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1. Introduction

We consider an ΛΓ-parameter Wiener process {wd(t): t^R+} with values
in Rd (see Definition 2.3); the parameter space R% is the subset of points of RN

with all components nonnegative. We call a subset Δ of R+ an "interval", if
Δ is the product of N one-dimensional intervals, and denote its volume by | Δ | .
Let / be a fixed integer. Our problem is the asymptotic behavior of increments
Wd(A) over intervals Δ (see Definitions 2.2 and 2.3) as | Δ | j 0 under the
restriction that the ratios of length of the /-th shortest sides of Δ to the shortest
sides are bounded. In case 1=1, this restriction is trivial and Orey-Pruitt [3]
already took up the problem and derived integral tests for the uniform con-
tinuity and the local one-sided growth. In connection with [5], however, we
need integral tests for the growth rate of wd(A) in case that l=N, and accordin-
gly, when the ratios of length of the longest sides to the shortest sides are bound-
ed. The growth rate in this case is different from the rate given in [3]. Moti-
vated by this, we study the general case that 1<1<N, and observe the relation
between such restrictions and the asymptotic behaviors under restrictions.

Our results are stated in Section 2. Theorem 2.1 answers the question
for the uniform continuity. In case 1=1, this reduces to a result of [3]. The-
orem 2.2 deals with the local two-sided growth problem in the sense of Jain-
Taylor [2]. Section 3 contains proofs of the theorems. The outline of proof
is the same as that of [3] however, the manner of discretizing the unit interval
[0, 1]* is simpler.

Finally, the author wishes to express his gratitude to Prof. N. Kόno for
his advice on the whole of this paper.

2 Continuity properties

We begin with some definitions. Let (Ω, <£, P) be a complete probability

space.

DEFINITION 2.1. An N-parameter Wiener process {w(t> ω): t^R*} is to be
a separable real-valued Gaussian process with mean 0 and covariance
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E[w(s)w(t)]= Π ί
μ=l

for s=<sl9 - , sN> and t=<fl9 •••, ^

We sometimes write simply t=ζtμy for ί of i?+, and denote the product of

N one-dimensional intervals (sμ, tμ) by Δ($, t) for s=ζβμy and t=ζfμy with

Sμ.<tμ.. Let α > 1 and be fixed. For 1 <1<N, a class Q(ΐ) of intervals is defined

as follows: an interval A(s, t) belongs to Q(l) if and only if Δ(s, t) is included

in[0,i;Γ and

0</-min (tμ—sμ)<a min (tμ—Sμ) ,
μ μ

where /-min denotes the /-th smallest value. For example, if aι<a2< "<aN

then /-min aμ=ah

DEFINITION 2.2. The increment w(A(s, t)) over an interval A(s, t) is defined

by

— , Sμ., •••,

In this paper we consider an iV-parameter Wiener process in Rd.

DEFINITION 2.3. An N-parameter Wiener process {wd(t, ω): t^R+} in Rd

is defined by

w\f> co) = (w1(ty ω), ..., Wd(t, ω)), tϊΞRZ ,

where w, (ί), ί = l , * ,ί/, are ΛΓ-parameter Wiener processes, and they are inde-

pendent. Furthermore its increment wd{Δ) over an interval Δ is defined by

Let | | denote the iV-dimensional Lebesgue measure and || | | denote

the rf-dimensional Euclidean norm. Our main results are the following two

theorems.

Theorem 2.1. Let φ be a nonnegative, non-increasing, continuous function

defined for small positive arguemenίs. For almost all ω there exists δ(ω) > 0 such

that for all intervals A of Q(l) with | Δ | <δ(ω),

(2.1) \\wd(Ayω)\\<\A\^φ(\A\)

if and only if the integral

(2.2) ( Λ"2(log l/x)N-ιφ4N+d-%x) exp (-φ2(x)/2)dx
J+o
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converges.

