FINITE GROUPS ADMITTING AN AUTOMORPHISM OF PRIME ORDER FIXING A CYCLIC 2-GROUP

Takashi OKUYAMA

(Received November 19, 1979)

1. Introduction

In this paper, we shall give a proof of the following Theorem, which is a conjecture of B. Rickman [9]; in special case, $C_{G}(\phi)$ has order 2, M.J. Collins and B. Rickman proved in [2].

Theorem. Let G be a finite group which admits an automorphism ϕ of odd prime order r whose fixed-point-subgroup $C_{G}(\phi)$ is a cyclic 2-group. Then G is solvable.

All groups considered in this paper are assumed finite. Our notation corresponds to that of Gorenstein [7].

An important tool that is brought to attack the problem is B. Baumann's classification of finite simple groups whose Sylow 2-subgroups are maximal [1], and in analogy with Matsuyama [8] that used the results of [1], we shall prove that $\Lambda_{G}(S ; 2) \neq 1$, where S is a ϕ-invariant Sylow 3-subgroup of G.
C.A. Rowley has obtained a proof of the theorem under the additional hypothesis that G does not involve S_{4}, the symmetric group on 4 letters.

The Theorem is a contribution to the continuing problem of showing that finite groups which admit an automorphism ϕ of odd prime order such that $C_{G}(\phi)$ is a 2-group are solvable.

2. Preliminaries

We first quote some frequently used results.

2.1. (Thompson [12])

Let G be a group which admits a fixed-point-free automorphism of prime order. Then G is nilpotent.

2.2. (Rowley [10])

Let G be a solvable group admitting an automorphism of odd prime order p such that $C_{G}(\phi)$, the fixed-point-subgroup of ϕ in G, is a cyclic q-group, $q \neq p$. Then, for any prime r, G is either r-nilpotent or r-closed.

2.3. (Glauberman [4])

Let G be a group with a Sylow p-subgroup P, either p odd or $p=2$ and S_{4} is not involved in G, in which $C_{G}(Z(P))$ and $N_{G}(J(P))$ both have normal p complements. Then G possesses a normal p-complement.
2.4. (Gilman and Gorenstein [3])

If G is a simple group with Sylow 2 -subgroups of class 2 , then $G \cong L_{2}(9)$, $q \equiv 7,9(\bmod 16), A_{7}, S z\left(2^{n}\right), n$ odd, $n>1, U_{3}\left(2^{n}\right), n \geqq 2, L_{3}\left(2^{n}\right), n \geqq 2$, or Psp $\left(4,2^{n}\right), n \geqq 2$.

2.5. (Gorenstein [7])

Let P be a Sylow p-subgroup of G, where p is the smallest prime in $\pi(G)$. If $p>2$, assume $d_{n}(P) \leqq 2$, while if $p=2$, assume P is cyclic. Then G has a normal P-complement.
2.6. (Matsuyama [8])

Let Q be a 2 -group admitting an automorphism ϕ of odd order $\neq 1$. If $d_{c}(Q)=1$, then $Q=E * R$, where E is ϕ-invariant, extra-special or 1 , and R is ϕ-invariant, and R is cyclic, D_{m}, Q_{m}, or $S_{m}, m \geqq 4$
2.7. (Collins-Rickman [2])

Let T be an extra-special 2-group admitting an automorphism ϕ of odd prime order r acting fixed-point-freely on T / T^{\prime}. Let S be the natural semidirect product $T\langle\phi\rangle$ and let K be a field of nonzero characteristic different from 2 and r. Assume that there exists a $K S$-module M for which $C_{M}(\phi)=$ $C_{M}\left(T^{\prime}\right)=0$.
Then (i) $r=2^{n}+1$ is a Fermat prime,
(ii) $|T|=2^{2 n+1}$, and
(iii) $T \cong Q *\left({ }_{1}^{n-1} D\right)$,
where Q and D denote the quaternion and dihedral groups of order 8 , respectively, and $*$ denote the central product.
2.8. (Glauberman [5] [6])

Let G be a solvable group with a Sylow 2-subgroup Q with $G \neq C$ $(Z(Q)) N(J(Q))$, and $O(X)=1$. Put
$Z=\left\langle Z^{*}\right| G \triangleright Z^{*}:$ 2-subgroup and $\left.O_{2}\left(G / C\left(Z^{*}\right)\right)=1\right\rangle$
and $J=\langle x \in G| x:$ 2-element, $\left.\left|Z / C_{Z}(x)\right|=2\right\rangle$
and $H=\langle J, C(Z)\rangle$. Then the following hold;
(i) there exists a normal subgroup G_{i} of H containing $C(Z), 1 \leqq i \leqq m$, such that, for $i=1, \cdots, m, G_{i} / C(Z) \cong S_{3}$, and $H / C(Z)=G_{1} / C(Z) \times \cdots \times G_{m} / C(Z)$.
(ii) let $V_{i}=\left[G_{i}, Z\right], 1 \leqq i \leqq m$, and let $V=V_{1} \oplus \cdots \oplus V_{m}$, then $Z=V \oplus C_{z}(H)$ and $V_{i} \cong Z_{2} \times Z_{2}, 1 \leqq i \leqq m$.
(iii) there is a 3-element x_{0} of H such that, for each $g \in H, H=\left\langle Q \cap H, x_{0}{ }^{g}\right.$, $C(Z)>$ and $G / C(Z)=H / C(Z) C_{G / C(z)}\left(x_{0}^{g} C(Z)\right)$.

