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Introduction

In this paper we shall study the theory of Fourier integral operators on Rn

depending on a parameter λEί(0, 1) with non-homogeneous phase functions
and certain symbols in sections 1-4, and apply this theory to the construction
of the fundamental solutions for the Cauchy problem of a pseudo-differential
equation of Schrϋdinger's type in sections 5 and 6.

In section 1 we shall study a calculus of a family of pseudo-differential
operators Ph=ph(XyDx] with C°°-symbols ph(xyξ) depending on a parameter

, 1), which is defined by

where dξ=(2π)~ndξ, ύ(ξ) denotes the Fourier transform of u, and if denotes
the Schwartz space of rapidly decreasing functions on Rn. Let £B(R2n) be the
space of C°°-functions in R2n whose derivatives of any order are all bounded in
R2n. Then, the symbols ph(x, ξ) are defined as those functions which satisfy

( 2 ) (({h^-^+8^DldΛ

ξph(Xj ξ)}0<h<1 is bounded in

for any a, β with some — oo<^<cx» and O^δ^p^l, and we denote this

symbol class by B*t&(h).
In section 2 we shall first define a class P(τ, /) of phase functions with

0^τ<l and an integer 7^0 as the class of C°°-functions such that J(x,ξ) =
φ(xyξ)—x ξ satisfies

I / 1 /=ιβ+Σ ι sup { I Dζ0iJ(x, ξ) \ /<*;
~

(3)
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in the analogy to the class 9?(τy ΐ) defined in Kumano-go [9]. The class Pp δ

(r, /; h) (0<Λ</) will then be defined as the class of functions φh(x, ξ) such
that φh(x, ξ) defined by

(4) $k(*,ξ) = lf-'φk(h>x,h->ξ)

belongs to P(τ,/) and for Jh(x9ξ) = φh(x,ξ)—x ξ

( 5 ) " {Dξdtfk(x, ξ)} lΛ+βl=2 is bounded in
0<A<1

Let φX*,?)eP(τ,.,0),y=l,2,—, with ?„= J] τy^l/4. Then, according to

Kumono-go, Taniguchi and Tozaki [10] and Kumano-go and Taniguchi [11]

we define the #—(v+1) product Φv+ι=Φι# #φv+ι of φly — ,φv+ι for any v and
prove that for a constant c^ 1

( 6 ) Φv+ι(*, f)eP(£VΓv+ι, 0) with τv+1 = TH μτv+1.

This result is the fundamental one of section 2. All the properties for the

#-(z>+l) product Φv+ι.*=Φιf*# #φv+ι.A of φ l t Λ,—,φ v + l f λ for φy > A

7=1,2, —, with ^00^1/4, can be derived from those for Φv+1 A=
with <j>jtk defined by (4).

In section 3 we shall define Fourier integral operators Ph(Φh)~Ph(Φh\XyD
of class Bm

p s(φh) with phase function φh(x,ξ)^Pp δ(τ,0;/?) and symbolsp h(x,ξ)ί

β"p..(A) by '

and study an elementary claculus of Fourier integral operators of this class.
Section 4 is devoted to the proof of the representation formulae for the (z>+l)

multi-product PM(Φι> Pv+M(φv+M) of PJ>h(φJth)<=ΞB™i(φjfh),j=l,2, , with

τΌo^l/4. The multi-product Pιth(Φι,h)"'P^+ι &(Φv+ι h) can De represented as
a Fourier integral operator with phase function Φv+ι,A=Φι,Aί( JtΦv+ι,A and some
symbol rv+lfAe5*v+ι(A) with mv+1=ιw1H h^v+i

Sections 5 and 6 will be devoted to the construction of the fundamental

solution Uh(t,s) for the Cauchy problem of an equation of Schrόdinger's type.

Let H(t,x,ξ) be a real-valued function on [0,T]xP2w with 0<Γ^1 such

that continuous derivative D%dξH(t,x,ξ) exists on [0, T]xR2n for any α, β>

and satisfies

(8,

and fth(tyx,ξ) be a complex valued function of class °̂([0, T1]; B°p 8(h)) such
that
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(9) \D^Hh(t,x,ξ)\^C'a_fίh
s'w-^ on[0,T]xR2".

Set

\Hh(t, x, ξ) = h*-Ή(t, h-»x, ffξ) ,

\Kh(t,x,ξ) = HH(t,X,ξ}+Rh(t,X,ξ).

(See (5.3) and Remark after (5.3).) Then, setting

(11) Lh = Dt+Kh(t,X,Dx},

we shall consider the Cauchy problem of a pseudo-differential equation of
Schrϋdinger's type

t, X, Dx))u = 0 on [0, Γ0] ,

for asmallO<71o^71.

In section 5 we shall construct two kinds of the approximate fundamental
solution for the problem (12). Let φ(t,s;x,ξ) be the solution of the Hamilton-
Jacobi quation

&tΦ(t, * 5 *, ξ)+H(t, x, Vxφ(t, si x, ξ)) = 0 on [0, T0]
2χR2» ,

( j

and set

(14) φk(t, ί Λ, f) = Aδ-pφ(ί, j; A''*, A'f ) .

Then it is proved that φh(t,s)(=Pp ^(ct\t— s\ , / A) for /,^e[0, TJ with con-
stants c/^1 and 0<T;^Γo such that CjT^l for any /. Let I(φh(t,s)) be the
Fourier integral operator with phase function φh(t,s) and symbol 1. Then, we
shall first prove that I(φh(t,s)) is the approximate fundamental solution of
order zero in the sense

(LJ(φk(t, *)))e&([0, Γ0]
2; 5g,

where σ(LhI(φh(t,s)}) denotes the symbol of Lhl(φh(tys)).
Next for the special case 0^δ<p^l, solving transport equations we

shall find the symbol ek(t,s\x,ξ)G<B\[b,T$ϊBlf(h)) such that the Fourier
integral operator Eh(φh(t,ή)=eh(φh(tίs) t,s; X,DX) with symbol eh(t,s;x,ξ) is
the approximate fundamental solution of order infinity in the sense

(σ(LhEh(φh(t, ί)))
( } 1 Eh(φh(s,s)) = I.
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In section 6, using the approximate fundamental solutions constructed in
section 5, we shall by Levi method construct the fundamental solution Uh(t,s)
of the problem (12), that is,

}LhUk(t,s) = 0 on[0,Γ0],
( (Uk(s,s) = I

and investigate the properties of Uh(t,s) together with its ZΛ properties. Finally
for lh=Dt+Hh(t,X,Dx) denned by

(18) Hk(t, x, ξ} = h*~»H(t, h~*x, Wξ)

we shall investigate the convergence of the iterated integral of Feynman's type
as in Fujiwara [2] -[5] and Kitada [6].

We note that, recently, Fujiwara in [4] and [5] has proved the pointwise con-
vergence of the iterated integral of Feynman's type for the operator Lk when
Hk(t,X,Dx) has the form ^A(ί,Jf>Z)jC) = -AΔ+A"1Γ(ί,Λ?). But it should be
noted that, in the present paper, the convergence of the iterated integral of
Feynman's type is proved in the symbol class Bps(h) in case O^δ^p^l and
jB~ δ(A) in case 0^δ<p^l. We also should note the following facts: i)
When Hh and βk, and hence Kh, do not depend on A, L^L^Dt+K^jX Dx)
is included in the case δ=p=0 and Lk=Dt+h-Ή(t,X,hDx)+β(t,X,hDx)
(the usual Schrϋdinger operator) is in the case δ=0, p=l. Furthermore,
in the general case O^δ^p^l the symbol uh(t,s;x,ξ) of the fundamental
solution Uh(t,s) is uniformly bounded in the class B°p^(h) on {(£,$; A; p,δ)|
O^ί, t^T0, 0<A<1, O^δ^p^l}. ii) Let H%(t,X,Dx)be the Weyl operator
forH(t,x,ξ) defined by

(19) HZ(t, x, ξ) = Aδ-pOs

Then it is easy to see that Hh(t,X,Dx) is symmetric on if and Hΐ(t,x,ξ) has
the form (10) with some ϊϊh(t,x,ξ) satisfying (9). So we can construct the
fundamental solution U"(t,s) forLh=Dt+Hh(tyX,Dx)y although the convergence
of the iterated integral of Feynman's type for LH is not proved generally.
iii) From the symmetry with respect to x and ξ we can construct the fundamental
solution Ui(t,s) for the operator U=Dt+Hi(t,X,Dx)+β'h(t,X,Dx), where
Hί(t,x,ξ)=h8-pH(t)h

pxίh-8ξ) with O^δ^p^l and β'h(t,x,ξ) is a function
satisfying

( 9) ' \D$&tί(t, x, ξ) I ίΞC '̂0"-8"" on [0, T\

During the preparation of our present paper we have received a mimeo-
graphed paper [12] by Chazarain which is closely related to our paper, where
he uses an approximate fundamental solution to the operator of the form LΛ—
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Dt — — hΔ-\-h~lV(x) without constructing the fundamental solution.

1. A family of pseudo-differential operators

Let x=(xlί •-,#«) denote a point of Rn, and let a=(a1, ',an) be a multi-index
whose components a,j are non-negative integers. Then, we use the usual
notation:

\a\ = #H ----- \-an,al = αjί αj, x* = x^ Xn" ,

For an open set Ω of Λn let ,3(Ω) denote the set of all C°°-functions de-
fined in Ω whose derivatives of any order are all bounded in Ω. We often
write <B=ίB(Rn) simply. Let V denote the Schwartz space on Rn of rapidly
decreasing functions.

For u^tfx the Fourier transform ύ(ξ)==^F[u](ξ) is defined by

iχ tu(x)dx, x ξ = Xlξ1+...+Xnξn .

Then the inverse Fourier transform 3[v\(x) for υ(ξ)&(fξ is defined by

3[v\(x) = eiχ tv(ξ)<iξ, dξ = (2π)-*dξ .

Definition 1.1 i) We say that a function p=p(x^yx',%',x")
belongs to the symbol class J3) if p satisfies

(1.1) \p[β$]β»)(x, ξ, *', Γ, ̂ ) I ̂ CΛ

where p[t$]w=Q
ii) We say that a family {ph}0<k<1 of functions

belongs to the class {Bϊf(h)}0<h<1(m&R, O^δ^p^l) if ph(0<h<l) satisfy

v )

for constants Cj ( Λ/ tβ fβ/ fβ// independent of 0<A<1 and #,?,#',£',#", and we write

or simply ph e Bm

p*(h).

