\to F_n^q$ by $(b_{i,j})\to (\bar{b}_{1,1},\cdots,\bar{b}_{q,q})$. Then the following diagram is commutative:

(2.1)
$$ZG \xrightarrow{h_2} Z[\tau]$$

$$\downarrow h_1 \qquad \qquad \downarrow g_2$$

$$\uparrow \qquad \qquad \downarrow \Phi$$

$$\downarrow \Phi$$

$$\downarrow \Phi$$

$$\downarrow \Phi$$

$$\downarrow \Phi$$

$$\downarrow \Phi$$

$$\downarrow \Phi$$

Let ι be the involution of $Z[\tau]$ defined by $\iota(\tau^i) = \tau^{-i}$, $0 \le i \le q-1$. Since q is odd, by virture of [6, Remark 2.7], $U(Z[\tau]) = \pm \langle \tau \rangle \times V([Z[\tau]]^{\langle \iota \rangle})$ where $V([Z[\tau]]^{\langle \iota \rangle}) = U([Z[\tau]]^{\langle \iota \rangle}) \cap V(Z[\tau])$. Let $u \in V([Z[\tau]]^{\langle \iota \rangle})$. If we write $\Phi \circ g_2(u) = (u_1, \dots, u_q)$, then, by the definition of Φ , $u_{(q+1)/2} = u_{(q+3)/2}$. The theorem of Higman ([4]) shows that $V([Z[\tau]]^{\langle \iota \rangle})$ is torsion-free. It is easy to see that $g_1(U(\Lambda)) \supseteq g_2(U(Z[\tau]))$ and $g_2(U(Z[\tau])) = \pm \langle \tau \rangle \times g_2(V([Z[\tau]])^{\langle \iota \rangle})$. Define

$$F_1 = \{(b_{i,j}) \in U(\Delta) \mid \bar{b}_{(q+1)/2,(q+3)/2} = 0\} \cap \Psi^{-1}(\Phi \circ g_2(V([\boldsymbol{Z}[\tau]]^{\langle \iota \rangle}))).$$

Then F_1 is contained in the subgroup $\{(d_{i,j}) \in U(\Delta) \mid \bar{d}_{(q+1)/2,(q+3)/2} = 0 \text{ and } \bar{d}_{(q+1)/2,(q+1)/2} = \bar{d}_{(q+3)/2,(q+3)/2} \}$.

We now show that F_1 is a normal subgroup of $U(\Delta)$. Let $Y=(a_{i,j})\in U(\Delta)$. If we write $Y^{-1}=(c_{i,j})$, then $a_{(q+1)/2,(q+1)/2} \cdot c_{(q+1)/2,(q+1)/2} \equiv 1 \pmod{P}$, $a_{(q+3)/2,(q+3)/2} \cdot c_{(q+3)/2,(q+3)/2} \equiv 1 \pmod{P}$ and $a_{(q+1)/2,(q+1)/2} \cdot c_{(q+1)/2,(q+3)/2} + a_{(q+1)/2,(q+3)/2} \cdot c_{(q+3)/2,(q+3)/2} \equiv 0 \pmod{P}$. Let $X=(b_{i,j})\in F_1$ and write $YXY^{-1}=(z_{i,j})$. Then, by a direct calculation, $z_{i,i}\equiv b_{i,i} \pmod{P}$, $1\leq i\leq q$, and $z_{(q+1)/2,(q+3)/2}\equiv 0 \pmod{P}$. Hence F_1 is a normal subgroup of $U(\Delta)$. Define $F_2=\{(b_{i,j})\in F_1|\bar{b}_{i,i}=1, 1\leq i\leq q\}$.

Proposition 2.2. F_2 is torsion-free.

Proof. Step 1. Reduction to the case where n is a prime. By the same way as in [5, Proposition 1.3], we can show that $F_3 = \{X \in F_2 | X \equiv E \pmod{P}\}$ is torsion-free. Hence it suffices to show that every element in $F_2 \setminus F_3$ is of infinite order.