Theorem 2.2. Let φ be a nonnegative, non-increasing, continuous function
defined small positive arguements and le; u be a fixed point of (0, 1)^. For almost
all ω there exists δ(ω) > 0 such that for all intervals A of Q(ΐ) uith M G Δ , | Δ | < S(ω),

(2.3) \\w\A,ω)\\<\A\^φ{\A\)

if and only if the integral

(2.4) ( χ-1(logllx)N-'φiN+d-\x)exp(~φ2(x)l2)dx
J+0

converges.

In addition to the above theorems, we mention a result about the local
one-sided growth.

Theorem 2.3. Let φ be a nonnegative, non-increasing, continuous function

defined for small positive arguements and s be a fixed point in [0, 1)^. For almost

all ω there exists δ(ω)>0 such that for all intervals A(s, t) ofQ(ϊ) with \A(s,t)\ <

δ(ω),

\\W(A(s, t), ω)\\ < I Δ(ί, t) I *φ( I Δ(*, t) I)

if and only if the integral

aΓ^log ίlx)N-ψN+d-2(x) exp {~φ\x)β)dx
J+o

converges.

In case 1=1, this theorem reduces to a result of Orey-Pruitt [3]. From this
theorem we can derive information about the asymptotic behavior of wd(t)
as t->°°, by using the following property: {w(t): tμ>0, μ=l, # ,ΛΓ} and
{I A(t) I w «£μ x » : tμ. > 0, μ = 1, , N} have the same distribution, where
Δ(f) = Δ(0, t), 0 = <0,—,0>. Let Q\ΐ) be a class of intervals Δ(/) with
h>l, μ=l, •• ,ΛΓ, and

max tμ<a /-max /μ< oo y
μ. μ

where /-max denotes the /-th largest value.

Corollary. Let ψ be a nonnegative, non-decreasing, continuous function
defined for large arguements. For almost all ω there exists M(ω)>0 such that for
all t cfRN

+ with A(t)tΞQ'(l)9 |Δ(ί)| >M(ω),

\\w\t,ω)\\<\A(t)\«*ψ(\A(t)\)

if and only if the integral
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j+V ι(log x)N-ψN+d~2(x) exp (-ψ2(x)l2)dx

converges.

3. Proofs

We deal with mainly the proof of Theorem 2.1. Our arguements follow

closely Orey-Pruitt [3], and the main point of proof that requires some care is

how to discretize the unit interval [0, 1]^ for each problem. For Theorem 2.2

we only refer to a few relevant differences. As for Theorem 2.3 its proof is a

mere variant of the proof of Theorem 2.2, so we omit it. In the following we

use the convenient practice of letting c stand for unimportant positive con-

stants which may even change from line to line.

Proof of Theorem 2.1. We assume that the integral (2.2) converges.

Let ι=(i"i, •• ,*'jv)> tf*=(fl*/+i> •••, mN). Define the time sets

i, m,p) = {(s, t)(=RN

+xR»: 2

, μ = /+1,.", N,

*\ μ

and the events

E(i, m, p) = {ω: sup \\wd(A(,, t), ω)\\ \ A(s} t) \
C * o e j ε c ί ί )

IT

where r(m, p)=lp-\- 2 mμ. The parameters will be restricted to the following

ranges:

0<mμ<p, μ = /+1, -v N, p>3 .

Since E[w(A)w(A')]= \ Δ Γϊ A'\ for any intervals Δ, Δ' by the definition of

increment, it is easy to check that

E[{w(A(s} t)) I Δ(ί, t) I -1/2-w(A(s/ t')) \ Δ(s', t') | -1/2}2]

μ=l +

holds for all (s, t), (sf, t') of K(i, myp). Define a metric λ in K(i, m,p) by
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M(s, t), (*', *')) = €2(1 ίμ-ίί 12+1 *-412)22p

+ Σ ( 1^-412+K-^l2)22"v}1/2

Using this metric λ, let iV(£; i?, λ) be the minimal number of sets of diameter
at most 2S which cover B. Then it holds that for rι2=aι~λ2ΉJtl V2N, N({2η2a2γι

K(i, tn>p), \)<c a4N for <z>0, where c does not depend on /, m and p. Applying
Lemma 2.3 of [5] to {wd(A{s, t))j \ A{s, t) \1/2; (s, t)<=K{i, tn,ρ)} and (K(i, myp)y λ),
we have

where c' does not depend on /, m and/). Therefore

7}
i,m,P

m,p

There are at most rN~ι ways of choosing mμy μ=l-}-\, •••, N, and p to accomplish
r(m,p)=r. Thus

This sum is seen to converge by comparison with the integral (2.2). We can
easily verify (2.1) by using the Borel-Cantelli lemma and the same arguement as
in [3].