REMARK 1°. For p^B and ph^Bm

Pt8(h)y we define semi-norms \ p \ t and
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I pk I V°> l= °> 1 > 2, , respectively by

(1.3) \P\ι= max inf {CΛΛ/ β ̂  p// of (1.1)}
IΛ + Oί' + β + β' + β'Ίg/ ' ' ' '

and
|{^}0<,<ιl(/w)(orsimply |Λ|ί»>)

- max inf {C'Λ »> β β, β// of (1.2)} .
\a + Λ' + β + β' + β"ιgι . . . »

Then B and {Bm

Pt8(h)}Q<h<1 are Frάchet spaces provided with these semi-norms,
respectively.

2°. Symbols />(*,£), j>A(*,f) (resp. p(ξ,x')> pk(ξ,x')) independent of *',
ξ ', #" (resp. #, f ', ^/x) are often called single symbols.

3°. For a symbol p(x,ξ,x',ξ',x")<=B, if we put ph(x,ξ,x',ξr,x")=p(x9

|:,Λ;/,|/,Λ?'/)(0<A<1), then />A belongs to Bot0(h). In this sense we can write
£cβ§,0(A). Hence, all the statements concerning the symbol class J3o,o(λ) hold
for B as a special case.

4°. For ph<=Bm

Pt8(h) define ph by

(1.5) A(*, £ *', r, O - Λ(*β*, A" pf , A8*

Then, we have that ̂ eS?§0(A) and

(1.6) I A I ί ° (in B^XA)) - |Λ I (/w) (in fiSlof

For a(η,y) e C°°(̂  X ΛJ) satisfying

(1.7) |8Wf«(?7,y) I ̂ C.̂  yy

for some reΛ and 0^σ<l we define the oscillatory integral Os[e~ill'Ύ'a(>],y)']

(1.8) O.- J jβ-" 'φ,

where X^.^e^^x^) such that %(0,0)=1. (It is shown in [7] that the
limit in the right hand side of (1.8) exists and is independent of any particular

choice of "X (η,y) )

DEFINITION 1.2. For aph^.B1s(h) we define a family {PJooKi of pseudo-
differential operators Ph=ph(X,Dlc,X'tD^,X") (0<λ<l) by

hU(X} = o.- JJJ Jβ-'^ '1^

and write {P/,}0<*<ιe {Bm

ftt(h)}0<k<l, or simply
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REMARK. For symbols P k ( x 9 ξ 9 x ' ) 9 p h ( x 9 ξ ) 9 p h ( ξ 9 x f ) 9 we have from (1.9) the
representation formulae:

Ph(X,D,,X')u(X)

(1.9)' = O.- JJ«-""Λ(*, -n, x+y)u(x+y)drjdy

= O.-fyc-Ήpύ*, ξ, x')u(x')dξdx',

(1.10) Pk(X,Dx)v(x) = ' tpfc, ξ)u(ξ)dζ,

Now we state several fundamental theorems for a family of pseudo-differen-

tial operators.

Theorem 1.3. Let ρJίh(x,ξ,x',ξr,x")ςΞBm^(h),j=Q, 1,2, —, such that mQ^
j^: ---- >°o. Then, there exists ph(x,ξ,x',ξ',x")^B™^(h) such that

(1.11) ph~ ^

in the sense that for any N^l

(1.12) Ph(X> %> X/> ζ' y X") Σ P' h(Xy ζ> %') ζ'> x")€=Bmf(h) .

Furthermore such a ph^B™%(h) exists uniquely modulo B°*(h)= f] B™tQ(h)

(= f] ^δ(A)).

Proof. Let %((9) be a C°°-function on [0, °o] such that

(0^%(<9)^1 on [0, oo],

* - 1(0^0^1/2), = 0 ((9^1) .

Then, for any fixed £>0 we have

(1.14) l

Now we assume that

(1.15) |j>y.»S:?i^)(*, ξ, x', ξ', x") I ̂ Cy.βχ>p

and set

(1.16) C>= max . {CΛαχ
|α5 + α5/ + β + β/ + β//|^y

Choose 0— k0<k1< -<kl< ---- >oo such that

(1.17) mkQ<mkι< <mk ;<••-
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and choose I^ε0>ε1> >£y> ---- >0 such that

Then, setting

(1.18) ph(x, ξ, x', ξ', x") = Σ X(ejlh)pl h(x, ξ, x', ξ', x") ,
3 = 0

we see in a usual way that^>A is the desired one (cf. [7]). Q.E.D.

Theorem 1.4. For ph(oc,ξ,x',ξr

yx")<^B™s(K), define ρh>L(x,ξ,x'} and phtR

(x,ξ,x')y respectively, by

(L19) = os-

(L20) = o.-

we have

(1.21) ί4ii(«, I, *'), Λ.X*, f ,

and for Ph=ph(X,D,,X' ,Dt, X")

(1.22) PA = ph,L(X, Dx, X') = ph,R(X, Dx, X') .

Furthermore, the mappings: B^(h}^ph\-^ph^phtR^B^(K) are continuous, and
for a fixed even integer nQ(>n) and any I there exists a constant C/ such that

If, in particular, Or£δ<p^l, we have the asymptotic expansion formulae

(1-24)

i) PH,L(X, ξ, x')- Σ -. PάΆ (x, ξ, x, ξ, x') ,
* a\

ϋ) A.X*, ξ. *')~Σ ̂ -^-ΛίS ίo,(*, f, *', I, *') -
« α!

REMARK. Since pΆ)(x,ξ,x',ζ,x"), p$•*}<»(x,ξ,X',ξ',X")eBW
and m-\-(ρ—δ)|α|^ oo as |α|-*oo when 0^δ<p^l, the formulae (1.24) have
the definite meaning.

Proof. By the usual method we have (1.22). Consider
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= O.-1 \«~""A(«, ξ'+θη, x+y, ξ', x")d ηdy (0^0 ̂ '

For a fixed even »0(>w) we have by integration by parts

ph,β(χ,ξ',χ")

= O.- j Jβ-""(l+AV 1 7 1 Ό)-1(l+λV(_Δ,)»</ί)

X {(1 +/Γ'Όί I y I »o)-ί(l +A- ,»(_Δ,) V2)

χph(x, ξ'+θη, x+y, ξ', x")}^dy .

Then, noting δ^/o, we have for a constant OO (independent of

(1.26) ip^x, ξ', x") \^C\ph\ W0h
m (Q^θ^ί) .

Differentiating the both sides of (1.25), we have also

MV>(*,rx')i
(" }

Then, setting 0=1, we get (1.21) for ph_L(x, ξ,x').
In the case 0^δ<p^l we write

ρh(χ, ξ'+v, χ+y, ξ', x")

d.28)
, x+y, ξ', x")dθ .

Then, in the definition (1.19) we have from (1.28)

O.- J J*-* Vj>4<
 β)(*, ξ', x+y, ξ', X")

(1 29)

and

O.- \(e-» *η>pS' '»(x, ξ'+θη, x+y, ξ', X")dr)dy

(1-30)
= O.- e-""/>48:?Je)(*, ξ'+θη, x+y, ξ', x")dτ,dy .

Hence, replacing />A of (1.25) by p$$]0) and using (1.26), (1.27), we have from
(1.28)-(1.30) the formula (1.24)-i). Similarly we get (2.21) and (1.24)-ii) for
phιR(x,ξ,x'). Q.E.D.

As the special cases of Theorem 1.4 we get the following Theorems 1.5-1.7.
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Theorem 1.5. Forph(x,ξ,x')^B^s(h) set

(1.31) pk,L(x, ξ) = O.- j \e-^pk(x, ξ+y, x+y)*ιdy

and

(1.32) ph>R(ζ, x') = 0.-JJ*-""ί4(*'+^ £-7, *

7%«n zoe have

(1.33) pkιL(x,ξ},pktR(ξ,

andforPk=ph(X,Dx,X')

(1.34) P4 = A.t(*, O.)

Furthermore, the mappings: B^t8(h)^ph\-^phtL9 ph R^B™t8(h) are continuous, and
for a fixed even nQ(>ri) and any I there exists a constant C/ such that

(1.35) \Pk.L\\m\ \Pk,R\(im^Cl\pk\^2nQ.

If, in particular, 0^δ<p^l, we have the asymptotic formulae

V Ph L\x> ζ)r^ ^J Ph(0,a) \X> ζf X) y
' Λ>. f\f I

(1.36)

Corollary. For Ph=ph(X,Ds,X',Dx',X")^B^(h) we define single symbols

P //yι $-\—-—(4) i I Y 1 >-ι •/) |ί V 1 1 •/> i |>- V 1 £ΞΞ A?^-.|//ι <VPS'hPi*1'1t7]pJ'\J nΛf I I Ί Q^/» LTΛ.'X'iζ) — \rh L) L\ ) ^ ) ) f h RR\ζ ί } — \fh /?//?\.3>^' J g ^ *n δ\* / > * cot/fίtχί t t/c?frV'« ^LX v * *^/

αmί (1.20). TAβw ίϋ^ ^eί

(1.37) PΛ - ΛiLL(^, /),) - ΛiM(Z)« -ϊ').

Theorem 1.6. For PJih=ρJth(X,Dx)^Bp^(h) (j= 1,2) defineph(x,ξ] by

(1.38) ^(Λ:, g) = Oβ —I U""f>^lfjk(Λ?, f+7?)ί>2,fe(^+3;

ί ξ)d-ndy .

TA^ w^ have ph(x,ξ)^Bp£m2(h) andph(X,Dx)=P1>hP2th.

Furthermore, the mapping: Bm^(h) x Bm^(h) a (plfh, p2 h) \->ph e 5PV
m\h) is

continuous, and for a fixed even nQ(>ri) and any I there exists a constant Cl such that

(1.39) \pk\}-i+«»}^C,IPlfAI(r^n01Λ§41K&o.

T/", in parricular^ 0^δ<p^l ec;̂  Aαz;^ ίAβ expansion formula

(1.40)
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Theorem 1.7. For QJtlt=qJιlt(Df,X')<=B;ί(h) 0=1,2) define qh(ξ, x') by

(1.41) qh(ξ, x') = O.- J j*-*"ili4(?, *'

ΓΛβi, we have qh(ξ ,x')^B^m\h) and qh(D,,X')=QlιhQ2 „.

Furthermore, the mapping: B^(h)xB^l(h)^(qlιh,q2th)\-^qh^B^l+m2(h) is con-

tinuous, and for a fixed even «o(>«) and any I there exists a constatn Cl such that

(1-42) ItfJh+

If, in particular , 0^δ<p^l, we have the expansion formula

ί_\\\Λ\
(1.43) qh(ξ, *')~Σ (—^— ?!.*(-)(?, * W'ίf* *')

* α!