2.9. (Matsuyama [8])

Let G be a group with a Hall π-subgroup H, and let $1 \neq P \in \operatorname{Syl}_{3}(H), Q$ 2-group. If $N_{G}(H)=H Q, d_{c}(Q)=1, \Omega_{1}(Z(Q))=\langle w\rangle, C_{H}(w)=1$, and $u_{G}\left(P ; \pi^{\prime}\right)$ $=1$, then, for each $P^{g} \neq P, g \in G, m\left(P \cap P^{g}\right) \leqq 1$.
2.10. (Burnside's theorem [7])

If a Sylow p-subgroup of G lies in the center of its normalizer in G, then G has a normal p-complement.

2.11. (Burnside's theorem [7])

If P is a Sylow p-subgroup of G, then two normal subsets of P are conjugate in G if and only if they are conjugate in $N_{G}(P)$. In paticular, two elements of $Z(P)$ are conjugate in G if and only if they are conjugate in $N_{G}(P)$.

2.12. (Smith-Tyrer [11])

Let G be a group with an Abelian Sylow p-subgroup P for some odd prime p. If $[N(P): C(P)]=2$ and $P \cap N(P)^{\prime}$ is noncyclic, then G is p-solvable.

2.13. (Thompson Transitivity theorem [7])

Let G be a group in which the normalizer of every nonidentity p-subgroup is p-constrained. Then if $A \in S C N_{3}(P), C_{G}(A)$ permutes transitively under conjugation the set of all maximal A-invariant q-subgroups of G for any prime $q \neq$ p.

2.14. (Collins-Rickman [2])

Let G be a group, and let p and q be distinct prime divisors of G. Assume that G has an Abelian Sylow p-subgroup P for which $m(P) \geqq 3$ and that, whenever P_{0} is a subgroup of P with $m\left(P / P_{0}\right) \leqq 2, N_{G}\left(P_{0}\right)$ is p-constrained. Then $C_{G}(P)$ permutes the elements of ${И_{G}}^{*}(P ; q)$ transitively under conjugation.

2.15. (Frobenius theorem [7])

G is p-nilpotent if and only if $N_{G}(H) / C_{G}(H)$ is a p-group for every nonidentity p-subgroup H of G.

3. The proof of the Theorem

Let G be a minimal counterexample to the Theorem, for the remainder of this paper.

Lemma 3.1. G is simple.
Proof. By Lemma 5.1. of [2].

Lemma 3.2. Let p be a prime divisor of G and $P \in S y l_{p}(G)$. If $N_{G}(P)$ has a normal p-complement, then $p=2$ and the symmetric group S_{4} is involved in G.

Proof. By Lemma 5.2. of [2], (2.2) and (3.1).
For the remainder of this paper, Q denotes the ϕ-invariant Sylow 2subgroup of G, and let $C_{G}(\phi)=\langle x\rangle$ and $\Omega_{1}\left(C_{G}(\phi)\right)=\langle w\rangle$.

Then Q is a unique ϕ-invariant Sylow 2-subgroup, and let p be an odd prime in $\pi(G)$ and $P \in \mathrm{Sly}_{p}(G)$, then, by (3.2), $N_{G}(P) \ni w$.

Lemma 3.3. $\quad d_{c}(Q) \geqq 2$.
Proof. If $d_{c}(Q)=1$, by (2.6) and hypothesis $Q=E * R$ where E is ϕ invariant, extra-special, and R is ϕ-invariant, cyclic. If $E=1$, by (2.5) G is 2-nilpotent, contrary to (3.1). So $E \neq 1$. Since $c l(Q)=2$, by (2.4) this is a contradiction.

Lemma 3.4. Every ϕ-invariant proper subgroup of G is 2-nilpotent.
Proof. Assume otherwise. Let M be a non-nilpotent maximal ϕ-invariant subgroup of G without a normal Sylow 2-subgroup. If $N\left(O_{2}(M)\right)$ is 2-nilpotent, M is nilpotent, a contradiction. By (2.2), $N\left(O_{2}(M)\right)$ is 2-closed. Hence $M=$ $N\left(O_{2}(M)\right), O_{2}(M)=Q$, and $M=N_{G}(Q)$. Thus there is an odd prime p dividing the index $\left[N_{G}(Q): C_{G}(Q)\right]$.

