ON RIEMANNIAN MANIFOLDS ADMITTING CERTAIN
STRICTLY CONVEX FUNCTIONS

ATSUSHI KASUE

(Received March 18, 1980)

1. Introduction. Let M be an m-dimensional connected complete Riemannian manifold with metric g. For a smooth function f on M, the Hessian D^2f of f is defined by $D^2f(X,Y) = X(Yf) - D_XYf(X,Y) \in TM$. By a theorem of H.W. Wissner ([5; Satz. II. 1.3]), if there is a smooth function f on M such that $D^2f = g$ on M, then M is isometric to Euclidean space. In this note, we shall prove that if the Hessian of a smooth function f on M is close enough to g, then M is quasi-isometric to Euclidean space in the following sense: There exists a diffeomorphism $F: M \to \mathbb{R}^m$ and some positive constant μ such that for each tangent vector X on M, $\mu^{-1}||X||_M \leq ||F_*X||_{\mathbb{R}^m} \leq ||X||_M$. Our result contains the above theorem by Wissner as a special case ($\mu=1$), and generalises Yagi's theorem ([7]). Our theorem is stated as follows.

Theorem. Let M be an m-dimensional connected complete Riemannian manifold with metric g. Suppose there exists a smooth function f on M which satisfies the following conditions:

(i) $(1 - H_i(f(x)))g(X,X) \leq \frac{1}{2} D^2f(X,Y) \leq (1 + H_i(f(x)))g(X,X)$, where $X \in T_xM(x \in M)$ and each $H_i \ (i=1, 2)$ is a nonnegative continuous function on \mathbb{R},

(ii) $1 - H_i(t) > 0$ for $t \in \mathbb{R}$ and $\lim_{t \to \infty} H_i(t) = 0 (i = 1, 2)$,

(iii) $\left\{ \begin{array}{l}
\int_0^\infty H_i(s)/s \ ds < +\infty, \\
\int_{-\infty}^\infty \left(\int_0^s H_i(u)/u \ du \right) \ ds < +\infty \ (i = 1, 2).
\end{array} \right.$

Then M is quasi-isometric to Euclidean space.

2. Proof of theorem and corollaries. Let M be an m-dimensional connected complete Riemannian manifold with metric g.

Lemma 1. Let M and g be as above. Let f be a smooth function on M such
that the eigenvalues of $D^2 f$ are bounded from below by some positive constant 2ν outside a compact subset C. Then f is an exhaustion function, that is, \(\{ x \in M : f(x) \leq t \} \) is compact for each $t \in \mathbb{R}$. In particular, f takes the minimum on M.

Proof. Suppose $f \equiv \lambda = \inf \{ f(x) : x \in M \} \ (-\infty \leq \lambda < \infty)$. Then there is a divergent sequence $\{ p_n \}_{n \in \mathbb{N}}$ in M with $\lim f(p_n) = \lambda$. Fix any point $o \in M$. Let $\gamma_n : [0, 1] \to M$ be a minimizing geodesic joining o to p_n for each $n \in \mathbb{N}$, where $1_n = \text{dis}(o, p_n)$. Then by the assumption of Lemma 1, we can choose sufficiently large N and T so that $\gamma_n(t) \in M - C$ and $f(\gamma_n)^\prime(t) = D^2 f(\gamma_n, \gamma_n)(t) \geq \nu$ for any $n \geq N$ and $t \in [T, 1]$. This implies $f(\gamma_n)(t) \geq f(\gamma_n)(T) + f(\gamma_n)'(T)(t - T) + \frac{\nu}{2}(t - T)^2$ for $t \in [T, 1]$. Taking $t = 1$, we have $f(p_n) \geq f(\gamma_n)(T) + f(\gamma_n)'(T)(1_n - T) + \frac{\nu}{2}(1_n - T)^2$. Since the distance between o and $\gamma_n(T)$ equals T for each $n \geq N$, $\{ f(\gamma_n)'(T) \}_{n \in \mathbb{N}}$ is bounded. In the preceding inequality, the left side tends to λ and the right side goes to infinity as $n \to \infty$. This is a contradiction. Therefore f takes the minimum at some points. By the same way, we see that f is an exhaustion function on M. This completes the proof of Lemma 1.