We now assume that the integral (2.2) diverges. It is sufficient to prove
the theorem for φ satisfying

(3.1) (log l/x)1/2<φ(*)<2(log l/x)1/2.

This is proved in the same way as in Sirao [4], so we do not repeat it. Let
i=(il9 •••, iN), j=(ji> ~ >JN)> k=(ku •••, kN) and m=(mι+1, —, mN). Define the
events

F{i, j , k, m, p) = {ω: I |^(Δ(ί, ί),ω)|| > | Δ(ί, ί) 11/2φ( | Δ(i, t) \)}

where

, μ = \,-Λ,

μ=\,-,l,

μ = l+l, ••', N .
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The parameters will be restricted as follows:

l , μ=l, - , / ,

\<mμ.<p, μ = /+l, -- ,iV, and p>3 .

The above intervals A(s, t) belong to Q(l) under the assumption that α > 2 . (To
do without this assumption, only a slight modification of the ranges of j and k
is needed.)

We apply the extension of the Borel-Cantelli lemma by Chung-Erdϋs to prove
the latter part of the theorem. First, we verify the condition (i) of Theorem 1 of
[ί]. Since | Δ(s, ΐ) | ~c2~r(m'p\ a well known estimation ([3], Lemma 1.1, p. 141)
leads to

P(F(i,j, k, m,p))ϊ:cφ'-\2-'< »)exp {-φ\2-^ ^)β) ,
IT

where r(m, p)=lp-{- Σ mv» O n the other hand, the condition (3.1) ensures us

the existence of positive constants al9 a2, independent of i, j , k, m and p, such
that

(3.2)

where A(s, t) is the interval involved m F(i,j,k, myp). Thus

Σ φ (
m,P

There are at least c' rN~ι ways of choosing tnμ, l-\-\<μ<N, and p to accomplish
r(m, p)=r. Therefore

Σ
iJ,k,m,P

> c Σ 2rrN-'φiN+d-2(2-') exp {-φ\2~r)j2).

This sum is easily seen to diverge by comparison with the integral (2.2). Thus
the condition (i) of Theorem 1 (extended Borel-Cantelli lemma) of [1] has been
verified. Next, to verify the condition (iii) of the theorem by Cbung-Erdϋs, we
order the events so that the volume of the involved interval decreases. Fix an
e v e n t F=F{ί}jyk)m)p) a n d le t F'=F(i'3j

f, k', m'\p') b e a n e v e n t fo l lowing

F in the order. We write Δ=Δ(s, t) and Δ ' ^ Δ ^ ' , /) for the intervals involved
in F and F' respectively. Let /o=£[a;1(Δ)a;1(Δ/)]. Since by (3.2),

al(ppy2<φ(\A\)φ(\A'\)<al(pp') 1/2
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Lemma 1.5 of [3] shows that P(F Γ)F')<cP(F) P(F'), if p2<(atppf)~\ Thus
as the events Eμ in (iii) of Theorem 1 of [1] (with taking F as Ej) we choose the
events F' which give rise to values of p satisfying

(3.3) (aiPP'Γ^P2-

We can easily see, using the same arguements as in [3], that there are at most
O(p5N~ιlogp) intervals which satisfy (3.3). In order to verify the condition
(2) of (iii) of Theorem of [1], we divide the sum Σ P(F Π Ff) over Ff satisfying
(3.3) into J}ωP(FΓ)Ff) and Σ±ωP(FnFf), where Σ ω means the summation
over F' which satisfy (3.3) and

(3.4) p2<\-p~ιί\

and Σ(2) means the summation over Ff which satisfy (3.3) and

(3.5) p2>l-p~1/2.