The next theorem concerns the multiproduct of pseudodifferential oper-

ators and will play an important role also in considering the multi-product of

Fourier integral operators (see Theorem 4.3).

Theorem 1.8. For Pjth=pjth(X,Dx,X')<=B™?8(k) (A=l,2, -, v+1, v^
define q^+lth(xyξ,xr) by

(1.44) = 08

x Π Pi
j=ι

where f=Q,yi=y1^ ----- \-y> (j=l,-,v), dηv=^d^ d η\ dy"=dyί dy\

Then, we have

(1.45) ?v+ι.»(*, ζ,

and for £>v+1 >A=?v+ι k(X,Dx,X')

(1.46) ρv+1>4 = PH-PVH..

Furthermore, there exists a constant C0>0 such that for a fixed even w0(>«)

1 Σ s/π

Proof. By the usual method we have (1.46) (cf. [7]). By integration by

parts we write
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(L48)

x Π (i+A-<Ό»ιy'|'Ό)-ι(i+A-'Ό»(-Δ,/)V2)

x Π PJ h(χjτys 19 £+77;> χ~\~yj)p*+ι k(χ~\~y*9 ζ>χf

y=ι

Now we make a change of variables:

for j= 1, , v. Then, noting

v . * ,

2y ^ = Σ^ ( ι7— ̂  ), ^v+1 = o
>=1 ft=l

we make again the integration by parts. Then, we have from (1.48)

Jv+ιf*(#, ?, Λ?')

(1.49) X Π (1+AV I ̂ *-^+1 1 1Ό)-1(l+/z»os(-Δ.!*)V2)

X {Π (l+A-Ό* I *?—»f-* \ Ό)-1(l+A-'lβί(-Δ,y')llβ/ϊ)

X

Hence, noting δίΞp we have for a constant Cx>0

I ?λ+ι.»(«, I, *') I

(1-50)
x

x Π
yx=ι

So for another constant C2>0 we have

(i.si) \q*+ι.k(χ,ξ,χΊ\^ci+lτi

In order to get the estimate for ?v+ιfAcSV) (^> ?, ̂ ') we difierentiate the
both sides of (1.44) and apply (1.51). Then, we get (1.47) and (1.45). Q.E.D.



A FAMILY OF FOURIER INTEGRAL OPERATORS 303

The following theorem is also a key theorem in considering the multi-product

of Fourier integral operators (see Theorems 3.8 and 4.2).

Theorem 1.9. Let n0(>ri) be a fixed even integer. Then there exists a
constant c0>0 such that for any Ph = ph(X,Dx,X

f)GBlt*(h) with \ph\
($^cQthe

operator I—Ph has the inverse (I—Phγ
l in B°p^(h).

Proof. For v^l we define p^1>h(x,ξyx')ζΞBQ

p>8(h) by (1.44) for pJ9h=ph

(/=!, ••-,?+ 1). Then, by Theorem 1.8 we have

(1.52) Pl"=p^h(X,Df,X')

and the estimate

(1-53) I A+ι,J(/0)^Cov+1 Σ Π iΛlSSί+i, -
/J+-+/V-HS//-1 '

Hence, when z>+l^/, we have

I^Ml^^CS^dΛl^oΓ1"7 Σ
(1.54)

where Cv /=Σ V~J We note that cv /^CX(v=l,2,— ) for a constant C/>0.
J = 0 \ J /

Then, we see that, if we choose c0>0 such that C0 c0< 1, the series for σ(Pl+1)=

converges in B°pfS(h) which means that

exists in Bj.δ(A). Q.E.D.

Proposition 1.10. For any fixed 0<A<1 the operator Ph^B^(h) defines
continuous mappings Ph : *B-*3) and Ph : ίf->ίf.

Proof. By the corollary of Theorem 1.5 we may only consider the case
Ph =pk(X, Dx) e B^(h) . Then we have

Phu(x) = Os- J \e-* *ph(x, yj)u(x

for «e^, and

for u<=ίf. Thus the proof is clear. Q.E.D.



304 H. KlTADA AND H. KUMANO-GO

Proposition 1.11. For any fixed 0</ι<l and the operator Ph=pk(X,

h we have

(1.55)

where Ph*=pk*(X>Dt,X',DttX"}e.B'^h) is defined by

(1.56) pk*(x, ξ, x', ξ', x") = ph(x", ξ', *', ξ, x) .

Furthermore Ph: ίf-^ίf is extended to the operator Ph: θ"->9" uniquely by

(1.57) (Phu, v) = (u, P», «e=ίf", v^V ,

where if' denotes the dual space ofίf.

Proof is clear by Proposition 1.10.

REMARK. If Pk=pk(X,Dx,X')e=Bh(h)9 then we have P£=pf(X',DxίX").
But from the definition (1.9) we can get easily Pt=pϊ(X,Dx,X').

Theorem 1.12. Let M=2^Γ— Ί + Γ— Ί + 2\ Then, there exists a constant

C such that for any Ph=ph(X,DxyX')<=B™8(h) we have

(1.58) \\Phu\\

Proof. Set rh(xίξ)x')=h~mph(hBx}h'8ξίh
8xf). Then noting δ^p we have

for \a+β+β'\^M

|r^V)(^X)l^lAl^.

By a change of variables x=hs%, ξ=h~*ζ, x'=h8%', we have

= A"0.- e^-^rh(X, ξ, X')

Then, setting vh(X)=u(hs%) and wh(^}=Phu(h^) we have by the Calderόn-
Vaillancourt theorem ([!])

(1.59)

for a constant C independent of 0<A<1. Q.E.D.

2. A family of phase functions

Let $m>°°(R2n) denote the set of C~-functions / in R2n=Rn

xxRn

ξ whose
derivatives d^D^f(xyξ) are bounded on R2n for |α+/3| ^m. Then, we define
the classes of phase functions as follows.

DEFINITION 2.1. i) For 0^τ<l and integer /^O we say that a real valued
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function φ(x,ξ) in R2n belongs to the class P(τJ) of phase functions, when
φ(x,ξ) is of class C/+2 and satisfies for J(x,ξ) = φ(x,ξ)— x ξ

\J\,= Σ
(21) ι +wsι«.e
^ ' + Σ sup

2^|Λ + /3|^/ + 2*,£

ii) We say that a phase function φ(x,ξ) (eP(τ,/)) belongs to the class
P(τ,/), when φ(*,f), moreover, belongs to 332>°°(R2n).

iii) We say that a family {φA(tf,£)}0</κι of C°° -functions φh(x,ξ) in P2Λ be-
longs to the class {PPfδ(τ,/;λ)}0<;ι<1 with O^δ^p^l, when the functions

satisfy

(2.3) φ,(̂  f)eP(τ, /) for any Ae(0, 1)

and

(2.4)

We write this as {φh(x,ξ}}Q<h<ι<^ {PP δ(τ,/;λ)}0</Kl or simply as φh(x,ξ)<=Pp δ(τ,/;
A).

REMARK Γ. If φh(xyξ)=φ(x,ξ)(ΞP(τJ) (independent of 0<A<1), then
φΛ(Λ?,f)eP0f0(τ,/;A). So we can write P(τ,/)cP0f0(τ,/;A).

2°. By the definition, P(τ,/)cP(τ,/).
3°. P(τ,/)cP(τ',/'), P^/JcPίr',/'), if τ^τ' and /^/'.
4°. For φ(xίξ)^P(rJ) set φh(x,ξ)=h8-pφ(h-*x,hpξ). Then, φΛ(^,f)e

P(τ,/;A), since φh(x,ξ) defined by (2.2) is equal to φ(x,ξ).
5°. In sections 3 and 4, for φΛ(tf,|)ePp)δ(τ,0;λ) we often use the im-

portant semi-norm \Jh\2t<r (σ ^O, integer) with Jh(x,ξ)=φh(xyξ)—x ξ defined by

(2.ιy i/*k,= Σ
0<Λ<0

where Λ(Λ?,f)=$A(Λ;,?)—Λ; f (eP00(τ,0;A)). Then, since Jh=Jk9 we have |/J2>(r

— IΛ \2,<r and (2.1)' is rewritten as

(2.1)" 17*1,.,= Σ sup
2^\a + β\£2 + σ x,ξ

0<Λ<1

by virtue of (2.2). For φ(#, f ) eP(τ, 0) cP0t0(τ, 0 h) we have

(2.1Γ iΛkσ = Σ sup
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Proposition 2.2. Let φj(x, ξ) e P(τ, 0), ;= 1,2, , and let ?„ = Σ τy ̂  τo

for some 0<τ0<l/2. Then, for any z>^l αwJ (Λ?,|)eΛ2Λ ίA^ solution {-Yί,Bί}5-ι
(Λ?,|) (e/22VΛ) o/ ίfe equation

{ i) J ί̂ = VξφjfXl'1, Hi'),
^ ^ 0 ~ ι>'"j 3 ^)

^mίί uniquely, where Xl=x, Sl+1=ξ.

Proof. Set

Then

yi> j>v°-o, y = o,-,^),
(2.7) ,^. =. ( ^ / = = . . ( v =v+ι_ ._

and the equation (2.5) is equivalent to

(28) I i } ^ =
^ ; lίί) ^ =

Now we define a mapping 5rv: JR
2V"3(yv,ιiv)=(jv, —>yl, η\, ••'

)^R2v" by

Γ=1

i i ) t f ί = V , 7 y

+ 1 ''"'

Then, using the norm

we have for (yί,ήί)= ^(y'^n' ,)

U'v'-tfl

'-1, f ί'+f )- Vf/X*+ j^-

k — l

Hence we get
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and similarly get

Consequently we get

which means that the mapping Γv is contractive. Hence, we see that the
equation (2.8) has a unique solution {y ,,ηv}(x,ξ) Q.E.D.

Proposition 2.3. Let φj(x,ξ)^P(τj,l) (resp. P(τjtl)), j=l,2, , and let
7Ooi5T0 for some 0<τ0<l/2. Then we have that the solution {Xί, Sί}>-ι(*>?) of
(2.5) w of class C'+1 (resp. C").