By (3.3), there is a characteristic subgroup C of Q such that $C \cong Z_{2} \times \cdots \times Z_{2}$, C contains $\Omega_{1}(Z(Q))$, and $[C, \phi]=1$. Let P_{0} be a ϕ-invariant Sylow p subgroup of $N_{G}(Q)$ and P be a ϕ-invariant Sylow p-subgroup containing P_{0}.

We now claim that $\left[C, P_{0}\right]=1$. We may assume that $w \in C . \quad\left[w, P_{0}\right] \subseteq Q \cap$ $P=1$. Since P_{0} centralizes $C / C_{C}\left(P_{0}\right),\left[P_{0}, C\right]=1$. Thus $C \subseteq N_{G}\left(P_{0}\right)$.

Let M_{0} be a maximal ϕ-invariant subgroup containing $N_{G}\left(P_{0}\right)$. If M_{0} is 2-closed, $M_{0}=N_{G}(Q)$. Since $N_{P}\left(P_{0}\right)=P_{0}, P=P_{0}$. Let Q_{0} be a ϕ-invariant Sylow 2-subgroup of $N_{G}(P)$. Then $\left[P, Q_{0}\right] \subseteq P \cap Q=1$, so $N_{G}(P)$ is P-nilpotent, and by (3.2), $p=2$, a contradiction. Thus M_{0} is 2-nilpotent. Hence $M_{0}=$ $N_{G}(P)$. Since $C \cong N_{G}(P), 1 \neq[C, \phi] \subseteq C_{G}(P)$.

Now put $Z_{0}=\left[\Omega_{1}(Z(Q)), \phi\right]$. If $Z_{0}=1, P, Q \subseteq C_{G}\left(Z_{0}\right)$. When $C_{G}\left(Z_{0}\right)$ is 2-closed, $P \subseteq N_{G}(Q)$, and $\left[Q_{0}, P_{0}\right] \subseteq Q \cap P=1$, a contradiction. Hence $C_{G}\left(Z_{0}\right)$ is 2-nilpoent. Therefore as $Q \subseteq N_{G}(P),\left[Q, P_{0}\right] \subseteq Q \cap P=1$, a contradiction. Thus we may assume that $Z_{0}=1$, hence that $\Omega_{1}(Z(Q))=\langle w\rangle$.

Put $\bar{Q}=Q /\langle w\rangle$ and let C_{1} be the inverse image of $Z(\bar{Q}) \cap \bar{C}$ in Q. As $\left[C_{1}, x\right]$ $\subseteq\langle w\rangle, C_{1} \subseteq N_{G}(\langle x\rangle)$. On the other hand, let $y \in C_{1}$. Then $[y, \phi] \in C_{G}(\langle x\rangle)$, since $\left(y^{-1} x y\right)^{\phi}=y^{-1} x y$. Put $C_{0}=\left[C_{1}, \phi\right]$, so that $1 \neq C_{0} \subseteq N_{G}(P)$, hence $C_{G}\left(P_{0}\right)$ contains P_{0} and x.

Now let M_{1} be a maximal ϕ-invariant subgroup of G containing $C_{G}\left(C_{0}\right)$. If M_{1} is 2-closed, $M_{1}=N_{G}(Q)$, and $\left[Q_{0}, P\right]=1$, contradiction. Thus M_{1} is 2-nilpotent,
i.e. $M_{1}=N_{G}(P)$.

Put $\widetilde{Q}=Q / \Phi(Q) . \quad\left[x, P_{0}\right] \subseteq P \cap Q=1$. Since P_{0} centralizes $\widetilde{Q} / C_{\widetilde{Q}}\left(P_{0}\right), P_{0}$ centralizes Q. Hence $\left[P_{0}, Q\right]=1$, a contradiction. Hence the lemma is proved.

For the remainder of this paper, in analogy with Matsuyama [8], we shall prove the following result;
(i) $3 /|G|$;
(ii) $\left|C_{G}(S)\right|$ is odd, where S is a ϕ-invariant Sylow 3-subgroup of G;
(iii) $\mathrm{U}_{G}(S ; 2) \neq 1$; and
(iv) $m(S) \geqq 4$.

On the other hand, in analogy with Collins-Rickman [2], we shall prove that $\mathrm{u}_{6}(S ; 2)=1$. Hence this contradicts above.

For the remainder of this paper, we shall write down the results which can be similarly proved as [8].
$(3.5) \quad C_{G}(w) \cong Q$.
(3.6) If p is an odd prime in $\pi(G)$ and $P \in \operatorname{Syl}_{p}(G)$, then P is Abelian.
(3.7) If p is an odd prime in $\pi(G)$ and A is any p-subgroup of G, then $\operatorname{Aut}_{G}(A)=N_{G}(A) / C_{G}(A)$ is a 2-group.
(3.8) If $\Omega_{1}(Z(Q)) \neq\langle w\rangle$, then $N_{G}(T)$ is a 2-group for any nontrivial ϕ invariant 2-subgroup T of G.

