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We denote by U(A) the group of units of aring A. Let G be a finite group
and let ZG be its integral group ring. Define V(ZG)= {uc U(ZG)|&(u)=1}
where € denotes the augmentation map of ZG. In this paper we will study
the following

Problem. Is there a torsion-free normal subgroup F of V(ZG) such that
V(ZG)=F-G?

Denote by S, the symmetric group on z symbols, by D, the dihedral group
of order 2n and by C, the cyclic group of order #. The problem has been solved
affirmatively in each of the following cases:

(1) G an abelian group (Higman [4]),

(2) G=S; (Dennis [2]).

(3) G=D,, n odd (Miyata [5]) or

(4) G a metabelian group such that the exponent of G/G' is 1, 2, 3, 4 or
6 where G’ is the commutator subgroup of G ([7]).

The purpose of this paper is to solve the problem for a class of metacyclic
groups. Our main result is the following

Theorem. Let G=C,-C, be the semidirect product of C, by C, such that
(n,q)=1, q odd, and C, acts faithfully on each Sylow subgroup of C,. Then there
exists a torsion-free normal subgroup F of V(ZG) such that V(ZG)=F -G.

1. Lemmas

We begin with

Lemma 1.1. Let 7, k, n be non negative integers and h be a positive integer.
Then

(1) g(ﬂrl) o (r+-R) = (n+1) ++ (n+k+1)/(k+1), and

SV b _ n(n+1) - (nt-k+-1)f(n, k, )
(2) Z‘y(ﬂrl) (r+Fk) (h£2) - (kpht1)

)
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where f(n,k,h) is a polynomial with respect to n, k and h whose coefficients are in
Z, and its degree with respect to n is h-1. (Notation: deg, f(n,k,h)=h-1)

Proof. (1) is well known. (2) is also known for A=1. In fact, we have
20 r(r-+1) -+ (r4+-k) = n(n+1) - (nHk+1)[(k+2) -

For 2=2 (2), can be shown by induction on A.

For integers @, b such that >0, 5$=0 and a=b, we denote by (Z) the
binomial coefficient. We extend this notation formally to the case where 0=
a<b as (Z)zo and set (8>:1. Let N={xZ|x>0} and N=N U {0}.

For (¢, kyyy, g, =+, 4y, wy, -+, w) EN X N**1) define

By by sa,ny, e 0
= S0 B (BN ()
For simplicity we write By=DB; 1,,, 4, - vy

Lemma 1.2. Let s be a positive integer, and let u;, w;, 1=1, j<s, be non
negative integers.

(1) Suppose that there exists s,, 1=5,=s, such that w;~+w;=0 for any i,
1=i<s,, and u, .+ w, ., =1. Then

(Regy 1)+ (Reyy +-2) /2! ift=s
B, = t+1(kt+1+ 1) (ki+1+t)ft+1(kt+l) if s+1
(Hu 20;1)s6!(s5+2) - (2(" +wi)+-so+1)+(¢41)- (=21(u,~+w,~)—}—t) <t<s

where f,.\(k11) ©s a polynomial with respect to k., whose coefficients are in Z, and
t
deg k:+1ft+l(kt+l)=§ (u;+w;)—1.
(2) Suppose that u,+w,=1. Then

B _{ . kt+1(kt+1+1) (kt+1+t)ft+l(kt+l)
L st 2 (D () 1) (1) - (D () +1)

for 1=t<s

where f,,1(Ri11) 15 @ polynomial with respect to k.., whose coefficients are in Z, and

degk,+1f¢+1(k:+1)=§ (ui+w;)—1.

Proof. (1) We use the induction on ¢. First, assume that t=<s,. If t=1,
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the assertion is clearly valid. Suppose that the following equality holds:
B, = (kt+1+1) (kt+l+t)/t! .
k42
=0B,, Bi=(kis 1) (ke t+1+1) /(41! by (1.1), as desired.

In particular, B, j=(k,ys141) -+ (Regr1t50) [ So!-
Next, we will consider the case where > s,.