Proof. Consider the function {f v, flrv} (rv> y „ Λ, |) = {/i, , fv , gl

v, , gl}
(zv, yv *, ξ) defined by

(210) ^ f>v = ̂ -V^^+iΓ1, ϊί+ξ) ,
ii) ^ = rί-V Ji+1(*+zί, 7ί

Then, we have the Jacobian

where / is the unit matrix and

#π = [Aιι.y. = V.Vί/y (*</), = 0

#21 = [A*.,* = V,V,/ί+1 (A^j), = 0

#22 = [*2M* = V«V,/y+1 (A>;), = 0

Hence, we have — ̂  "' *ί Φθ, since
D(zv, yv)

and
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Then by the implicit function thorem we see that the solutions of (2.8) and also

(2.5) are of class Cl+l (resp. C°°) with respect to (*,?). Q.E.D.

- r̂1, Bί-'-Bί) I ̂

Proposition 2.4. Let φj(x,ξ}<=P(τhΐ), j=l,2,— , and let TCO^TO with
0 < TO <: 1 /4. Tfott eoe Aα^e

i) There exists a constant £/ > 0

(2.11)

and

(2.12)

ii) Furthermore, assume that φs(x, ξ) e P(τy, /), _;'= 1 , 2, , and, setting

MX, ξ) = ψX*, f)-* f , V = (V,, Vt) ,

assume that

(2.13)

n

1, vl=Bί-Bl+1 (j=l, ,v, Xt=x, Ξϊ+1=?) areProof. Since ĵ ^-^Γ
the solution of (2.8), we have

(2.15)

Here, we used the inequality

(2.16) <χ+y,ξ+ιi>£\

Then, from (2.15) we have

and noting 2τTO(l— 2τco)~1^l by T«,^l/4 we have

(2.17)
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Applying (2.17) to the right sides of (2.15), we get

\ y ί \ ^2τj<χ D, |*ί I ̂ 2τy+1<*; £> (v^lj = 1, -, v) ,

which means that (2.11) holds. If we differentiate the both sides of (2.8), by
induction we get (2.12) by the similar way. Also (2.14) can be obtained simi-
larly. Q.E.D.

Summarizing Propositions 2.2-2.4, we get

Theorem 2.5. Let φχ#, ?)<ΞP(τy, /), y=l,2, •••, and let Γeo^τ0 with

0<τ0^l/4. Assume, further, that {VV/X#,?)/τ, }"-ι is bounded in $(R2n). Then,
there exists a constant £/>0 such that the solution {Xί, Bί'}y=ι(#> ξ) of (2.5) exists
uniquely and satisfies

(2.18)

\(Xί-Xί-1, Bί'-'-HOI <S4τ,.<

I (Xί-x9 Bί-ξ) I ̂ 4τv+1<Λ?; ξ>

(2.19)

Furthermore we have

(2.20) and

are bounded in <B(R2n)".

DEFINITION 2.6. Let φX#,£)eP(τy,0),;==l,2, , and let ^ΞΞ 2τy^τ0

with 0<τ0<l/2. Then using the solution {X{, 3ί} }=ι(#, £) of (2.5) (from Pro-

position 2.2), we define the #—(*>+!) product Φv+ι=Φι# #Φv+ι of Φi, " ,φv+ι by

(2.21) Φv+ι(*, ξ) = Σ (ΦX^Γ1, B})--ϊί Bί)+Φv+ι(-XΪ, f)

with X°v=x.

Theorem 2.7. L ί̂ φχ#, ξ) e P(ry 0), j = 1,2, —, βwrf to
constant 0<τ0^l/4. Then, we have the following:

i) There exists a constant c02^1 zwϊ/i £0τ0<;l

(2.22) Φv+1(*, f)eP(c0τv+1, 0) (̂
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V,ΦV+1(*, £) = VA(*> Hi),
(2 23)

I")

.1 V,Λ+ι(*,f) = Vj1(*,HΪ)+Σ3(B*-ϊ
(2.24) „ *=l

::\ T7A r /-v *Λ ^fYk Yk~l\\il) V£«/v+ιv*.> b j — ' < V-Λ v—-^v j

ii) We have the associative law:

Φv+1

^ ' J .

iii) Furthermore, assume that φj(x,ξ)eP(τj,l),j=l,2, , and let T«»^TO>

zw'ίA α ίffzα// constant 0<τ0 ,^TO. TVzen, <Aere eacwfo α constant c0_/(^
c0 ;TO ,<1 SMcA ίAαί

(2.26) Φv+ι(*,e)e^o.ι'>v+ι,0

αwrf, i/ {VV.//(*,?)/T/}7-i w bounded in <B(Rίn), we have

(2.27) "{VVΛ+ι(^ e)/τv+ι}Γ-ι w ioMw^rf m

Proof, i) Using the definition (2.21) we can write

Λ+ι(«, f) = Σ

y=ι

Then, by Proposition 2.4 and (2.11) we have

V + l

and, writing X(-l=^(X*-X*rl)+x, Bί=g(B*-B;+1)+f, we get by (2.11)

for a constant Cj>0.
From the definition (2.21) and Proposition 2.3 we see that ΦV+I(ΛJ,|) is

C^class. Then, differentiating the both sides of (2.21) we have

V

and using (2.5) we have
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V,ΦV«(*, f) = VA

= VA(*, si) .

Hence, we get (2.23)-i). From (2.23)-i) we write

V.Λ+ι(*, £) = V,ΦV+1(*, I)-

= VJK*, Bϊ)+(Bi-£)

and get (2.24)-i). Similarly we get (2.23)-ii) and (2.24)-ii).
From Proposition 2.4 and (2.24) we have for a constant C2>0

(2.29) I VΛ+ι(*, I) I

Similarly, if we differentiate the both sides of (2.24), we have for a constant C3>0

(2.30)

Hence, setting c0=Cl-
srC2-\-C3 and choosing 0<τ0ίSl/4 such that c0τ0<l,

from (2.28)-(2.30) we get (2.22).

ii) Let Φv(*,f)=(Φιίf ifΦv)(*,e) and Φv+1(*,£)=(Φjφv+ι) (*,£)• Let
{J?v,Hv} (»,?) be the solution of

f i ) ^v = Vt

lii) B, = V,

= VtΦ,(*. Ξv ),

φv+1(J? v, ξ) .

Then we have

(2.32) Φv+1(«, f ) = Φv(«, Bv)-X Bv+φv+1(X, ξ] .

On the other hand, by the definition of Φv(x,ξ) we have

Φv(*, Ξv) = Σ {φy(-ϊ{l}(*, Hv), Ξί.^Λ, ΞV))

(2.33)

and for {Λ"ί_ι, Bί_ι}?li(»,Bv) we have

rJCί-^*, Hv) = Vfφ, (^ίIΐ(Λ, Ξv), Bi_!(*, Ξv)) ,

(2.34) JBί_1(*,Bv) = V^y+1(J:ί.1(*,Bv),Bίίi(ίf,Bv))

lθ' = !> "•> I/— !' ^S-ι(*» ΞV) = *, B;_!(*, Ξv) = Bv) .

Hence, if we set



ί(X9 b ) — &v-l\χjΈ'v\χy ζ))>J — 1» " * > v *

γ"γv £\ y /v ε\ W Ύ v £"\ £7 (v £ ^VAV^, ςj — Av^#, ^ , tivV^j b j — ttvW b j j
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(2.35)

we have by (2.34)

(2.36) j^ = v ^ gί+1) = ι _ _ ^_ι

From (2.31)-ii) we have

/O ^2^\ Cfv T7 JL. / \^ C\
(Z.J/J tiv

 = V-cφv+ll^-vj b) >

and applying (2.23)-ii) to (2.31)-i) by replacing z>-}-l by v, we have

(2.38)

Hence, from (2.36)-(2.38) we see that {Xζ, Ξi}}^(x,ξ) is the solution of (2.5),
and by the uniqueness, is equal to {Xζ, Ξi}}^ι(x,ξ). Then from (2.32) and

(2.33) we have Φv+1(*,£)=Φv+1Oκ,?)=((Φιtf #Φγ)#Φv+ι) (*,£). Similarly we get

iii) If we differentiate the both sides of (2.24), then from Theorem 2.5
we get (2.26) and (2.27) by induction. Q.E.D.

Theorem 2.8. Let {φ,, *(*,£)} „<*<!,;'= 1,2, -, belong to {PPi,(τy> 0;fc)}0<)Kl)

and feί T«,^TO K/ΛΛ 0<τ0<l/2. For φjth(x,ξ) we define φith(x,ξ) by

(2.39) φiιh(x, ξ) = h'-tφi^h**, h-'ξ) .

Then we have the following:

i) Let {̂ ί.A.Sί̂ }},!̂ ,?) and {̂ ί̂ .Ξί A}}=I(Λ;,|) be the solution of the
equation (2.5) for {φ/FJ}li and {$>>*}}11, respectively. Then they are uniquely
defined as C°° -functions on R" x /?£, awrf satisfy the relation

(2.40) Hi .»(*, I) = h^<h(hsx, h-"ξ)

ii) Let Φv+1.»(*,f) and Φw.»(*,f) be defined by (2. 2\) for {φy,J}ίί
y ft}yίL respectively. Then we have the relation

} (ii)
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Proof, i) From (2.5) for {$,.*} 51} and (2.39) we have

(Xίth(x, ξ) = A- VtφyΛΛtfβiX*. I), *-"§{.*(*, ξ ) ) ,

(2.42)
ϊ\ y & + l(y £\ — £\,) — x, >—<v,h \X, ζ) — ζ) -

Then from (2.5) for {ψy.Jyiί we get easily (2.40), since the solution of (2.5) is
unique. By Proposition 2.3, the solution is C°°.

ii) If we use (2.39) and (2.42), then by the definition (2.21) for Φv+1,*(*>£)
we have

= Σ
(2.43) -

which proves (2.41)-i) together with (2.41)-ii). Q.E.D.

Summing up, we have the following

Theorem 2.9. Let {φJth(x,ζ}}Λ<h<l,j=\,2, -, belong to {Pp>δ(τy,/;A)}0<Λ<1,
em/ to T. ̂ TO^ 1/4. Zeί {ί?ιt, Bί. »};.!(*, ?) αnrf Φv+1 »(*, I) fte ̂ werf 4y (2.5)

and (2.21) for {$ΛJyii o/(2.39), respectively. Assume, further, that {VVjίιh(x,ξ)/
'

Φv+ι>(*,f) (v^l, 0<A<1), Theorem 2.5

Ύheorem2.7hold,respectively,and {VVΛ+ι,A(^,l)/^v+ι}j 1- isboundedin

3. A family of Fourier integral operators

We define a family of Fourier integral operators.