Now put P be a ϕ-invariant Sylow p-subgroup of G for any odd prime p in $\pi(G)$. Let K_{p} be a normal 2-complement of $N_{G}(P)$ and $Q_{p}=Q \cap N_{G}(P)$. Then $N_{G}(P)=Q_{p} K_{p}, Q_{p} \subsetneq Q$. Furthermore let $Q_{p}{ }^{*}=C_{Q_{p}}\left(K_{p}\right)$, and then $Q_{p}{ }^{*}=\left[Q_{p}{ }^{*}, \phi\right]$, since $w \notin Q_{p}{ }^{*}$.

Hence, for any $s \in \pi\left(K_{s}\right), K_{p}=K_{s}, Q_{p}=Q_{s}$, and $Q_{p}{ }^{*}=Q_{s}^{*}$. In particular, K_{p} is a nilpotent Hall subgroup of G.

$$
\begin{align*}
& C_{Q_{p}}(P)=Q_{p}^{*} \tag{3.9}\\
& \quad d_{c}\left(Q_{p} / Q_{p}^{*}\right)=1 .
\end{align*}
$$

Furthermore let $M_{p}=N_{G}(P)$ and $\bar{M}_{p}=M_{p} / Q_{p}{ }^{*} K_{p}$. Then by (2.6) and hypothesis, $\bar{M}_{p}=\bar{E}_{p} * \bar{E}_{p}$, where either $\bar{E}_{p}=1$ or \bar{E}_{p} is ϕ-invariant, extra-special and \bar{R}_{p} is ϕ-invariant, cyclic.

On the other hand, by (3.4), $N_{G}(Q)$ is nilpotent, and then $N_{G}(Q)=Q$ by (3.5). Hence by (3.2), S_{4} is involved in G, yields $3 /|G|$. Furthermore let $S \in \operatorname{Syl}_{3}(G)$, and then $m(S) \geqq 3$.

Lemma 3.11. Let p be an odd prime in $\pi(G)$. We can write $\bar{M}_{p}=\bar{E}_{p} * \bar{R}_{p}$, where either $\bar{E}_{p}=1$ or \bar{E}_{p} is ϕ-invariant, extra-special, and \bar{R}_{p} is ϕ-invariant,
cyclic.
If $\bar{E}_{p} \neq 1$, then $r=2^{n}+1$ is a Fermat prime.
Proof. By (2.7), it is immediate that $C_{\Omega_{1}(P)}(\phi)=C_{\Omega_{1}(P)}\left(\bar{E}_{p}{ }^{\prime}\right)=0$. By (2.7), it suffices to prove that ϕ acts on $\bar{E}_{p} / \bar{E}_{p}{ }^{\prime}$ fixed-point-freely. First we may assume that $\left|\bar{R}_{p}\right|=2$. Then, since we can suppose that ϕ centralizes an element of \bar{E}_{p} of order 4, it is not necessarily trivial.

Now suppose that there exists an element \bar{y} of \bar{E}_{p} of order 4 such that $[\bar{y}$, $\phi]=1$. As \bar{E}_{p} is extra-special, the conjugate class of \bar{y} is $\{\bar{y}, \bar{y} \bar{w}\}$. Hence $\left[\bar{E}_{p}: C_{\bar{E}_{p}}(\bar{y})\right]=2$. Then ϕ acts on the set, $\bar{E}_{p}-C_{\bar{E}_{p}}(\bar{y})$, fixed-point-freely. It is impossible.

Lemma 3.12. Let S be a ϕ-invariant Sylow 3-subgroup of G. If $\left[Q_{3} / Q_{3}{ }^{*}, \phi\right]$ $=1$, then S is a T.I.-set.

Proof. If not, there exists an element g of G such that $S^{g} \neq S$ and $S^{g} \cap S \neq 1$. First we shall show that $C_{Q_{3}}(z)=Q_{3}{ }^{*}$ for any $z \in S^{\ddagger}$. It is immediate that $C_{Q_{3}}(z) \supseteqq Q_{3}{ }^{*}$. If $C_{Q_{3}}(z) \supseteqq Q_{3}{ }^{*}$ for some $z \in S^{*}, w \in C_{Q_{3}}(z)$, by hypothesis. But this is impossible. Next we will prove that, for any $z \in S^{\sharp}, C_{G}(z)$ is 3-nilpotent.

Now put $C_{G}(z)=C$ and let S_{1} be a nontrivial subgroup of S. By (3.7), $\operatorname{Aut}_{c}\left(S_{1}\right)$ is a 2-group. Put $\operatorname{Aut}_{c}\left(S_{1}\right) \ni t \neq 1$. Then t is a 2-element. Furthermore there exists an element y of S_{1} such that $y^{t} \neq y$, i.e. y and y^{t} are conjugate in $C_{G}(z)$. By (2.11), y and y^{t} are conjugate in $N_{C}(S)$. Thus we may assume that $t \in N_{C}(S)$, and $t \in Q_{3}$. Then $t \in C_{Q_{3}}(z)=Q_{3}{ }^{*}=C_{Q_{3}}(S)$, a contradiction. Hence $C_{G}(z)$ is 3-nilpotent by (2.15), especially $C_{G}(z)$ is 3-constrained.