Since B,ﬂ:;

1 J— kso+2 kso+l kso+1
Since B, ;= >} B,,, we have

s+1=0 Uso+1/ \Wsy+1
1 ksg+2

P Okso+l(kso+l+1) (ks0+1+so)gso+1(kso+1)

Bso+1 =,
Sol Uegrr! Wegr ! hegra=

for some g, 41(ksy+1) With degy, . 18so+1(Rsor1) =Usi1+25.—1. Hence, by (1.1),

1 ‘kso+2(kso+2+1) o (Rggra ot 1)fspr2(Rspi2)
So! tgyra! Wyo1q! (So+2) =+ (Uspr1tw5p1+50+1)

for some f, ,x(Rso12) With degy, .o fs+2(Rsgra) =Uspr1F%sps1—1.  Suppose that the
following equality holds:

_ kt+l(kt+]+1) (kt+1‘|“t)ft+1(kt+1)
(‘g u; !l w; Dso!(so+2) «- (uso+1+wso+1+so‘|‘1) s (241) - (Zl](u,‘i"‘w,)‘i‘t)

Bso+1 =

B,

t
for some f,,,(k,4;) with degkmf,+1(k,+1)=i§:_i(u;—|—wg)—1. Then
kt+2 k k
B = 51 (0m) () B =

1 kt+o
T ! E kt+1(kt+1+1) oo (Rypr g (Risy)
(I;I1 u; ! w;1)5,1(5p+2) -+ (E(“i+wi)+i) krr1=0

for some g,4,(k;.;) with deg,,mgm(km)Z’Z‘i(u,-—l—w;)—1. Hence

Braalkesat1) = (Rraat 241 fraalless)
(It @l (ot 2) -+ (842) - (i) F241)

Br+1 =

t+1 .
for some f,y(k;42) with deg,,., ftﬂ(k,“):E1 (u;+w;)—1, as desired.
(2) The proof can be done in the same way as in (1), hence we omit it.

Let ¢ be an odd positive integer and let I' be a commutative ring. Set
(g+1)/2=s. For a non negative integer 7, we define the subset L; of ZX Z as
follows:
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{(1, 1+9), , (s—1, ), (s—z,sj|—1), ceey (5, sHi4-1), N
(s—l—l, s—|—1+1), ......... , (q——z, q)
{(1,3),(1,s+]), ......... ,(S-—l,q)} i1
L= {(l,i+2), (2, 1+43), coeeeeeee ,(q-—i—l,q)} i Séiéq—z,
¢ if g—1=i
U hizn s\ UL if i=0.

For each L;, define Wi(q, T')={(% ) EM,(T)|x,,=0 if (c,d)&L;} and set
W@ T)=UW(eT).

Lemma 1.3. Let i, j be positive integers. Suppose that X, W(q,T") and
Y;eWiq,T). Then XY, €W, (q,T).

Proof. When :=(¢g—1)/2 or j=(¢—1)/2, the assertion can easily be veri-
fied. Hence we have only to consider the following cases:

Case 1. 1, 7<(¢—1)/2 and i+j<(9—1)/2.

Case 2. 1, j<(¢—1)/2 and i4-j=(¢—1)/2.

Case 3. 1, j<(¢g—1)/2 and i+j>(¢—1)/2.

Case 1. Denote by E, ;, a matrix unit (i.e. E,, has an entry 1 at position
(k,k) and zero elsewhere). Set (¢g+1)/2=s and write

X; = x1E1,1+i+x2E2,2+i+"'+xs—iEs—-i,s+xs—i+1Es—i,s+l+"'
+xs+1Es,s+i+1+xs+zEs+1,s+i+1+”‘ +x4—i+1Eq—i,q s
and
Y, = y1E1,1+,-+yzEz,z+,-+ +ys-jEs—j,s+ys—j+1Es—j,s+1+ e
""|'ys+1Es,s+j+1+ys+2Es+l,s+j+1+"'+,',Vq—j+1Eq—j,q) where x,, y,€T" .
Then
X; Yj = x1y1+iE1,1+i+j+“‘+xs_i—jys-jEs—i—j,s+xs—i—jys—j+1Es—i—j,s+1
+ "'+xs—iys+1Es-i,s+j+1+xs—i+1ys+2Es-i,s+j+1+‘”
e +xs+1ys+i+zEs,s+i+j+1+xs+2ys+i+2Es+1,s+i+j+1+ e
"'+xq-i—i+1yq—j+1Eq—i—f,q .
Therefore X;Y, € W,,(q,T).

The assertion in Case 2 and Case 3 can be proved in the same way as in
Case 1, and therefore we omit them.

Let X be an arbitrary element in M,(T"). Since W;(q,T")N W;(g,T")= {0}
for i=£j, X can be expressed uniquely as follows:

X =X +X,++X,_,, where X;€W(q,T).
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We call X; the i-th component of X.