Proof of Theorem. By (ii) in Theorem and Lemma 1, we can see that f is a strictly convex exhaustion function on M. Let λ be the minimum of f on M and $o \in M$ be the only one point such that $f(o) = \lambda$. Set $\tilde{f}(x) = f(x) - \lambda$, $k(x) = f(x)^{1/2}$, and $h_i(t) = H_i(t^2 + \lambda) \ (i = 1, 2)$. Then the conditions (i)~(iii) in Theorem can be rewritten as follows:

(i)' $$(1 - h_i(k(x)))g(X, X) \leq \frac{1}{2} D^2 \tilde{f}(X, X) \leq (1 + h_i(k(x)))g(X, X),$$

where $X \in T_\nu M \ (x \in M)$ and each $h_i(t) \ (i = 1, 2)$ is a nonnegative continuous function on $[0, \infty)$,

(ii)' $1 - h_i(t) > 0$ for $t \in [0, \infty)$ and $\lim_{t \to \infty} h_i(t) = 0 \ (i = 1, 2)$

(iii)' $$\int_0^\infty h_i(s) ds < +\infty \quad \text{and} \quad \int_0^\infty (u \cdot h_i(u) du/s^3) ds < +\infty \quad (i = 1, 2).$$

Since $o \in M$ is a nondegenerate critical point of \tilde{f}, there exists a coordinate system $x: U \to \mathbb{R}^n$, where U is a neighborhood of o, with $x(o) = (0, \ldots, 0)$ and $\tilde{f}(p) = \sum_{i=1}^n x_i(p)^2$ for all $p \in U$ where $x(p) = (x_1(p), \ldots, x_n(p))$ (cf. [3; p. 6]). Let δ be a positive number such that $\{ (x_1, \ldots, x_n) \in \mathbb{R}^n \ : \ \sum_{i=1}^n x_i^2 < \delta \} \subset x(U)$. We construct a metric \bar{g} on M with $\bar{g}\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right) = \delta_{ij}$ on $U_{\delta/2} = \{ p \in U \ : \ \sum_{i=1}^n x_i(p)^2 < \frac{\delta}{2} \}$ and
\(g = g \) on \(M - U \); such a metric can be constructed by the standard partition-of-
unity extension process. By the construction of \(g \), it suffices to prove that
\(M \) with the metric \(g \) is quasi-isometric to Euclidean space. Let \(a > 0 \) be
such that \(k^{-1}(a) = \{ x \in M : k(x) = a \} \subset U_b \). For each \(p \in k^{-1}(a) \), let \(\lambda_p(t) \) be the
maximal integral curve of \(\nabla k/||\nabla k||^2 \) with \(\lambda_p(a) = p \). Then we have
\[
\frac{d}{dt} k(\lambda_p(t)) = 1 \quad \text{and hence} \quad k(\lambda_p(t)) = t \quad (t > 0).
\]
Define \(F_1 : k^{-1}(a) \times (0, \infty) \to M - \{0\} \) by \(F_1(p, t) = \lambda_p(t) \), and \(F_2 : k^{-1}(a) \times (0, \infty) \to \mathbb{R}^m - \{(0, \ldots, 0)\} \) by \(F_2(p, t) = \frac{t}{a}(x_1(p), \ldots, x_m(p)) \). It follows that \(F_1 \) and \(F_2 \) are diffeomorphisms and \(F_2 \circ F_1^{-1} \) can be
extended to the diffeomorphism \(F : M \to \mathbb{R}^m \) (cf. [3; p. 221]). We shall now show
that \(F \) is a required quasi-isometry. Let \(\lambda : [0, \varepsilon] \to k^{-1}(a) \) be any smooth reg-
ular curve. Define a smooth map \(G : [0, \varepsilon] \times [0, \infty) \to M - \{0\} \) by \(G(t, s) = F_1 \)
(\(\lambda(t), s \)), and vector fields \(X \) and \(Y \) along \(G \) by \(X = F^*(\frac{\partial}{\partial t}) = \nabla k/||\nabla k||^2 \) and
\(Y = F^*(\frac{\partial}{\partial s}) \). Fix any \(b > 0 \) such that \(k^{-1}(b) \subset M - U_b \). Then we have
for \(s \geq b \),
\[
\begin{align*}
(1) \quad \frac{\partial}{\partial s} ||Y||(t, s) &= (D_X Y)/||Y||(t, s) \\
&= (D_Y X, Y)/||Y||(t, s) \\
&= (D_Y (\nabla k, Y)/||Y|| ||\nabla k||^2 (t, s) \\
&= D^2k(Y, Y)/||Y|| ||\nabla k||^2 (t, s)
\end{align*}
\]
By the assumption \((i)'\), we have on \(\{ x \in M : k(x) \geq b \} \)
\[
\{(1-h(t)) \cdot g - dk \cdot dk \}/k \leq D^2k \leq \{(1 + h(t)) \cdot g - dk \cdot dk \}/k.
\]
Therefore we get
\[
(2) \quad \{(1-h(t)) ||k||^2 \} (t, s) \leq D^2k(Y, Y)(t, s) \leq \{(1 + h(t)) ||k||^2 \}(t, s)
\]
for \(s \geq b \). Now we need the following