Furthermore put $3 \neq p \in \pi\left(K_{3}\right)$, and let P be a ϕ-invariant Sylow p-subgroup of G. $\quad N_{G}(S)=N_{G}(P)$. Thus $C_{G}(z)$ is $\pi\left(K_{3}\right)$-nilpotent.

Next put $1 \neq y \in S^{g} \cap S$, and let M be a $\pi\left(K_{3}\right)$-complement of $C_{G}(y)$, and then we will prove that M is a 2 -group.
S normalizes M and $(|S|,|M|)=1$. Now suppose that M is not a 2group. There exists an odd prime q in $\pi(M)$ such that $q \notin \pi\left(K_{3}\right)$. Furthermore there exists a Sylow q-subgroup Q_{1} of M normalized by S. Since $\operatorname{Aut}_{G}\left(Q_{1}\right)$ is a 2-group, $S \subseteq C_{G}\left(Q_{1}\right)$, and hence $Q_{1} \subseteq K_{3}$. It is impossible. Thus M is a 2group.

On the other hand, it is easy to show that $M \supseteqq Q_{3}{ }^{*}$. Now suppose that $M=$ $Q_{3}{ }^{*}$. Then $C_{G}(y)=Q_{3}{ }^{*} K_{3}$, and since $S, S^{g} \subseteq C_{G}(y), S=S^{g}$, a contradiction. Hence M き $Q_{3}{ }^{*}, C_{G}(S) \subseteq N_{G}(M)$.

Let \bar{M} be the intersection of all elements of $\mathrm{U}_{G}{ }^{*}(S ; 2) . \quad$ By $(2.14), \bar{M} \supseteqq M$. On the other hand, as \bar{M} is ϕ-invariant, $S \bar{M}$ is ϕ-invariant. By (3.4), $S \bar{M}$ is 2nilpotent. Thus $[\bar{M}, S] \subseteq \bar{M} \cap S=1$. Hence $\bar{M} \subseteq C_{G}(S)=Q_{3}{ }^{*}$, a contradiction. This completes the proof of Lemma 3.12.

Now if $\bar{E}_{3} \neq 1, r=2^{n}+1$ is a Fermat prime by (3.11), where $r=|\phi|$.

On the other hand，when $\bar{E}_{3}=1$ ，by（3．12），S is a T．I．－set，where S is a ϕ－invariant Sylow 3－subgroup of G ．

By B．Baumann［1］，Q is not a maximal subgroup of G ，and thus there exists a proper subgroup X of G containing Q such that Q is a maximal sub－ group of X ．

In analogy with Matsuyama［8］，we can say the following．
X is a solvable $\{2,3\}$－subgroup with $O(X)=1$ ，and X satisfies the hypo－ thesis of（2．8）．Thus the structure of X is one of the following two type．

〈Type I＞
$X / O_{2}(X)$ is isomorphic to S_{3} ，the symmetric group on 4 letters． $Z\left(O_{2}(X)\right)$ contains $Z(Q)$ and $Z\left(O_{2}(X)\right)=\left[Z\left(O_{2}(X)\right), X\right] \oplus C_{Z\left(O_{2}(X)\right)}(X)$ ， where $\left[Z\left(O_{2}(X)\right), X\right]$ is isomorphic to $Z_{2} \times Z_{2}$ ．
〈Type II〉
X has a subgroup H containing $O_{2}(X)$ such that $[X: H]=2 . H / O_{2}(X)$
$=X_{1} / O_{2}(X) \times X_{2}\left(O_{2}(X)\right), X_{i} / O_{2}(X)$ is isomorphic to $S_{3}, i=1,2 . \quad Z\left(O_{2}(X)\right)$
contains $Z(Q)$ and $Z\left(O_{2}(X)\right)=\left[Z\left(O_{2}(X)\right), X_{1}\right] \oplus\left[Z\left(O_{2}(X)\right), X_{2}\right] \oplus C_{Z\left(O_{2}(X)\right)}$ (H) ，where $\left[Z\left(O_{2}(X)\right), X_{i}\right]$ is isomorphic to $Z_{2} \times Z_{2}, i=1,2$ ．

On the other hand，considering the structure of $X, Z(Q)$ is noncyclic，by （3．8），$Q_{3}{ }^{*}=1$ ．

Now we will show that $И_{G}\left(K_{3} ; 2\right) \neq 1$ ．For the remainder of this paper， let S be a ϕ－invariant Sylow 3－subgroup of G ．