DEFINITION 3.1. Let {φk(x,ξ)}0<h<1<Ξ {Pp,δ(τ,0;A)}0<A<ι and {ph(x, ξ)}0<h<1,
')}o<h<ι^{B"s(h)}0<k<ι(^^8^p^'ί). Then, the associated family of

Fourier, and conjugate Fourier, integral operators Ph(φh)=p,,(φh ,X,DI) and
Qh(φf)=qh(φt;DI,X') are defined, respectively, by

Ph(φh)u(x)

* '

and
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for u^y. We write these as

or simply

REMARK. By the following proposition we can write also for

(3.1)'

(3.2)' aφίXl) = <Γίφ*(*' %(f , x')u(x')dX' .

The following proposition justifies the above definition.

Proposition 3.2. Let φh(x,ξ)^Pf >8(τ,0;A). Then for any fixed 0<A<1,
Ph(φh)<=B?,s(φh) and Qh(φt)£ΞB?.s(φt) define continuous maps: Ph(φh), Qk(φt):
y->y.

REMARK. For Ph(φh}=ph(φh ,X,Dx}GB^(φh) if we define Qί(φt)=qί(φt
D,,X')GB?,s(φf) by ίί(£,*')=f »(*'»£)> then we have (Pt(φ4χc)=(ιι,ρί(φί)o)
for u,v^y. Hence, by this relation we can extend Ph(φh}: ίf-^ίf to &"-*•&",
uniquely. The same thing holds for

Proof. We first give the proof for Qt(φγ)=qh(φϊ tDnX')f=BΪ.,(φi).

Set ψ*(*,f,*')=* f-Φ*(*'»f)=(*-*')*?-Λ(*'.f) Then. we have from
(2.2)

I V/^h I ̂  1 5 1 -τΛ-'<Λ- V *'£>
( ' }

Hence we have | V/ψJ ^(l-τ)|£ |/2 if (l-T)|||/2^A-p<r8»'> and have
2^(l-τ) 1 1 1 /(/rp<rV» if (l-τ) | ̂  | /2^h-\h-sxry. So there exists a constant
CT>A>0 such that

(3.4)

On the the other hand using the inequality

(3.5)

we have for some constants c,
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Hence we get for some Cr h>Q

(3.6)

Now setting

(L, =
\L2 =L2

we write

where *Lj (j= 1, 2) denote the transposed operators of Ly. Then noting W(Λ;')
and choosing large integers I2>n and /^/2+n, we see from (3.4) and (3.6) that
Qk(φf): y-*y is continuous.

For Pk(φh)<=B"s(φk), consider yt(*,e,*')=Φ*(**f)-*' f Then V/-yA=-?
and Vf7/,=VίφA(Λ;,f)— Λ;'. Hence noting

(*, ξ); ξ>^

for constants c, c', c">0 and again using inequality (3.5), we obtain

(3.7)

for some constant Cτh>0. Hence we see that Ph(φlϊ):ίf-+y> is continuous
in a way similar to the proof for Qh(φf). Q.E.D.

Corollary. Let φh(x, ξ) €ΞPM(τ, 0 h). Let pjfh(x, ξ) and qjth(ξ , xr)ϊΞB?,8(h)

converge to some ph(x>ξ) and qh(ξ,oc')^B^(h} as j-*oo tn B™s(h), respectively.
Then for any z/e£P, Pjfh(φh)u and Qj)h(φf)u converge to Ph(φh)u and Qh(Φt)u
in y as j-*°°y respectively.

Proposition 3.3. For φ(x, ξ) e P(τ, /) set

' ( x , ξ , x') = ,φ(x'+θ(x-x'), ξ)dθ

(3g)
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Then, the inverses

(3.9)

of the mappings: ξ\-^>η=Vllφ(x,ξ,x'} and χΊ-*w'=Vξφ(ξ,x',ξ'), respectively, exist
uniquely, and satisfy
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<

(3.10) :—I
8w'

and for constants Ch Cβaβ', Ca p >Λ>,

(3.12)

(3.11)

r= \β+a+β'\ £1, σ'= |α+£'+α'l ^1, and |/|2>σ ύ defined by (2.1)'.

Proof. Set

(? J(*, & *') = ( lVj(x'+θ(X-x'), ξ)dθ ,
Jo

VJ(ξ, x', ξ') = \lVj(x', ξ'+θ(ξ~ξ'))dθ .
Jo

According to [8] consider the mapping ιγ=FΎ](ξ): Rn^ξi—>γeΛn defined by

(3.13) jP (ξ) = η—¥xj(x, ξ, x').

Then we see that ξ—Vxφ~\xyη,x') is determined as the fixed point of this

mapping. Since ||VξVΛ/||^τ<l, it is easy to see that the map F^ is con-
tractive. Hence, we get the uniquely determined fixed point ξ of F^ satisfying

Using the relation

we get

(3.14)

and

9, *=1 1—T
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Hence, we get the first part of (3.10), and similarly get the second part. To
get (3.11) we differentiate the both sides of (3.14). Then, by induction we
have (3.11). Q.E.D.

Theorem 3.4. For φh(x,ξ) ePp§8(τ, /; h) set

(3.15) φh(x, ξ) = h>-8φh(h8x, h->ξ) (<ΞP(τ, /), 0<λ<l)

and define ¥xφh, ^ξΦh and V*φΛ, V%φh, respectively, by (3.8). Then, we have

?,Φ*(*, ξ, x') = h->V&(h- x, m, Λ-V) ,

' '

inverses

ξ =

, w', I')

o/ ίAe mappings η='^llφk(x,ξ,x'), η=^1^>h(x,ξ
(ξ,x',ξ') exist uniquely and satisfy the following:

(3.18)

(3.19)

(3.20) l-I
9α;'

1) (f , «', f'

>-l

REMARK. Since φh(x,ξ)<=P(τ,l) (0<A<1), we see from (3.16) that

(3.21)

Proof. (3.16) is clear. The existence of t^φί1, ^^Φ^1 and the relation
(3.18) are clear from (3.16). Since φh(x,ξ)^P(τJ) (0<A<1), we can apply
proposition 3.3 to φh(x,ξ). Then we have (3.10) for Vxφhl and V^φi"1. Thus
(3.20) follows from (3.18) and (3.10). Moreover, since {Jh[β](x,ξ)}0<k<ι(\a+/3\
=2) is bounded in $(R2n) by the definition of {PPfβ(τ,/;A)}0<A<1, we have (3.11)
for ^xφh1 and Vξφh1 for constants independent of 0<A<1. Then (3.19) follows
from (3.18) and (3.11). Q.E.D.

Under these preparations, we begin to study the calculus of Fourier in-
tegral operators.

Therem 3.5. Let Ph(φh)=ph(φh ,X,Dx)ςΞB?,8(φh) and Qh(φf)=qh(φϊ;Dx,
Xf)<=B"'δ(φf)for φA(ΛJ,£)<ΞPp>δ(τ,0;λ). Then we have the following:

i) Setting
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(3.22)

*h(x, ξ, x')

= ph(x,^^H\X^,x'))qh(

!-(*,£,*')X tf"'(A)),

we define rh(x, ξ) by

(3.23) rk(x, ξ') = O.- jJβ-""ί*(*, f+7, *+:y)4My

Then, we have rk(x,ξ)<=B"sm'(h) and

(3.24) PMQk(Φt) = rt(*, Z>.).

Moreover, we have the estimate

(3.25) I r, I}"+"') ̂  C, exp (| /, 12,/+2Λo) | /,,

zϋA^r^ \Jh\2,ι is defined by (2.1)'.
ii) Setting

**(£,*'.£')
(3.26) = q,

X
D(*') v"

we define rh(x,ξ) by

(3.27) r4(«, f) = O.-JJβ-""ί»(f'+^

ΓAen, roe /woe rk(x,ξ)<=BZtm'(h) and

(3.28) Qh($t)PM =

Moreover, we have the estimate

(3.29) IrΛί ' + '^CίexpUΛU.

(«,>», even),

REMARK. Strictly speaking, in (3.25) and (3.29) we can replace exp ( \Jh \2 l+2nQ)

by (1+ I Jh 1 2,/+2«0)
/ ^OΓ some '̂ The situation will be the same in all the state-

ments in what follows.

Proof, i) From (3.1)', (3.2)' and Proposition 3.2, we write for

*^-φ

Using φh(x',ζ}— Φh(x,ζ)=(x—x') Vxφh(x,ζ>x')> by Theorem 3.4 we make the
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change of variable ξ='V,φk(x,ζ,x'). Then, we have

Khu(x)
(3.30)

= O.- J{«*'-*'>•«**(*, ξ, x'}u(x')dξdx'

Now set

(3.31)

Then, by the definition we see that

and, noting (3.18), see that

*»(*, ξ, *') = ?*(*, Ϋ.fr'ί*, £, *'). *')
(3-32) χ

Hence, noting (3.11) of Proposition 3.3, we have

(3.33) I Sh I {"+"'> <Ξ C,(l + |Λ I ϊfί)'('+» I ̂  I ί"> | ?4 1 ̂  .

On the other hand by Theorem 1.4 we see that rh(x,ξ)=sk>L(x,ξ). So we
have (3.24), and by (1.23) have

(3.34) |r4|J"+"'^C,|i4|}:i.f («o>»,even).

Hence, noting |ί4|ί
 +»'> (in fip .,

+"'(A))=|S4|ί-
+"/) (in 5?.ί"'(A)) and |Λl 2,/=

|/» 1 2.,, from (3.33) and (3.34) we have (3.25).
ii) We write for

'. O

Using φ^ar,?)— ψΛ(sr,^')=(f— ξ')'Vξφk(ξ,z,ξ'), we make a change of variable
,%,ξ'). Then, we can prove ii) in a way similar to i). Q.E.D.

Theorem 3.6. Let Ph(φk) =pk(φk X, D,) e B^φ,} and Q>(φί)=qh(φΫ Dt,
X')GBΪ.t(φί) for φk(X,ξ)f=Pfιt(τ,l',h). Then, Pk(φk), Qh(φΐ}:L\Rn)-*L\R")
are continuous and we have for

(3.35)
f \\P>(Φk)u\\L*£C exp ( I /J 2,κ+2«0)AM
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Proof. Since |IΛ(Φ>lli«^IIΛ(Φ/0*Λ(Φ>ll£«IML and ||ρ»(φ?)β||i«;£
\\Qh(Φ*)*Qh(Φk)u\\ι?\\u\\L2 for ueίf, noting the remark of Proposition 3.2 we get
(3.35) from Theorem 1.12 and Theorem 3.5. Q.E.D.