Let $n=p_i^{e_1}\cdots p_i^{e_t}$ be the prime decomposition of n. Denote by Φ_m the m-th cyclotomic polynomial. Further, we denote by η_i , $1 \le i \le t$, (resp. $\eta_{i,j}$, $1 \le i \le t$, $1 \le j \le e_i$) the natural maps $\mathbf{Z}[\sigma] \to \mathbf{Z}[\sigma]/(\prod_{j=1}^{e_i} \Phi_{p_i^j}(\sigma))$ (resp. $\mathbf{Z}[\sigma] \to \mathbf{Z}[\sigma]/(\Phi_{p_i^j}(\sigma))$). Write $\mathbf{Z}[\sigma]/(\prod_{j=1}^{e_i} \Phi_{p_i^j}(\sigma)) = S(p_i)$ and $\mathbf{Z}[\sigma]/(\Phi_{p_i^j}(\sigma)) = S(p_i,j)$. Set $S(p_i)^{\langle \tau \rangle} = R(p_i)$, $R(p_i) \cap (1-\eta_i(\sigma))S(p_i) = P(p_i)$, $S(p_i,j)^{\langle \tau \rangle} = R(p_i,j)$ and $R(p_i,j) \cap (1-\eta_{i,j}(\sigma))S(p_i,j) = P(p_i,j)$. Note that $R/P \cong F_n$. Consider the natural maps:

$$T_{p_k}: M_q(R) \to M_q(R(p_k)), 1 \leq k \leq t$$
.

If we take $(a_{i,j}) \in F_2 \setminus F_3$, then there exists $p_h \in \{p_1, \dots, p_t\}$ such that $T_{p_h}((a_{i,j})) \not\equiv E$

(mod $P(p_h)$). For each $a_{i,j}$, $1 \le i < j \le q$, we can take $m_{i,j} \in \{0, \dots, n-1\}$ such that $a_{i,j} \equiv m_{i,j} \pmod{P}$. Write $m_{i,j} = p_h^{c_i,j}m'_{i,j}$, $p_h \not\mid m'_{i,j}$, and set $c = Min\{c_{i,j} | 1 \le i < j \le q\}$. Further, let

$$\Psi_{p_h}: M_q(R(p_h)) \to M_q(R(p_h, 1)) \oplus \cdots \oplus M_q(R(p_h, e_h))$$

be the natural injection, and let

$$\pi_d: M_q(R(p_h, 1)) \oplus \cdots \oplus M_q(R(p_h, e_h)) \to M_q(R(p_h, d)), 1 \leq d \leq e_h$$

be the projections.

Suppose that $1 \le c$. Then $(\pi_d \circ \Psi_{p_h} \circ T_{p_h})((a_{i,j})) \equiv E \pmod{P(p_h,d)}$, $1 \le d \le e_h$, and hence $(a_{i,j})$ is of infinite order.

Next, suppose that c=0. Then $(\pi_1 \circ \Psi_{p_h} \circ T_{p_h})((a_{ij})) \equiv E \pmod{P(p_h, 1)}$, and hence, if we can show the assertion in the case where n is a prime, the proof is completed.

Step 2. The case where n=p a prime.

Take an element B of F_2 . Then $B \equiv X \pmod{P}$ for some X whose entries are in $\{0,\cdots,p-1\}$. By the definition of $F_2,X \in GL(q,\mathbf{Z})$. Write $B = X + P^eA$ where $A \in M_q(R)$ and $e \ge 1$. Further, set $X = E + X_1 + \cdots + X_{q-2}$ (resp. $X^{-1} = E + Y_1 + \cdots + Y_{q-2}$) where X_i (resp. Y_i) is the i-th component of X (resp. Y). It is easy to see that $Y_1 = -X_1$. We write $A^{(k)} = X^{-k}AX^k$. Then