Lemma 3．13．$\Lambda_{G}\left(S ; \pi\left(K_{3}\right)^{\prime}\right)=И_{G}(S ; 2)$ ．
Proof．It is easy that $И_{G}\left(S ; \pi\left(K_{3}\right)^{\prime}\right) \supseteqq И_{G}(S ; 2)$ ．If there exists an element A of $\mathrm{K}_{G}\left(S ; \pi\left(K_{3}\right)^{\prime}\right)$ that is not a 2－group，by［7；6．2．2］，S normalizes some Sylow p－subgroup S^{*} of A ．As $\operatorname{Aut}_{G}\left(S^{*}\right)$ is a 2 －group，$\left[S, S^{*}\right]=1$ ．But it contra－ dicts $C_{G}(S)=K_{3}$ ．

By（3．13），it suffices to prove that $И_{G}\left(S ; \pi\left(K_{3}\right)^{\prime}\right) \neq 1$ ．
Now we suppose that $\mathrm{U}_{6}\left(S ; \pi\left(K_{3}\right)^{\prime}\right)=1$ ．By Matsuyama［8］，we can say the following．
（3．14）If $S^{g} \neq S, g \in G$ ，then $m\left(S \cap S^{g}\right) \leqq 1$ ．
（3．15）There exists a nontrivial proper subgroup Z_{1} of $Z(Q)$ such that $3 /\left|C_{G}\left(Z_{1}\right)\right|$ and $\left[Z(Q): Z_{1}\right]=2$.

Furthermore，in analogy with Matsuyama［8］，we can show the next lemma．
Lemma 3．16．There exists a nontrivial element a of $\Omega_{1}(Z(Q))$ such that $\left|a^{\langle\phi\rangle} \cap Z_{1}\right|>\frac{1}{2}\left|a^{\langle\phi\rangle}\right|$ or $\Omega_{1}(Z(Q))^{\sharp}=\left\{a^{\langle\phi\rangle}\right\}$ ．

Proof. Put $a_{1} \in \Omega_{1}(Z(Q))^{\ddagger}, a_{1} \neq w$. Let $A_{1}=\left\{a_{1}\langle\phi\rangle\right\}$. If there exists an element of $\Omega_{1}(Z(Q))^{\#}-A_{1}$ that does not equal w, let a_{2} denote this element. So let $A_{2}=\left\{a_{2}^{\langle\phi\rangle}\right\}$, and then $A_{1} \cap A_{2}=\phi$. Inductively, if there exists an element of $\Omega_{1}(Z(Q))^{\#}-\bigcup_{k=1}^{i-1} A_{i}$ that does not equal w, we let a_{i} denote this element. Then we can write the following,

$$
\Omega_{1}(Z(Q))^{\ddagger}-\langle w\rangle=\bigcup_{i=1}^{m} A_{i},
$$

where $A_{i} \cap A_{j}=\phi$ if $i \neq j, 1 \leqq i, j \leqq m$.
Now suppose that $m \geqq 2$. Let $\left|\Omega_{1}(Z(Q))\right|=2^{n}$, and as $\left[\Omega_{1}(Z(Q)): \Omega_{1}\left(Z_{1}\right)\right]$ $=2,\left|\Omega_{1}\left(Z_{1}\right)\right|=2^{n-1}$. If, any $i, 1 \leqq i \leqq m,\left|a_{i}\langle\phi\rangle \cap Z_{1}\right| \leqq \frac{1}{2}\left|a_{i}^{\langle\phi\rangle}\right|$, then since $\left|a_{i}^{\langle\phi\rangle}\right|=r$ is odd. $\left|\bigcup_{i=1}^{m}\left(a_{i}^{\langle\phi\rangle} \cap Z_{1}\right)\right| \leqq\left|\Omega_{1}(Z(Q))-\Omega_{1}\left(Z_{1}\right)\right|-2$.

But, on the other hand, $\left|\Omega_{1}(Z(Q))-\Omega_{1}\left(Z_{1}\right)\right|=2^{n-1}$, and $\left|\Omega_{1}\left(Z_{1}\right)^{\sharp}\right|=2^{n-1}-1$. It is impossible. Hence $m=1 . \quad \Omega_{1}(Z(Q))^{\sharp}=\left\{a_{1}{ }^{\langle\phi\rangle}\right\}$. This lemma is proved.
(3.17) $a^{\phi^{i}}$ normalizes some Sylow 3 -subgroup of $G, 0 \leqq i \leqq r-1$.

Now put $\Delta_{i}=\left(a^{\phi^{i}}\right)^{G} \cap Q_{3}$, and then $\Delta_{i} \neq \phi$, and $\Delta_{i}{ }^{\phi}=\Delta_{i+1}, 0 \leqq i \leqq r-1$. Furthermore, as $Q_{3}{ }^{*}=1, Q_{3}=E_{3} * R_{3}$.