Theorem3.7. Let Ph=ph(X,Dx}^B?,s(h) and Qh(φh)=qh(φk\X,Dt)<Ξ
B"'s(φk) for φh(x, ξ) e PP)δ(τ, 0 h) . Then, we have the following :

i) Setting

(336Ϊ sh(x,ξ,x',ξ')

= pk(x,ξ+VJh(x,ξ',x'))ql,(x',ξ') (<=B?.tm'(h)),

we define rh(x,ξ) by

(3.37) rh(x, Γ) = O.- J Je-* »ί4(*, £'+„, x+y, ξ'}dηdy .

Then rh(x, ξ) e B^m'(h) and Rh(φh] = rh(φh X, Dx)=PhQh(φh) . Moreover, we have

(3.38) |r.|ί"+"/)^C lβφ(IΛU./4^-ι)lί*im^|?»li1ϊX («o>«, even).

In the case: 0^δ<p^l we have the asymptotic expansion formula

(3'39)

» α!

ii) Setting

we define rh(xy ξ) by

(3.41) rh(x,

Then, we have ̂ (̂

of the form (3. 38).
In the case: 0^

(3 42)

= Os- J γ^

,, and the estimate

α!

have the expansion formula

, x, ξ'),

REMARK. For Ph=ph(Dx,X'} e B^e(A) and ρ»(φf )=?»(φf Z),^Γ') e Bp"!ί(φjf ),
consider (PAρA(φ?))* and (ρ»(φί)Pt)*. Then, from Theorem 3.7 we have a
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similar theorem for PkQh(φt) and Qh(φf)Ph.

Proof, i) We have formally for

(x, ξ}qh(x', ξ'

where

Then, by the change of variable ξ=ξ—¥xj(x,ξ',x'), we see that for

rh(x,ξ) = Os-j γ«*'-*^-t\(x, ξ, x', ζ')dξdx'

we have Rh(Φh)=PhQh(Φh) Again by the change of variable: x'— x=y,
ξ-ξ'=1 we get (3.37).

Now set

Sk(x, ξ, x', £') = sh(h'x, h-'ξ, h*x', h->ξf) .

Then using (3.16) we have

sk(χ,ξ,χ',ζ')
(3.43) = pk(lfx, h~'

So we see that sk(x,ξ ,x',ξ')GBZΐ m'(h). Since rk(x,ξ)=shfL(x,ξ) in Theorem 1.4,
we see that rh(x9ξ)^B^m/(h) and satisfies (3.38).

In the case 0^δ</o^l, again by Theorem 1.4,

-s&0

a}(x,ξ',x,ξ')
a\

Xi 1 n*~Σ!-70Ϊ'
* a\

Then noting ξ'+¥jh(x,ξ',x')=Vxφh(x,ξf,x'), we get (3.39). Similarly we can

prove ii). Q.E.D.

Theorem 3.8. Let J=5nΌ with an even n0>n and take a small 0<τ<l.

Then, for any φh(xyξ)^Pp^(τJ]h) we can find qh(ξ,x') and rh(xyξ)^Bl^(h) such

that for Qh(φf)=qh(φf]D'x,X') and Rh(φh)=rh(φh\X,Dx) we have

,~ AAλ i -/ -vτ«/«*vτ- / = Qh(Φ*}I(Φh) = 1,
(ό.W)

Γ i) I(φh)Qh(φϊ) =

til) I(φf)Rh(φh) =
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where I(φh) and I(φ*) denote the Fourier, and conjugate Fourier, integral operators
with symbols 1, respectively. Moreover we have

(3.45) \qk\<P>, \rk\<?>£C, exp (2|/J2>mBo) .

Proof. By Theorem 3.5 if we set

**(*, n

then we have

Define soh(x, ξ) by

dηdy,

J(φ,)/(φjf ) =

(3.46) o,..-JJe-'~
Then we have for S,t

(3.47)

Since

/(φA)/(φif) =

t0,k(χ, ζ, *') =(3.48)

by Theorem 1.4 we have for a constant C/>0

(3.49) Is 0 > h I ?>^ C, I V* I $2.0 (K>^, even).

Hence, by Theorem 1.9, if C3WOUo,J(5°«o^o for a constant c0 of Theorem 1.9,
the inverse (7+ίSΌ^)""1 exists in Bl^(h). Then, setting

we get the required equality (i) of (3.44).
Since

(3.51) σ((I+S0.h)->) = 1+ Σ(-l)V(5ϊt4),

by Theorem 1.8 we have, using the constant C0 of Theorem 1.8

(3.52) <c,v+ι yi ΐr1 i
= ̂ o Zj JLL | »o,Λ
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Hence, we have for a constant MI

(3.53) WSftW^α+XM&W*1

when z>+lίS/, and

i o-w) i p^ΛVcrx i *„.* i ̂ Γ1-'
( ' } x(l*oΛ»)'
when v+l>l. From (3.11) and (3.48) we see that for a constant M',>0

(3.55) Ifo.ilP^MίlΛMl+IΛki)'".

Hence, by (3.49) we have

(3.56) I *M 1 ̂  C3BOM5'Bo I /, 1 2>02
5v

if I y* 1 2,5(11,^1. Hence, if we set 7=5«0 and choose 0<τ<l such that

then from (3.49), (3.51)-(3.56) we see that

(3.57) I σ((/+SMΓ) I ?>£&, exp ( \Jt \ 2J

Finally, applying Theorem 3.7 to (3.50), we get (3.45) for qh, and similary get

(3.45) for rh. Q.E.D.

4. Multi-products of Fourier integral operators

The following theorem is the basic one for the calculus of Fourier integral
operators.

Theorem 4.1. Let φy fA(#,f)ePp fθ(τy,0;λ), 7'= 1,2, with Tj+τ2^l/4, and
define qk(x,ξ) by

(4.1) qh(x, ξ') = 0.-^W * *' *'>Jξdx' ,

where

^(X,ξ,χ',
^ '
Then, qh(x,ξ)<=B°f!i(h), and for (MφM#φ2,*)=?*(Φι,*#Φ2.*;-y,-D*) me have

(4.3) /(Φι..)/(Φί.») = ρ.(Φι.*#Φ2.»)
Moreover, there exist constants C/>0 swc/i ίAαί

(4.4) I?J(/0)^C( exp (IS IΛJ2)2,+2B+1)
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and

/A 4.v i n 1 1 (°)<: /^ (V i 7" i ^ ^vr» C^ \ T \ \
V*" 'V I^A—- 1 I / =^Λ^J IJj.h J2,2/+2n+2J GXP V^-J I J y,A I 2,2H-2w-r 2>J

Proof. I) Set ΦA(#,|;)==(ΦM#Φ2>) (^>?) Since we can write formally for

we get (4.3) by limit process if we show qh(x,ξ)^BQ

p 8(h). So, setting

we shall show that

This will be done through several steps.

Noting (2.39) of Theorem 2.8, set

fφ, >> f) = hp-δφj>h(h*x, A-ΐ), j = 1, 2 ,

Then, from the definition of ^y A, Theorem 2.8 and Theorem 2.9, we have

i) φj h(χy \

(4.8) jii)

We also have

(4.9)

with some c0^ 1 and T = Tj+τ2.

&(*,£')

where <r=(p — δ)/2.

II) Let {Jζ,,ΞΛ} (Λ;,|) be the solution of

(4.10) X>

Then we have

and for
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(4.12) |

which is proved by induction by using (4.10).

Now we make a change of variables: x'=%h(x,ξ')-\-y, £=

Then, setting

Φh(y, rj\ x, ξ) = &.,(*, §*(*,
( ' }

we can write

(4.14) ?»(*, I

From (4.13) we have

(#, I ')+??•

Hence, using (4.10) we have

(4 16)

where

= (

So from (4.16) and (4.12) we have

(4.18)

and

Ό
(4.19)

On the other hand, using (4.10), (4.11) and (4.13) we can write

(4 20) Φh

and from this we can write
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(4.21) φh =

where

(4.22)

H. KlTADA AND H. KUMANO-GO

f ί -fir £ Ί

, *,

SΛ*(£, *',*')= (iJo

Then, from (4.20), (4.12) we have

(4.23)

From (4.21), (4.12) we have

(4.24)

ϋ)

iii)

Σ

Ill) Let %o(j,'?) be a CΓ-function in Λ2" such that

Set

(4.26)

and, letting %oo(^,^

(A. 77\ 7j ,(<*> £
^T.-ώ/ ) V°o,A^> «

Now, setting

(4.28) {.? T =

I") ^*=

set

= A-^ O.- J J
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we write for l^2n+ί

(4.29) qϋf h(x, ξ) = h-2

Then, if we use (4.16), (4.18) and (4.19), by induction we see that ('
has the form

(4.30)
v f>

MS/

where #^V,A are functions of (j;,??;,*?,^) such that

(4.31) |9|9?αy>tt)V>

Here we used the fact that 1 3; | + | η \ ̂  1 on supp %0.

From (4.30) and (4.24)-ii) we see that we can write

(4.32) _ 1 „ β.β (6-̂ 17))%
~ ΛM v *~~~ — (ΛT) e '

where Λy.'μ.v.A are functions of (y^ tf,!;) satisfying the estimates of the form
(4.31).

Then, for any a, β if we set l=\a+β \-\-2n-\-\, we have from (4.18),
(4.24)-i), (4.29) and (4.32) that

ά-ηdy;cai

^c;s(i+ΣI/Mkk = l

Hence, we have

2

(4.33) \q0,h\^^C,(\+ Σ IΛ*k2/+2»+ι)(2'+2"+1K/+1)

IV) For g^k(x,ξ), setting

(4.34)

we write with /^

P) Γ . - I V A I ' + I V Λ I 1 ,

lii) A.*=-ftίT1Γ1(V^ V,+V,Λ
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&.*(*,*)

(4<35) - h-^JO-^L^XΛηdy .

Then, by induction we see that ('LιjA)'%« has the form

(4.36) h2" v,
V ; = " v *

where «μjV>* are functions such that

(4.37) ISfSS^.v..! £C

Then, for any a, β if we set l=\a+β\+2n+l, we have from (4.18), (4.19)
and (4.35) that

f f

Hence we get

(4.39) I?.

From (4.33) and (4.39) we get (4.4).

V) In order to get (4.4)' we write

(4.40) φh = -y-η+7h(y,yϊ; x,ξ).

Then, we can write

Hence, noting

and setting

(4.42)
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we have

(4.43) gh(x,ξ)-l = \1gl>tk(X,ξ)dθ.
Jo

For γA we have by (4.21), (4.12) the estimates

(i)

(4.44)
π)

iii)

Ί 2:2) .