2. Proof of Theorem
Write G=C,-C,=<o,7|¢"=71"=1, 7677'=06"). Consider the pullback dia-
gram
h,
ZG —— Z[7]
1T
2G/(z) -2 R,
where zz’ioj and F,=Z/nZ.
i=o0
Write S=Z[¢]/(2) and A=ZG/(Z). Define the A-homomorphisms
fi: SA—hy(a))f = A, 0Zk=<q—1,

k k
by s(1—h(e)) {1 +<%_;:% ()4 -+ + ﬁﬁ%) mry), ses,
and set f=fy+ - +f,-1: SB---DS(1—h(c))* ' A. Then fis a A-isomorphism
([3, Lemma 3.3]).

For a module M over a group H, we define M?={x& M | hx=x for any he
H}. Set R=S¢, Py=(1—hy(s))S and P=P,NR. Then

R- - -R
P .

Al (EMUR)
P..PR

as R-algebras ([3, Proposition 3.4]). This isomorphism is the composite or
the following two isomorphisms:

@: A — End,(A)°, where @u)(\) = Iy, u, A\EA,
and
Jr: End(A)° =End\(SDS(1—hy(a))D - B S(1—h(a))™)°
={ @ Hom(S(1—/(c))’, S(1—h(s)))}°

0=i,j=q-1
R. .- .R
P .

R
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Here, End,(A)° denotes the opposite ring of Enda(A).
Write

R.--- R

P..PR

For x€ A, we set Jrop(x)=(b; ;(x))EA.
We now determine 5,-,,-(}11(7)), 1=<i=<gq, where l—)i,,-(hl('r)) is the image of b; ;(/y(7))
under the map R— R/P. Set

5= 14(e), :1((")))1“( () h’(‘(;’,Z,)hl(T)a-l.

Since g, is surjective and A=3Sx,+ -+ Sx,_;, F,[T]=F,g,(%)+ - +F,g1(x,-,).
Hence g(x;), 0=¢=<g¢—1, are linearly independent over F,. Denote by =,,
0=<k=g—1, the projection from A to Sx,. Then @(h(7))ox, is a A-homomor-
phism from A to Sx,. If we put @(h(7))(x)=apXo+ " +a,-1%,-1, GE S, (P(hy
(7))0) (30) =P ((7)) (1) =%, Hence a,R and 50 gy(@)=Byer sr(7)),
by the definition of . We have g,(p((r)) () —&i(w(r)) =g (@)gi(¥o) -

-------- +81(2,-1)8:(%,-1) in F[7].
Write this equality explicitly as follows:

e O i = P I L
= ga)(1+7+724  ceeeeeees 4771
4 e
—l-gl(ak)(1+r"‘7—|—r B2l e oy Dhga-)
(@) (1-Fr~ @ D20 g2 e oyl

Since g,(x;), 0=i=g—1, are linearly independent over F,, (g(a,), **,£1(a,-1)) is
uniquely determined. If we set gy(a;)=r* and g,(a;)=0 for every j, j +&, then
this satisfies the equality. Thus we have by 441(5y(7)) =gi(ar) =7".

By a similar argument, we see that b, ;(h(c))=1, 1<i<gq.

Define a ring isomorphism @: F .7]—=F% by 7—(1,r,+--,7"""), Further
define W: A—F} by (b; ;)—>(by,,*++,b,,). Then the following diagram is com-
mutative:
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ZG—ﬁ——) Z[7]

T

(2.1) A —5 Fq]
‘pwl v lq)

A —> F?,

Let ¢ be the involution of Z[7] defined by ¢(7¥)=7"f, 0<i<q—1. Since ¢q is
odd, by virture of [6, Remark 2.7], U(Z[7])=+<{r>X V([Z[r]*”) where
V(IZ[ ) =U([Z[*]|**)N V(Z[7]). LetucsV([Z[7]XV). If we write Dog,(u)
=(y, ***,%,), then, by the definition of ®, u(pp=1u+p,. The theorem of
Higman ([4]) shows that V([Z[r]¢*’) is torsion-free. It is easy to see that
&(U(A)) 2(U(Z][7])) and g(U(Z[r]))=£<7> X g V([Z[7]]”)). Define

Fy = {(b: ) EUA) [Begrvpe, qaore = 0} N T (@ogy(V([Z[7]I)) -

Then F, is contained in the subgroup {(4; ;)& U(A)|J<q+1)/2,<q+3),2=0 and

d(q+1)/2,(q+1)/2= d(q+3)/z,(q+3)/2} .
We now show that F, is a normal subgroup of U(A). Let Y=(q; ;)€

U(A). If we write Y7'=(c;;), then aqinp qrvnt e grne=1 (mod P),
A(g+9)/2,(q+3)/2° Cl+ /2, (q+92= 1 (MOd P) and @qg 1132, (g072° Clqvr2, (g2 H Ugr /2, (g2
Cgrasz,(g+92=0 (mod P). Let X=(b; ;)EF, and write YXY'=(2; ;). Then,
by a direct calculation, z; ;=b; ; (mod P), 1=<¢=gq, and 2(;41)2 (4+3,2.=0 (mod P).
Hence F, is a normal subgroup of U(A). Define F,={(§; ,)EF,|b, =1, 1<i

=q}.
Proposition 2.2. F, is torsion-free.