If $E_{3}=1$, then S is a T.I.-set, by (3.13). In analogy with the above argument, we can show that $\Delta_{i} \neq \phi, 0<i<r-1$.

But, in this time, w is an only involution in Q_{3}. This is a contradiction.
Hence, for the remainder of this paper, we may assume that $E_{3} \neq 1$, i.e. $r=$ $2^{n}+1$ is a Fermat prime. Then (3.16) is reduced that there exists a nontrivial element a of $\Omega_{1}(Z(Q))$ such that $\left|a^{\langle\phi\rangle} \cap Z_{1}\right|>\frac{1}{2}\left|a^{\langle\phi\rangle}\right|$.

On the other hand, $m(S) \geqq 4$.
(3.18) There exists an element b_{i}, b_{j} of Δ_{i}, Δ_{j}, respectively, $0 \leqq i, j \leqq r-1$, $i \neq j,\left[b_{i}, b_{j}\right]=1$.

Next Δ_{i} is determined as the following.
Lemma 3.19. $\Delta_{i}=\left\{b_{i}, b_{i} w\right\}, 0 \leqq i \leqq r-1, b_{i} \neq w$.
Proof. If $w \in \Delta_{i}$, then w centralizes some element of order 3, a contradiction. Thus $w \notin \Delta_{i}$.

For the remainder, we set $b=b_{i}$.
Suppose that $b, b^{g} \in \Delta_{i}, g \in G, b \neq b^{g}$. Then $b, b^{g} \in Q_{3}$. Since $S=C_{S}(w) \oplus$ $C_{S}(b w), \frac{1}{2} m(S)=m\left(C_{S}(b)\right)=m\left(C_{S}(b w)\right) \geqq 2$.

Let S^{*} be a Sylow 3-subgroup of $C_{G}\left(b^{g}\right)$ containing $C_{S}\left(b^{g}\right)$. There exists an element h of $C_{G}\left(b^{g}\right)$ such that $\left(C_{S}(b)\right)^{g h} \cong S^{*}$. On the other hand, let S_{0} be a

Sylow 3-subgroup of G containing S^{*}, and then $S=S_{0}$ as $C_{S}\left(b^{g}\right) \subseteq S \cap S_{0}$. Since $\left(C_{S}(b)\right)^{g h} \subseteq S \cap S^{g h}, g h \in N_{G}(S)$. Since $b^{g}=b^{g h}, b$ and b^{g} are conjugate in $N_{G}(S)$. As $N_{G}(S)=Q_{3} K_{3}, b$ and b^{g} are conjugate in Q_{3}. Hence $\Delta_{i}=\left\{b_{i}, b_{i} w\right\}$.

Now put $\Delta=\left\langle\Delta_{i} \mid 0 \leqq i \leqq r-1\right\rangle$, and then, by (3.19), Δ is ϕ-invariant Abelian. Furthermore, as $[\Delta, \phi] \neq 1,[\Delta, \phi] K_{3}$ is nilpotent, and

$$
1 \neq[\Delta, \phi] \cong C_{Q_{3}}\left(K_{3}\right)=Q_{3}^{*}=1
$$

this is a contradiction. Hence $U_{G}(S ; 2) \neq 1$.
On the other hand, we will prove the next lemma, and then, in analogy with Collins-Rickman [2], the proof of the main theorem is complete.

Lemma 3.20. Let S_{0} be a proper subgroup of S such that $m\left(S / S_{0}\right) \leqq 2$. Then $N_{G}\left(S_{0}\right)$ is 3-solvable.

Proof. First we shall consider the case $m\left(S_{0}\right)>2$. In this case, we will show that $C_{G}\left(S_{0}\right)$ is 3-nilpotent. Put $C=C_{G}\left(S_{0}\right)$, and let S_{1} be a nontrivial subgroup of S. If there exists a nontrivial element t of $\operatorname{Aut}_{c}\left(S_{1}\right), t$ is a 2-element as $\operatorname{Aut}_{C}\left(S_{1}\right)$ is a 2-group. Then there exists an element y of S_{1} such that $y^{t} \neq y$. Thus y and y^{t} are conjugate in $C_{G}\left(S_{0}\right)$. By (2.11), y and y^{t} are conjugate in $N_{C}(S)$. Hence we may assume that $t \in Q_{3} \cap C \cong Z_{2} \times \cdots \times Z_{2}$. As $t \neq w, S=$ $C(t) \oplus C_{s}(t w)$. Hence

$$
\frac{1}{2} m(S)=m\left(C_{s}(t)\right)=m\left(C_{s}(t w)\right)
$$

This is a contradiction. By (2.15), $C_{G}\left(S_{0}\right)$ is 3-nilpotent. $C_{G}\left(S_{0}\right) / S_{0}$ is 3 -solvable. Hence $N_{G}\left(S_{0}\right)$ is 3 -solvable.