If ί" satisfies (3.4), then by Lemma 1.6 of [3], P(Ff)F')<c' exp (~cp1/2)P(F}.
This shows that Σ3 ω P(F f\Ff)<c"P(F), since p5N~ι logp exp (-cp1/2)=O(l).
To estimate *Σ1(2)P(F ΠF')f we subdivide the condition (3.5) as follows:

(3.6) 1—^/p<p2<l—(ί—l)/p , j = 1, . . . , ^ .

Then, as before, we have by Lemma 1.6 of [3], P(F[\F')<c' exp (—cq)P(F).
We can also show that the number of events F' satisfying (3.6) is O((fN)> by a
variant of the arguement in [3] and the fact that

(3.7) |ftί-ftμ|

Thus Έ&P(F ϊ\F')<c' Σ tfN exp (~cq)P(F)<c"P(F). This verifies the con-

dition [2) of (iii). To check (3.7), it suffices to consider the next two cases:

(a) ίμ<^<^<^,

(b) % < ^ < ^ < f μ .

Using the inequality

we can easily obtain the estimates (3.7).
Finally, we verify the condition (ii) of Theorem 1 of [1], using the same

arguements as in Orey-Pruitt [3]. The events F(i,j, k, myp) have been ordered
so that I Δ(A, /) I decreases, and we use a single subscript. Then the events Fn

are of the form {ω: \\Un\\>cn}. To compare P(Fm\Fi-Fe

n) with P(FU), since
Fi, "> Fn are of the form {ω: ||E/*||<£*}, we replace Fm by
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Gm={ω:cm<\\Um\\<2cm),

and use the well-known estimate

P(Fm)<2P(Gm).

To apply Lemma 4 of [4], it remains to check that

pm = max E[UiUm] -> 0 , as m -> oo ,

and 2cm<p-y, for some γ < l . Let p' be the p parameter corresponding to
the event Fm and p" be larger than the p parameters corresponding to Fh, ~,Fn.
Then we have

by (3.7). This implies that ρm->0 as m->ooy and that

for sufficiently large/)', where Δ(J, t) denotes the interval involved in Fm. Thus
the proof of Theorem 2.1 has been completed.

Next we give a brief proof for Theorem 2.2.

Proof of Theorem 2.2. We assume that the integral (2.4) converges. Let
m=(mMy •••, mN) and define the time sets

K{m>p)= {(s.

\ 0<uι-sι<2-p,
p+\ 0<uμ-sμ.<a2~p , μ = 2 , - , / ,

*+1, 0 < % - ί μ < 2 " ^ , μ = /+1, -. , TV}

and the events

£(«, p)={ω: sup ||wrf(Δ(ί, ί)» ω)H I Δ ( ^ 01 " V 2

σoeκ(p)

The parameters will be restricted as follows:

ί<mμ<p, μ = l+h -,N,p>3.

Define a metric λ in K{m, p) by

λ((ί, tW, t')) = {Σ (I U-tί 12+1 v - ί ί 12)22ί

Then the proof goes as before.
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We now assume that the integral (2.4) diverges. It suffices to prove the

theorem for φ satisfying

(log log 1/χ) 1/2<φ(x)<2N(log log \jx)ι/2.

L,etj=(jly -"yjN), k=(kh •••, kN) and m=(mι+ly •••, mN). Define the events

F(j, k, my p) = {ω: ||«^(Δ(ί, t)y ω)|| > | Δ(J, t) \ 1/2φ( | A(s, t) \)}

where

- 1 , μ=\,-,l,
= ί (Uμ-jμ

I (Uμ—jμ
Sμ

^ • - - • - - > " ! , μ = I+l,...,N.

The parameters will be restricted as follows:

\<mμ<ρ , μ =

We have, here, assumed that l/4<Mμ,<3/4, /χ=l, •••, iV. This is, however,

not essential and it is clear how to do without this assumption. Then the

proof goes as before except that p is replaced by log p in many estimates this

is done, for example, in (3.2)^3.6).
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