Proof. Step 1. Reduction to the case where z is a prime. By the same
way as in [5, Proposition 1.3], we can show that F;={X &F,| X=E (mod P)}
is torsion-free. Hence it suffices to show that every element in F,\F; is of in-
finite order.

Let n=pi1---pi*t be the prime decomposition of #. Denote by &, the
m-th cyclotomic polynomial. Further, we denote by 7;, 1<i<¢, (resp. »; ;,

1<i<t,1<j=<e;) the natural maps Z[a’]—>Z[a]/(I‘=’.Il D,i(a)) (resp. Z[o]—
Z[o]/(®,i(0))). Write Z[a]/ (1,1:[1 @,i(c))=S(p:) and Z[c]/(D,i(c))=S(p.j)-

Set S(p:)?=R(p:), R(p:) N (1—=7:(0))S(0:)=P(p:), S(p1-))” =R(p:,5) and R(ps,})
N (1—2: (a))S(p:,))=P(p:,j). Note that R/[P=F,. Consider the natural maps:

TP,,: Mq(R) g q(R(Pk))’ lékét .

If we take (; ;) € F,\Fs, then there exists p, € {p,,--,p;} such that T,,((a; ;))=FE
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(mod P(p,)). For each g; ;, 1<i<j<g, we can take m; ;& {0, ---,n—1} such that
a; j=m; ; (mod P). Write m; j=pfi.im! j, p,A/'m! ;, and set c=Min{c; ;| 1=i<j
=g}. Further, let

Wy, My(R(P4) = My(R(p1, 1))D -+ ©M(R(ps, 1))
be the natural injection, and let
g My(R(ps, 1))D -+ OM(R(p, 1)) = M (R(ps, d)), 1=d=e,

be the projections.
Suppose that 1=<¢. Then (z;0¥,,°T},)((a; ;)=E (mod P(p;,d)), 1=d=<e,, and
hence (g; ;) is of infinite order.

Next, suppose that ¢c=0. Then (z,0W,,°T},)((4; ;))=E (mod P(p,, 1)), and
hence, if we can show the assertion in the case where 7 is a prime, the proof is
completed.

Step 2. The case where n=p a prime.

Take an element B of F,. Then B=X (mod P) for some X whose entries
are in {0,--+,p—1}. By the definition of F,, XeGL(¢q,Z). Write B=X+P°4
where A€M (R) and ex=1. Further, set X=E+X,+--+X,_,(resp. X '=
E+Y,+--+4Y,_,) where X, (resp. Y;) is the i-th component of X (resp. Y). It
is easy to see that Y,=—X,. We write A®=X"*4AX* Then

= (X+PAy = X’—]—}“_, (P( 2 XA X2 XA X t41))

it +‘t+1—1’ tyigsesiy 120

— X’—}—Z (PreX?~Y( > AtD... A¢0))

p~ tzk,z -2k 20

= X4 (xS A 3 A0 (A3 A )

Set X"zE—_I—XI—i—w—I—Xq _, where X is the i-th component of X?. Then, by
(1.3), X’,:E((f) > OX- X,,), and hence X?=E (mod p). Therefore
t=1

iyhoti=i
B?*=E (mod P). Thus, if B is of finite order, B? must be equal to E. Suppose that
there exists B=X+P°AEF, such that B?=FE and B+E. Set S;=

1Shy, " Sq-2

1

Vi Yo Ti= 2 XXy, and S=T,=E. Since X'=(E+X 4+
h -2

Xq—z)k=E+< >T1+ —|—< )Tk and X *=(E+ Y+ +Y, )= ( )Srl-"'
+(’,:>Sk, A® — X4 X < >(w>s AT,. Since S, T;= Wi(q,Z) by (1.3),

0<u,w<k

—2\U

S;=T;=0 for i=¢g—1. Therefore we may write A®¥= 3] (k)<k>SuATw.
0=Su,w<qg-2 w
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i 1 k) oou (k) —
Hence, if wewrite (1) 31 A®-wA®= 3\ gy SATuowS.,
Ptk 2 2k 20 0<u,w;<q—2