Lemma 2. On \(\{ x \in M : k(x) \geq b \} \), we have the following estimate:
\[
1 - 2 \int_s^b u \cdot h(u) \ du/||k^2 + (B - 4b^2)/4k^2 \leq
\]
\[
||\nabla k||^2 \leq 1 + 2 \int_b^t u \cdot h(u) \ du/||k^2 + (C - 4b^2)/4k^2 ,
\]
where \(B = \min \{ ||\nabla f||^2(x) : x \in k^{-1}(b) \} \) and \(C = \max \{ ||\nabla f||^2(x) : x \in k^{-1}(b) \} \).
We leave a proof of this lemma later. By (1), (2) and (3), we have
\[
(4) \quad (1 - X_1(s))/s ||Y|| \leq (t, s) \leq \frac{\partial}{\partial s} ||Y||(t, s) \leq (1 + X_2(s))/s ||Y|| \leq (t, s) ,
\]
where \(\chi_1(s) = \left(8 \int_0^s u \cdot h_2(u) \, du + 4s^2 h_1(s) + C - 4b^2 \right) / \left(8 \int_0^s u \cdot h_2(u) \, du + 4s^2 + C - 4b^2 \right) \)

and \(\chi_2(s) = \left(8 \int_0^s u \cdot h_2(u) \, du + 4s^2 h_2(s) - B + 4b^2 \right) / \left(-8 \int_0^s u \cdot h_2(u) \, du + 4s^2 + B - 4b^2 \right) \).

It follows that

\[
\frac{s}{b} \exp \left(\int_b^s -\chi_1(u) \, du \right) \leq \|Y\|(t, s)/\|Y\|(t, b) \leq \frac{s}{b} \exp \left(\int_b^s \chi_2(u) \, du \right).
\]

By the assumption (iii)', there exists some positive constant \(\xi \) such that

\[
\exp \left(\int_b^s \chi_2(u) \, du \right) \leq \xi \quad \text{and} \quad \xi^{-1} \leq \exp \left(\int_b^s -\chi_1(u) \, du \right).
\]

By (5) and (6), we get

\[
\xi^{-1} \|Y\|(t, 0)/b \leq \|Y\|(t, s)/\xi \leq \xi \|Y\|(t, 0)/b.
\]

The assumption (iii)' implies that for some positive constant \(\zeta \)

\[
\xi^{-1} \leq \|\text{grad} \, k\| \leq \xi.
\]

Inequalities (7) and (8) show that \(F : M \rightarrow R^m \) is quasi-isometric. This completes the proof of Theorem.

Proof of Lemma 2. For each \(p \in k^{-1}(b) \), let \(\gamma_p(t) \) be the maximal integral curve of \(\text{grad} \, \bar{f} / \|\text{grad} \, \bar{f}\|^2 \) with \(\gamma_p(0) = p \). Then \(\frac{d}{dt} \bar{f}(\gamma_p(t)) = 1 \) and hence \(\bar{f}(\gamma_p(t)) = t + b^2 \) \((t \geq 0) \). From the assumption (i)', we obtain the inequality:

\[
(1 - h_1(k)) \|\text{grad} \, \bar{f}\|^2 \leq \frac{1}{2} D^2 \bar{f}(\text{grad} \, \bar{f}, \text{grad} \, \bar{f}) \leq (1 + h_2(k)) \|\text{grad} \, \bar{f}\|^2.
\]