Then, replacing φh of (4.23) by φθ h we get (4.4)' in a way similar to the proof

for φh in II)-IV). ' Q.E.D.

The following theorem gives a representation formula for the multi-product

of Fourier integral operators.

(4.45)

Theorem 4.2. Let φJιh(x,ξ)<=Pp >θ(τy, 7 ;*),;'= 1,2, •••, ̂ ^ fcί TOO^? ̂ ^ 7
of Theorem 3.8. Define Φ; A

ii)

^>V fV+2,A X*ζ y

• rjfh(χ>ξ)> rMj,h(ζ>χ'}^Bl,s(h) be the symbols (found in Theorem 3.8)
for Φjthy ΦV,/,A, respectively, such that

(4.46) ΛyΛΦMΦy.,) = /(Φv.y..)Λ».y.*(Φίy.») = / -

SetforpJth(X,ξ)<ΞB%(h) (j=l, -,V-

(4.47) { ι\ O h = /(Φ i t)JP fc(φ h)R' *(Φ *) (^-β ί̂ί̂ ))

U) 0 h ~ Λ Jt(Φ* A^-P if^' A^fΦ h) (^ΞlB™

representation formula

Pι,h(Φι,h) " -

(4.48)

Moreover, for the symbols
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•*(*' ξ) = σ(Qi h] (x'
( ' }

we have the estimates

, exp(C/(l+Σ l/Ml^

C, exp

n0>n is even] k=2l-\-l5n0-\-l; and Ch cl are positive constants.

Proof. We give the proof only for Qj h. Then, the proof for
done in the similar way. The formula (4.48) is clear.

We write

Then, by Theorem 4.1 and Theorem 3.5 we see that Qj<h

By Theorem 3.8 there exist symbols tJtk(ξ,x')^B^s(h) such that

(4.51) I = I(φiιk)Tith(φ*k)

and

(4.52) l ίy

Then we can write

(4.53) QJfh

By Theorem 3.5-ii) there exist symbols sJth(x,ξ)^B™?8(h) such that

(4.54) 2Λ*(Φ?.ΛΛ.*(Φy.») = Sj,k

and by (4.52)

. . » 0 ,

^ C, exp (3 1 Jitk 1 2,;+9Bo) I pi>h \ TAn, .

Hence we can write

(4.56) QJtk = J(Φy_lt4)/(φy.»)^.»Λ

By Theorem 4.1 there exist symbols uJih(x,ξ)^B°p)δ(h) such that

(4.57) 7(Φ,_M)/(φ;,s) = C/,,,(Φ,,A)

and

(4.58) l^ ̂ lf^C; exp (I J; -1,J2,2/+2w+1+ |/y,J2,2/+2«+i)

where Jj-ιth
=Φj-ι,h—x ζ Then, we have
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(4.59) ρ,., = UJιh(ΦLh)SJthRi>h(Φj.h).

By Theorem 3.7-ii) there exist symbols kJιh(x,ξ)^B^(h) such that

(4.60) UJt,(Φitk)SJth = KJιt(Φitk)

and by (4.55) and (4.58)

I Ay.» I ?">> ̂  C, exp ( 1 7y> I ̂ ^O | «y>ft | <,°>2),0 | ,y> | <,"&„

where Λ'=2/+ 1 1%+- 1. Then we have

(4-62) 0y.* = *Λ*(Φ

Finally by Theorem 3.5-i) there exist symbols qJth(x,ξ)^B™ti(h) such that

(4.63) KJιk(Φiιt)RJtk(Φf.t) = qiιh(X, Dt)

and by (4.61)

I qiιh \ r^C, exp ( \JJfk \ 2>(+2Bo) | kitt \ WL0 \ ry.» I ̂

(4-64) ^Cί exp(2 Σιl^,J2.*+4|ΛJM)lA.J(Γ.40kΛJ^2Bo .

By the definition of rjth and Theorem 3.8 we have

(4.65) \rj>h\
(Ά2n0^

Thus, noting by (2.23) and (2.20) that

for any /, we get (4.50)-i) from (4.64) and (4.65). Q.E.D.

We conclude this section with the following theorem which summarizes
the calculus of Fourier integral operators we have studied.

Theorem 4.3. Let nQ>n be an even integer and put Ί=2ln0+l. Let
τ>0 be sufficiently small as in Theorem 3.8. Let φj>h(x,ξ)^PpfS(τjJ:h) for j=

CO

1,2, •••, and let ^oo^S7";^- Let v^\ be an integer and put Φv+1 h=φ1 h$
=

Then there exists a symbol r^+lιh(x,ξ)^B™l+1(h) (m^+^m^ ----- h^v+i) such
that

(4.66) Pιth(Φι,h) - Λ+ι.*(Φv+ιf*) = ̂ v+M(Φv+M)

and
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(4.67) ^ <?/+2 exp (?/(i + Σ I Λ, J 2Λ)*l+2)
X Σ fflίy.llSft/,

where Jjh=φjh—x ξ\ ki= 2/+25w0+l; αwJ (?/, c/ are positive constants.

Proof. By Theorem 4.2 we can write

P\,h(Φl,h) ••' -Pv+l./iίΦv+l.λ)

where ^ f A is defined by (4.47) of Theorem 4.2. By Theorem 1.8 there exists

a symbol sv+lth(x,ξ )^B™l+l(ti) such that

(4.69) Qlιh -. ρv+1§4 = 5V+M

and

(4.70) Uv+Mir+i)^cr Σ πk/.j^i,,..
Ί + - + 'v+ιSO =ι '• ° '

In (4.70) we note that |?M !£$/,= I?ΛJ^0 except / numbers of {jy.JJli.
Then, setting /=3«0 in (4.50), we have by Theorem 4.2

(4.71) ky.J

and for | ̂  >A | ̂ tj we have

(4.72) I qjth I ̂ { ,̂  C, exp (c;(l + Σ I Λ* I M, )"y+2) I Pi.* \ <7

Hence, from (4.70)-(4.72) we have for kί=2l+2ln0+l

IVH.JP-'^CΓ1 exp(/C/(l+Σ IΛ*l2Λ')*1/+2)
(4.73) „ v+ιs=1

x + Σ Πlί/.i lfr& o

On the other hand, by Theorem 3.7-ii) there exists a symbol r^+lιk(xyl

B?l+1(h) such that

(4.74)

and

(4.75) I r v + l t AI J-vH-i)^C7 exp(| JV+M | ̂ ^^O | s^h \ β^>.

Hence, from (4.73) and (4.75) we have (4.67) for positive constants Ch clf Q.E.D.
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5. Approximate fundameutal solution

In this section, using the theory developed in sections 1-4, we shall con-
struct the approximate fundamental solution for the Cauchy problem of a Schrϋ-
dinger equation.

For a Frέchet space V we denote by ^W([0,Γ]; F)(0<Γ^1) the set of
F-valued Cm-functions u(t): [0, T]Ξst\-*u(t)<= V. Let $k'°°(R2n) (k^ 1) denote
the Frόchet space of C°°-functions F(x,ξ) in R2n, such that d^F(x9ξ)(\a+β\
^k) are all bounded, and provided with semi-norms |F|/= \F\k>l (1=0, !,•••)
defined by

\F\,= Σ
(5 1\ l*+fllS*-l

^'} + Σ s
k^l<*+β\£k + ι *,ξ

Now considar a real-valued symbol H(t,x,ξ) with a parameter ίe[0, T],
which belongs to ^(IT;$

2'°°(R2n)) with /Γ=[0,T], and set

(5.2) Hh(t,x,ξ) = h8

Let Kh(t,x,ξ) be a symbol which has the form

,(ί, *, I) - H,(ί, x, ξ}+βh(t, x, ξ) ,
(5'3) [Bh(t, x, e)e^(/Γ; ΰP°χA)) (JΓ = [0, Γ], O^δ^p^

REMARK. By the careful check of the discussions in what follows we can
replace the conditions H(t)x)ξ)^^°(Iτ^

2'00(R2n)) and Sh(t,x,ξ)^^B\Iτ\
Bp 8(h)) by the weaker conditions:

"H(t,x,ξ) and Hk(t9x9ξ), O^ΐ^ Γ, are bounded in $2'°°(R2n) and in J3°§e(A),
respectively, and d%dβ

xH(t,x,ξ) and d*dβ

xβh(tyx,ξ) are continuous on [0,Γ]χjR2n

for any a, β".
When 0^δ<p^l, we assume further that βh(t9v,ξ) has the asymptotic

expansion

(5.4) ffk(t, x, f )~Σ A(p"β)^(ί, A-'*, Λp?) (mod °̂(/Γ JB~a(A))) ,
J=0

where

(5.5) Hfc,x,ξ)f=&(Iτ; $(R2")), j = 0,1, - .

For Kh(t}—Kh(t,X,Dx) we consider the Cavjchy problem of Schrόdinger

type

^Lhu=(Dt+Kh(t, X, D,))u = 0 on [0, T0],
(j.v)

for some small
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Let HΣ(t)=H!(t,X9Dx) be the Weyl operator for the symbol Hh(t,x,ξ)
defined by

Hί(t,x,ξ)

-

Then, it is easy to see that Hk(t,x,ξ) has the form (5.3). Furthermore, when
e have the asymptotic expansion

Hΐ(t, x, ξ) = Hh(t, x, ξ)+ffh(t, x,ζ),

Since H%(t,X,Ds)=Hh(t, X+X ', Ds), we see that Hί(t) is symmetric in the

sense

(5.9) (H!(t)υ, w) = (v, Hl(t)w) for v, w^ίf .

For Hh(t,X,Dx) we have

(Hh(t, X, Dx)v, w) = (v, Hh(t, X', D» (», w eίT) .

So we see that Hh(t,X,Dx) is symmetric, it and only if

(5.10) Hh(t, x, ξ) = O.- j Jβ-*"#4(

Consider the Hamiltonian operator

Hh(t) = Hh(t,X,D3

(5 Π) = A~1{Aί^ιαΛ(<)i),/Dj(t+A^gι

/Φ*

where ;̂ Λ(ί)» ^y*(0 are real valued continuous functions on [0, T]9 and F(ί,Λ?) is
a real-valued function of class J3P(IT:J£2'°°(R2n)). Then, it is easy to see that
Hh(t,X,Dx) is symmetric, since (5.10) holds for Hh(t,x,ξ).