(kN E oy (Reoy\ ([ By &2
ATy them =33 () ) 2 () ) - (2 ENE) )
Set (X+P°Ay=X?+-H.
We now show that the 1-st component of H is divisible by pP°. If we
write (p—1)/qg=t,, Po=p. Suppose that £>1,, then P*=p°| P*, and so for such
t, pP |PeXPH( 31 A%)...A®). On the other hand, by (1.2),

Ptz =k 20 Bupop-uywy 18

t
divisible by p if >V (#;+w;)+2<p. Hence we have only to consider the case
i=1

where =1, and 2(u,~—l—w,~)—|—t§p.
We show that the 0-th and 1-st components of S,,47,,---S, AT, are 0,
if t=<t,and 2(u,~+w,-)—|—tgp.

Case 1. wu,+w,=q+1. Suppose that u,>(¢g-+1)/2. Write S.,=(®(u,); ;)
and T, =(x(w); ;). Then x(u); ;=0 for izg—u, and x(w,); ;=0 for j=w,
because S, EW./(¢,R) and T, €W, (q,R). Hence, if we write S, ATy,
S, AT, =(x; ;), x; ;=0 whenever 1=q¢—u, or i<w,. Since u,+w,=¢+1, the
0-th and 1-st components of (x; ;) are 0. The proof in the case w, = (g+1)/2 is
similar to that in the case u,=(q+1)/2, so, we omit it.

Case 2. w,+w,<q. Suppose that there exists i€ {1, --+,7—1} such that
g—w;y,=%;. Then T, ,S,,=0, and hence S,4T,,---S, AT, =0. There-
fore we have only to consider the case where g—w;, >u; for each 7, 1<;<z—1.
Further it is easy to see that T, S,,=0 if w;,,+u,=¢g—1. Hence, we may
assume that ¢—2=w; ., +u;, 1=:1<t—1, But in this case

g (u;+-w;) = u,-[—wl—l-g (wimtw)=q+(q—2) t—1)=t(g—2)+2.
On the other hand,
iz':]l(u,.er,.)gp—t = gty +1—t.
Therefore
Gyt 1—-t= 3} (u+w) Stlg—2)+2.

This is impossible because =%, and 7,31.

Hence the 0-th and 1-st components of S,,A7Ty, S, AT, are 0, and so
the 1-st component of X?7*S,,AT,,--S, AT, is 0.

Thus we conclude that the 1-st component of H is divisible by pP*.

On the other hand, the 1-st component of X? is pX,. Since every entry
in X, is in {0,+--,p—1}, X, must be equal to 0. Hence ¥;=—X,=0. There-
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fore, if i=(g—1)/2, S;=T;=0 because S;, T, W(q,R). Thus, if S, AT,
S, AT, #0, then we must have u; w;<(¢—3)/2 for all w;, w; 1<i,j<1. Sup-
pose that =<t then

2 () +SUg—DSt(g—D) T

Hence, for every S,,AT,, S, AT, =0, its coefficient in (*) is divisible by p.
Therefore H is divisitle by pP°. As B*=X?{H=EFE, X?=E (mod pP*). How-

ever X, is sz—i—(jZ))X {=pX,, and so X, must be equal to 0. Continuing this

procedure, we get X;=0 for any i, 1</<¢—2. Therefore X4+P°4A=FE (mod
P). This contradicts the fact that B is of finite order. Thus the proof is com-
pleted.

Proof of Theorem. Considering the property of the pullback diagram
(2.1), we get [(Yropoh,)(V(ZG)): Fy]=nq. Therefore, if we set F=(yropoh,)™!
(F,), then V(ZG)>>F and [V(ZG): F]l=nq. Take an element » of F.

Suppose that (Yro@oh;)(w)=1. The restriction of h, to (Yrogoh,)™(1)N
U(ZG) yields a group monomorphism (yYropoh,)™}(1)NU(ZG)— U(Z[7]).
However, since ®ogyohy(u)=1, hyu) is of infinite order by [1, Theorem 3.1],
hence so is u.

Suppose next that 1=(yro@oh)(u)EF,. Then it is of infinite order by
(2.2), hence so is u.

Finally, suppose that (Jro@oh)(u)=F,\F,. Then, by the definition of
F,, there exists an element v of V([Z[7]]¢*?) such that ®og,(v)=(Woropoh,)(u).
However v is of infinite order, hence so is . This shows that F is torsion-
free. Therefore we get FNG={1}. Thus F is a torsion-free normal sub-
group of V(ZG) such that V(ZG)=F-G. This completes the proof.
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