$$\begin{split} B^{p} &= (X + P^{e}A)^{p} = X^{p} + \sum_{t=1}^{p} (P^{te}(\sum_{i_{1} + \dots + i_{t+1} = p-t, i_{1}, \dots, i_{t+1} \ge 0} X^{i_{1}}AX^{i_{2}} \dots X^{i_{t}}AX^{i_{t+1}})) \\ &= X^{p} + \sum_{t=1}^{p} (P^{te}X^{p-t}(\sum_{p-t \ge k_{1} \ge \dots \ge k_{1} \ge 0} A^{(k_{t})} \dots A^{(k_{1})})) \\ &= X^{p} + \sum_{t=1}^{p} (P^{te}X^{p-t}(\sum_{k_{t}=0}^{p-t} A^{(k_{t})}(\sum_{k_{t}-1}^{k_{t}} A^{(k_{t-1})}(\dots (\sum_{k_{2}=0}^{k_{3}} A^{(k_{2})}(\sum_{k_{1}=0}^{k_{2}} A^{(k_{1})}))\dots). \end{split}$$

Set $X^{p}=E+\tilde{X}_{1}+\cdots+\tilde{X}_{q-2}$ where \tilde{X}_{i} is the i-th component of X^{p} . Then, by (1.3), $\tilde{X}_{i}=\sum_{t=1}^{i}\Bigl(\binom{p}{t}\sum_{i_{1}+\cdots+i_{t}=i}X_{i_{1}}\cdots X_{i_{t}}\Bigr)$, and hence $X^{p}\equiv E\pmod{p}$. Therefore $B^{p}\equiv E\pmod{p}$. Thus, if B is of finite order, B^{p} must be equal to E. Suppose that there exists $B=X+P^{e}A\in F_{2}$ such that $B^{p}=E$ and $B\neq E$. Set $S_{i}=\sum_{1\leq h_{1},\cdots,h_{i}\leq q-2}X_{h_{1}}\cdots X_{h_{i}}$ and $S_{0}=T_{0}=E$. Since $X^{k}=(E+X_{1}+\cdots+X_{q-2})^{k}=E+\binom{k}{1}T_{1}+\cdots+\binom{k}{k}T_{k}$ and $X^{-k}=(E+Y_{1}+\cdots+Y_{q-2})^{k}=E+\binom{k}{1}S_{1}+\cdots+\binom{k}{k}S_{k}$, $A^{(k)}=X^{-k}AX^{k}=\sum_{0\leq u,w\leq k}\binom{k}{u}\binom{k}{w}S_{u}AT_{w}$. Since $S_{i},T_{i}\in \overline{W}_{i}(q,\mathbf{Z})$ by (1.3), $S_{i}=T_{i}=0$ for $i\geq q-1$. Therefore we may write $A^{(k)}=\sum_{0\leq u,w\leq q-2}\binom{k}{u}\binom{k}{w}S_{u}AT_{w}$.

Hence, if we write $(*) \sum_{p-t \geq k_1 \geq \cdots \geq k_1 \geq 0} A^{(k_t)} \cdots A^{(k_1)} = \sum_{0 \leq u_t, w_t \leq q-2} a_{u_t w_t \cdots u_1 w_1} S_{u_t} A T_{w_t} \cdots S_{u_1} A T_{w_t} \cdots S_{u_1}$, then $a_{u_t w_t \cdots u_1 w_1} = \sum_{k_t = 0}^{p-t} {k \choose u_t} {k_t \choose w_t} {k_t \choose k_{t_{t-1}} - {k_{t-1} \choose w_{t-1}}} {k_{t-1} \choose w_{t-1}} {k_{t-1} \choose w_{t-1}} {k_t \choose u_t} {k_1 \choose w_t} \cdots {k_t \choose w_t}$.

Set $(X+P^eA)^p=X^p+H$.