on \(\{x \in M : k(x) \geq b\} \). Noting \(D^2 \bar{f}(\text{grad} \, \bar{f}, \text{grad} \, \bar{f}) = \frac{1}{2} \text{grad} \, \bar{f}(\|\text{grad} \, \bar{f}\|^2) \) we see

\[
4(1 - h_1(\sqrt{t + b^2})) \leq \frac{d}{dt} \|\text{grad} \, \bar{f}\|^2(\gamma_p(t)) \leq 4(1 + h_2(\sqrt{t + b^2}))
\]

for \(t \geq 0 \). Therefore we get the inequalities:

\[
8 \int_b^{\sqrt{t + b^2}} u(1 - h_2(u)) \, du + \|\text{grad} \, \bar{f}\|^2(p) \leq \|\text{grad} \, \bar{f}\|^2(\gamma_p(t)) \leq 8 \int_b^{\sqrt{t + b^2}} u(1 + h_2(u)) \, du + \|\text{grad} \, \bar{f}\|^2(p)
\]

for \(t \geq 0 \). Since \(k(\gamma_p(t)) = \sqrt{t + b^2} \) and \(\text{grad} \, \bar{f} = 2 \, \text{grad} \, k \) we get the required
estimate. This completes the proof of Lemma 2.

By Moser's theorem ([4]), we have the following

Corollary 1. Let M be as in Theorem. Then on M there are no positive harmonic functions other than constants. If M is in addition a Kaehler manifold, then it has no nonconstant bounded holomorphic functions.

We shall derive the theorem of Wissner ([5; Satz. II. 1.3]) as follows.

Corollary 2. If M is a connected complete Riemannian manifold and f is a smooth function on M whose Hessian is equal to the metric tensor on M, then M is isometric to Euclidean space.

Proof. By Lemma 1 and the strictly convexity of f, f attains its minimum λ at the one and only one point $o \in M$. Replacing f for $\frac{1}{2} (f - \lambda)$, we may assume that f is a smooth function such that $D^2 f = \frac{1}{2} g$ on M and $f(x) \equiv f(o) = 0$ for any $x \in M - \{o\}$. Let $\gamma : [0, \infty) \to M$ be any arc-length parametrized geodesic issuing from o. Then $D^2 f(\dot{\gamma}, \dot{\gamma}) = f(\gamma(t))'' = \frac{1}{2}$ for $t \geq 0$ and hence $f(\gamma(t)) = t^2$.

That is, $f(x)$ equals $\text{dist}(x, o)^2$ near $o \in M$. Therefore the same arguments as in the proof of Theorem can be applied without any change of metric and we see that the exponential mapping at $o \in M$ is an isometry. This completes the proof of Corollary 2.

Example. Let M be C^m with the Kaehler metric g defined by $g_{ij} = \frac{\partial^2}{\partial z_i \partial \overline{z}_j} (|z|^2 + \log(1 + |z|^2))$, where (z_1, \ldots, z_m) is the canonical holomorphic coordinates on C^m and $|z|^2 = |z_1|^2 + \cdots + |z_m|^2$. Then M is a Kaehler manifold with a pole $o = (0, \ldots, 0)$, that is, the exponential mapping at o induces a global diffeomorphism between $T_o M$ and M. Let $r(x)$ be the distance between o and $x \in M$. By computing the (radial) curvatures, we can see r^2 satisfies all the conditions required in Theorem (cf. [1; Theorem C]).

Corollary 3 ([7]). Let M be a Riemannian manifold with a pole $o \in M$ and $r(x)$ be the distance between o and $x \in M$. Suppose there exists a continuous function $h : [0, \infty) \to [0, \infty)$ satisfying the following conditions:

(i) $(1 - h(r(x))) g(X, X) \leq \frac{1}{2} D^2 r(X, X) \leq (1 + h(r(x))) g(X, X)$

where $X \in T_x M (x \in M)$, and

(ii) $\int_1^\infty h(t) t \, dt < +\infty$.
Then the exponential mapping at $o \in M$ is quasi-isometric.

Proof. Noting $||\text{grad} \, r|| = 1$ on $M - \{o\}$, we see the result easily from the proof of Theorem.

References

Department of Mathematics
University of Tokyo
Hongo, Tokyo 113
Japan