Now we may assume that $m(S)=4$ and $m\left(S_{0}\right)=2$. In this case, similarly, if $C_{M_{3}}\left(S_{0}\right)=C(S), M_{3}=N_{G}(S)$, then by (2.10), $C_{G}\left(S_{0}\right)$ is 3-nilpotent. Hence, furthermore, we may assume that $C_{M_{3}}\left(S_{0}\right) \supseteqq C(S)$.

If there exists an element x_{0} of $C_{M_{3}}\left(S_{0}\right)$ such that $\left|x_{0}\right|=4$, then $x_{0}{ }^{2}=w \in$ $C_{M_{3}}\left(S_{0}\right)$, a contradiction.

If there exists a four-group $\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle$ in $C_{M_{3}}\left(S_{0}\right)$, then $S=\left\langle C_{S}\left(x_{1}\right), C_{S}\left(x_{2}\right)\right.$, $\left.C_{S}\left(x_{1} x_{2}\right)\right\rangle$. On the other hand, S_{0} is contained in $C_{S}\left(x_{1}\right), C_{S}\left(x_{2}\right)$, and $C_{S}\left(x_{1} x_{2}\right)$, and since

$$
m\left(C_{S}\left(x_{1}\right)\right)=m\left(C_{S}\left(x_{2}\right)\right)=m\left(C_{S}\left(x_{1} x_{2}\right)\right)=2
$$

$C_{S}\left(x_{1}\right)=C_{S}\left(x_{2}\right)=C_{S}\left(x_{1} x_{2}\right)=S_{0}$, a contradiction. Hence we can write the following;

$$
C_{M_{3}}\left(S_{0}\right)=C(S)\langle t\rangle
$$

where $t^{2} \in C(S)$ and $S=S_{0} \oplus[S, t]$.

Put $\overline{C_{G}\left(S_{0}\right)}=C_{G}\left(S_{0}\right) / S_{0}$. Then $\bar{S}=\bar{S} \cap N_{\overline{\left(C_{G} S_{0}\right)}}(\bar{S})^{\prime}$. By (2.12), $\overline{C_{G}\left(S_{0}\right)}$ is 3-solvable. Hence, in this case, $N_{G}\left(S_{0}\right)$ is 3 -solvable. This lemma is complete.

Now we already proved that ${U_{G}}^{*}(S ; 2) \neq 1$. Next we will show that there exists a ϕ-invariant element Q_{1} of ${U_{G}}^{*}(S ; 2)$. Suppose false. Since $И_{G}{ }^{*}(S ; 2)$ is ϕ-invariant, r divides $\left|И_{G}{ }^{*}(S ; 2)\right|$. On the other hand, by (2.14), the element of ${И_{G}}^{*}(S ; 2)$ permuted by $C(S)$ transitively. This is a contradiction.

Let $N=S Q_{1}$. By (3.4), N is nilpotent. Hence

$$
Q_{1} \subseteq C_{G}(S)=C_{G}\left(K_{3}\right) .
$$

On the other hand, as $Q_{3}{ }^{*}=1,\left|C_{G}(S)\right|$ is odd. This is a contradiction. The main theorem is proved.

Acknowledgement.

The author thanks to Mr. Fukushima and Mr. Matsuyama for this theme and for their helpful advices.

Reference

[1] R. Baumann: Endliche nicht auflösbare Gruppen mit einer nilpotenren maximalen Untergruppen, J. Algebra 38 (1976), 119-135.
[2] M.J. Collins and B. Rickman: Finite groups admitting an automorphism with two fixed foints, J. Algebra 49 (1977), 547-563.
[3] R. Gilman and D. Gorenstein: Finite groups with Sylow 2-subgroups of class two, I, II, Trans. Amer. Math. Soc. 207 (1975), 1-101: 103-125.
[4] G. Glauberman: Subgroups of finite groups, Bull. Amer. Math. Soc. 73 (1967), 1-12.
[5] G. Glauberman: Failure of factorization in p-solvable group (I), Quart. J. Math. Oxford (2) 24 (1973), 71-77.
[6] G, Glauberman: Failure of factorization in p-solvable group (II), Quart. J. Math. Oxford (3) 26 (1975), 257-261.
[7] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
[8] H. Matsuyama: Finite groups admitting an automorphism, unpublished.
[9] B. Rickman: Groups admitting an automorphism of prime order fixing a cyclic subgroup of prime power order; Quart. J. Math. Oxford (2) 26 (1975), 47-59.
[10] C.A. Rowley: Automorphisms of prime order fixing a cyclic group of prime power order, J. London. Math. Soc. (2) 15 (1977), 91-98.
[11] S.D. Smith and A.P. Tyrer: On finite groups with a certain Sylow normalizer, II, J. Algebra 26 (1973), 366-367.
[12] J.G. Thompson: Finite groups with fixed-point-free automorphisms of prime order; Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 578-581.

Sayama Industrial High School
Sayama-shi, Fujimi 2-5-1
Saitama-ken 350-13
Japan