We now show that the 1-st component of H is divisible by pP^{ϵ} . If we write $(p-1)/q=t_0$, $P^{t_0}=p$. Suppose that $t>t_0$, then $P^{\epsilon t_0}=p^{\epsilon}|P^{t\epsilon}$, and so for such t, $pP^{\epsilon}|P^{t\epsilon}X^{p-t}(\sum_{p-t\geq \cdots \geq k_1\geq 0}A^{(k_1)}\cdots A^{(k_1)})$. On the other hand, by (1.2), $a_{u_tw_t\cdots u_1w_1}$ is

divisible by p if $\sum_{i=1}^{t} (u_i + w_i) + t < p$. Hence we have only to consider the case where $t \le t_0$ and $\sum_{i=1}^{t} (u_i + w_i) + t \ge p$.

We show that the 0-th and 1-st components of $S_{u_t}AT_{w_t}\cdots S_{u_1}AT_{w_1}$ are 0, if $t \leq t_0$ and $\sum_{i=1}^t (u_i + w_i) + t \geq p$.

Case 1. $u_t+w_1\geq q+1$. Suppose that $u_t\geq (q+1)/2$. Write $S_{u_t}=(x(u_t)_{i,j})$ and $T_{w_1}=(x(w_1)_{i,j})$. Then $x(u_t)_{i,j}=0$ for $i\geq q-u_t$ and $x(w_1)_{i,j}=0$ for $j\leq w_1$ because $S_{u_t}\in \overline{W}_{u_t}(q,R)$ and $T_{w_1}\in \overline{W}_{w_1}(q,R)$. Hence, if we write $S_{u_t}AT_{w_t}\cdots S_{u_1}AT_{w_1}=(x_{i,j}), x_{i,j}=0$ whenever $i\geq q-u_t$ or $j\leq w_1$. Since $u_t+w_1\geq q+1$, the 0-th and 1-st components of $(x_{i,j})$ are 0. The proof in the case $w_1\geq (q+1)/2$ is similar to that in the case $u_t\geq (q+1)/2$, so, we omit it.

Case 2. $u_t+w_1 \leq q$. Suppose that there exists $i \in \{1, \dots, t-1\}$ such that $q-w_{i+1} \leq u_i$. Then $T_{w_{i+1}} S_{u_i} = 0$, and hence $S_{u_t} A T_{w_t} \cdots S_{u_1} A T_{w_1} = 0$. Therefore we have only to consider the case where $q-w_{i+1}>u_i$ for each $i, 1\leq i\leq t-1$. Further it is easy to see that $T_{w_{i+1}} S_{u_i} = 0$ if $w_{i+1} + u_i = q-1$. Hence, we may assume that $q-2 \geq w_{i+1} + u_i$, $1\leq i\leq t-1$, But in this case

$$\sum_{i=1}^{t} (u_i + w_i) = u_t + w_1 + \sum_{i=1}^{t-1} (w_{i+1} + u_i) \leq q + (q-2)(t-1) \leq t_0(q-2) + 2.$$

On the other hand,

$$\sum_{i=1}^{t} (u_i + w_i) \ge p - t = qt_0 + 1 - t.$$

Therefore

$$qt_0+1-t \leq \sum_{i=1}^{t} (u_i+w_i) \leq t_0(q-2)+2$$
.

This is impossible because $t \le t_0$ and $t_0 \ne 1$.

Hence the 0-th and 1-st components of $S_{u_t}AT_{w_t}\cdots S_{u_1}AT_{w_1}$ are 0, and so the 1-st component of $X^{p-t}S_{u_t}AT_{w_t}\cdots S_{u_1}AT_{w_1}$ is 0.

Thus we conclude that the 1-st component of H is divisible by pP^{e} .

On the other hand, the 1-st component of X^p is pX_1 . Since every entry in X_1 is in $\{0, \dots, p-1\}$, X_1 must be equal to 0. Hence $Y_1 = -X_1 = 0$. There-

fore, if $i \ge (q-1)/2$, $S_i = T_i = 0$ because S_i , $T_i \in \overline{W}_i(q,R)$. Thus, if $S_{u_t}AT_{w_t}\cdots S_{u_1}AT_{w_1} \ne 0$, then we must have u_i $w_j \le (q-3)/2$ for all u_i , w_j $1 \le i, j \le t$. Suppose that $t \le t_0$, then

$$\sum_{i=1}^{t} (u_i + w_i) + t \leq t(q-2) \leq t_0(q-2) \leq p.$$

Hence, for every $S_{u_i}AT_{w_i}\cdots S_{u_1}AT_{w_1} \pm 0$, its coefficient in (*) is divisible by p. Therefore H is divisible by pP^e . As $B^p = X^p + H = E$, $X^p \equiv E \pmod{pP^e}$. However \tilde{X}_2 is $pX_2 + \binom{p}{2}X_1^2 = pX_2$, and so X_2 must be equal to 0. Continuing this procedure, we get $X_i = 0$ for any i, $1 \le i \le q - 2$. Therefore $X + P^eA \equiv E \pmod{P}$. This contradicts the fact that B is of finite order. Thus the proof is completed.

Proof of Theorem. Considering the property of the pullback diagram (2.1), we get $[(\psi \circ \varphi \circ h_1)(V(\mathbf{Z}G)): F_1] = nq$. Therefore, if we set $F = (\psi \circ \varphi \circ h_1)^{-1}(F_1)$, then $V(\mathbf{Z}G) \triangleright F$ and $[V(\mathbf{Z}G): F] = nq$. Take an element u of F.

Suppose that $(\psi \circ \varphi \circ h_1)(u) = 1$. The restriction of h_2 to $(\psi \circ \varphi \circ h_1)^{-1}(1) \cap U(\mathbf{Z}G)$ yields a group monomorphism $(\psi \circ \varphi \circ h_1)^{-1}(1) \cap U(\mathbf{Z}G) \to U(\mathbf{Z}[\tau])$. However, since $\Phi \circ g_2 \circ h_2(u) = 1$, $h_2 \in U$ is of infinite order by [1, Theorem 3.1], hence so is u.

Suppose next that $1 \pm (\psi \circ \varphi \circ h_1)(u) \in F_2$. Then it is of infinite order by (2.2), hence so is u.

Finally, suppose that $(\psi \circ \varphi \circ h_1)(u) \in F_1 \setminus F_2$. Then, by the definition of F_1 , there exists an element v of $V([\mathbf{Z}[\tau]]^{\langle \iota \rangle})$ such that $\Phi \circ g_2(v) = (\Psi \circ \psi \circ \varphi \circ h_1)(u)$. However v is of infinite order, hence so is u. This shows that F is torsion-free. Therefore we get $F \cap G = \{1\}$. Thus F is a torsion-free normal subgroup of $V(\mathbf{Z}G)$ such that $V(\mathbf{Z}G) = F \cdot G$. This completes the proof.

References

- [1] J.A. Cohn and D. Livingstone: On the structure of group algebras, I, Canad. J. Math. 17 (1965), 583-593.
- [2] R.K. Dennis: The structure of the unit group of group rings, Ring theory II, Marcel Dekker, 1977, 103-130.
- [3] S. Endo, T. Miyata and K. Sekiguchi: Picard groups and automorphism groups of integral group rings of metacyclic groups, to appear.
- [4] G. Higman: The units of group rings, Proc. London Math. Soc. 46 (1940), 231-248.
- [5] T. Miyata: On the units of the integral group ring of a dihedral group, to appear in J. Math. Soc. Japan.
- [6] ——: A normal integral basis theorem for dihedral groups, to appear in Tôhoku Math. J..

[7] K. Sekiguchi: On the units of integral group rings, to appear in Tokyo J. Math.

Department of Mathematics Tokyo Metropolitan University Fukazawa, Setagaya-ku Tokyo 158, Japan