In what follows we shall construct the fundamental solution Uh(t,s) for the
Cauchy problem (5.6), that is,

Let (q(t,s;x,ξ), p(t,s\x,ξ}) be the solution of the Hamilton equation

(5.13)

Λ™-
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on [0, T] with the initial condition

(5.14) q(s,s) = x,p(s,s) = ξ (O^s^T).

Then, we summarize from [6] the fundamental results as follows.

Proposition 5.1. i) The solution (q(t,s;x,ξ), ρ(t,s;x,ξ)) belongs to 3P
(Iτ* ;&•-(&)) with /Γ

2=[0,T]χ[0,Γ] and satisfies

' ' is bounded in $l "(R2*)",

where 3)l(IT

2;3ll-°°(R2n)) is understood to be the space of ^-mappings from IT

2=
[Q,T]2to& °°(R2").

ii) Take a small TΌ(0<Γ0^Γ). Then, for (t,s)<=IT

2 there exist the inverse
C°° diffeomorphisms xt-*y(t,s;x,ξ) and ξt—>η(t,s;x,ξ) of the mappings
q(t,s;y,ξ) and τjt-^ξ=p(t,s;x,η), respectively, and they satisfy

(5.16) y(t, s; x, ζ), η(t, s; x, ξ)G<£\ITa

2; & ~(R2"}) (ITΰ = [0, ΓJ)

and

(5 17)
( ' ' is bounded in ^-(R2*)".

Now we construct the solution of the Hamilton-Jacobi equation

ί,*,V,φ(ί,ί;*,f)) = 0 on [0, Γ0]
2 X R2n ,r8fφ(ί,ί;*,f)+fl (ί

[φ(s,s χ , ξ ) = x ξ

as follows (cf. [8]). Define φ(t,s;x,ξ) by

(5.19) φ(t,s;X,ξ) = u(t,s ,y(t,s;x,ξ),ξ),

where u(t,s ;y, η) is defined by

u(t,s\y, η)
(5.20)

(ξ VξH—H) (T, q(τ, s y, -η), p(r, s y, η))dr .

Then we have

Proposition 5.2. For the solution φ(t,s;x,ξ) of (5.18) we have

,5 ίV.φίί, *;*,!) = ?(*,*;*,£),
\Vίφ(t1s χ,ξ)=y(i,s;x,ξ),

(5.22) 9,φ(ί,ί;*,f)-ff(ί,Vίφ(ί,ί;*,e),f) = 0 on [0, T0]
2 X R2" ,
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(5.23) "{J(f, si x, ?)/(*-*)} o^ro is bounded in J32'~(Λ2")".

Furthermore .{or any fixed / ίλere exist T/(0< T,<; Γ0) αwrf c/(^ 1) w/cA

(5.24) φfcj a^ePfolf-jl,/) on [0, T,]2 .

Proof. As to (5.21) see Proposition 3.5 of [6]. Then using Proposition
5.1, we obtain (5.23). For (5.22) see Theorem 2.1 of [9]. (5.24) is an imme-
diate consequence of (5.23). Q.E.D.

Now define φh(t)s)=φh(t,s'yx>ξ) for 0<A<1 by

(5.25) φk(t, ,; *, ξ) = Aβ-pφ(*, *; A-'*, A>£) .

Then we have

Proposition 5.3. The phase function φh(t,s\x,ξ) satisfies

/e o^x » » ^ ̂  V,φA(ί, ί Λ, f )) - 0 on [0, T0]
2

(5.26)

(5.27) a^(i,i;^f)~^(i,V^(i,i;^f),e) = 0 on [0, Γ0]
2 x Λ2« .

Furthermore, for any fixed I we have with 0<T/^T0 «wrf ^/ of Proposition 5.2

(5.28) φh(tJs^yξ)^PpfS(cl\t~s\ίl]h) on [0, f J2 .

Proof. We obtain (5.26) and (5.27) easily from (5.18) and (5.22), and we
get (5,28) from (5.24). Q.E.D.

In the following we switch to another small T0>0 such that T0^ T0, if

necessary.
Now we first define two kinds of approximate fundamental solution as

follows. Let Ek(φh(t,s)')=eh(φk(t,s) ,t,s yX,Dx) be the Fourier integral operator
with the phase function φh(t,s) and the symbol eh(t,s,x;ξ) of class 3)\IT*\

DEFINITION 5.4. We say that Eh(φh(t,s)) is the approximate fundamental
solution of order zero and order infinity for the problem (5.6), when Eh(φh(t,s))

satisfies, respectively,

( ' } ii) Eh(φh(s,s)) =

and
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,53 ί O <r(LhEh(φh(t,s})]
( ' ) tii) Eh(φk(s,s)} = I

In order to make the discussion clear in what follows we introduce the
following

DEFINITION 5.5. We say that a C°°-function Ph(xyξ) on R2n with a para-
meter Ae(0,1) belongs to the class B™'8

l(h) for real mj and O^δrgp^l, when
x]h^y~l belongs to B™t§(h).

REMARK 1°. By the definition we have B?;8\h)=B?t8(h).
2°. Set **(*,£ )=<A-δ#; Ap£> and */.*(*,£)= **(#,?)' for real /. Then we have

(5.31) I *,.,$(*, I) I ̂ C. β>
p|*'-a* Wβi.*(*.

3°. If w^/w' and /^/', we have
4°. If a C°°-function slth(x,ξ} satisfies

(5.32) k^ffi^l

then we have

(5.33) ,,..$(*,

In particular, by (5.31) we have

(5.34) /„$(

5°. For p(x,ξ)<=Ξ$k'°°(R2n), set ph(x,ξ)=p(h-8x,hpξ). Then />A satisfies
(5.32) with Si h=ph and /=A. Thus we have

(5.35) ΛgJ(*, f )e5;.',-'- '« *-' ^'(A) .

Proposition 5.6. Lβί /^O #m/ feί / denote the minimum integer not less
than I. Let pk(x,ξ)GB£'J(h) and φA(#,£)ePp δ(τ,0;A), and consider the pseudo-
differential operator Ph —ph(X3 Dx) defined by ( 1 . 1 0) and the Fourier integral operator
Ph(φh)=ph(φh;X,Dx) defined by (3.1) or (3.1)'. Then, we have the following

1 ) Pk, Ph(φh) \y->y are continuous.
2) Assume further that

(5.36) Λffl(

/eί 0*(φΛ)=?*(φ*;-X",Z)<)e JB*'8(φA). ΓΛen m Theorem 3.7 zϋe have for rh(x,ξ)
defined by (3.36) awrf (3.37) (reί#>. (3.40) and (3.41))

(537) ί0 r»(
lii) rh(
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Furthermore we have the expansion formulae

'*(*, Π- Σ ^7 Z#{/»ie)(*, V,φh(x, ξ', *')

(5.38) (rap.

r*(*, D- Σ

REMARK 1 ° . We should note that, in general, the symbol ph(x, ξ) of the Fou-

rier integral operator Ph(φh) in Proposition 5.6 is not bounded on Rn

xχRn

ξ for
any fixed λe(0,l). The statement 1) means that Ph(φh): ίf-^ίf is well de-
fined and the statement 2) means that Theorem 3.7 holds for the present Fourier

integral operator Qh(Φh) m a slightly modified form.
2°. When 0^δ<p^l, the expansions (5.38) coincide with (3.39) (resp.

(3.42)).

Proof. 1) The continuity of Ph\ ίf-*(f is clear, and that of Ph(φh): ίf-^ίf
can be proved in completely the same way as that of the proof of Proposition

3.2.
2) We get (5.37)-ii) in the same way as in the proof of Theorem 3.7. To

get (5.37)-i) we make in (3.37) (resp. (3.41)) Taylor's expansions of order IV^O

for sh(x,ξ'-{- η, x~\-y, ζ'} in η (resp. y). Then, using (5.36), we see that

ί»(- o>(*, ξ, x', ξ') = ρ»(a\χ, f+?j4(*, r, *'))?*(*', n
(resp. ί4(θtβ)(*,f ,x',ζ ')=?*(*,?)/»*(«)(*'+^e/*(?,*,?').f ')) belongs to B'^'^k)
(resp. B^m'-6N(h)) for | α | =N(^Ϊ). Hence, we obtain (5.38), and setting ΛΓ=

7weget(5.37)-i). Q.E.D.

Now, for a fixed ai(t,s;x,ξ)&&(ITo* ,Bl.0(h)) set

(5.39) β4(ί, *; *, ξ) = al(t, s; h^x, h'ξ) (e^(7Γβ

2; 5°>8(A))) ,

and consider

(5.40) Γ4(ί, ί)Ξfl 4(ί, ̂ , Dx)ah(φh(t, s] ί, * Z, Z),) .

We note that Hh(tfx9ξ) satisfies the condition (5.36) with m=8 — p and 1=2.
Hence, by Proposition 5.6-2) we see that there exists

such that

(5.41) Th(t, s) = Ύh(φk(t, ,); ί, , X, £>,) .

Furthermore, by (5.38) for N=2 there exists rh(tys\x^)^^B\IT^\ B°Pi8(h)) such

that
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= Hh(t, x, Vxφk)ah(ΐ, s\x,ξ)

(5.42) + § HP(*> *> V*Φ*K/>(*> * ί *' £)

~ ί Σ #P}(*, x, Vxφh)^-φh}ah(t,s; x, ξ)
j k

where H^ = dfjHk, ahw=Dx.ak and flV' ̂ θj ,9?/fΛ. For the operator

(5.43) ΓA(ί, ί)s^(ί, X, Dx}ah(φh(t, s);t,s;X, Dt) ,

by Theorem 3.7 we can find ̂ h(t,s;x,^)G^(IT^;Bl^(h)) such that

(5.44) Γ»(ί , ί) = 7*(φΛ(ί, *) ί, ί JΓ, Dt) ,

and we can write for some )!

h(t,s ,x,ξ)^^>(ITo

2 ,B0

t, _s(h))

(545) ^k(t,s;x,ξ)
= βh(t,x,V,φk)ak(t,s;x,ξ)+hf-*?h(t,S ,x,ξ).

On the other hand we have

z>,β*(Φ*(ί,*);f,*;JΓ,jD,)
(5.46) = (8(φ4 β») (φh(t, s);t,s',X, Dt)

+(Dtah)(φh(t,S);t,s;X,Dlc).

Hence, summarizing (5.40)-(5.46), we see by (5.26) that there exists a
symbol bh(t,s ,x,ξ}^&(Iτ*;Blj(h)) such that

( j ί, ί); t, ί ^ D,

where -/?A is the transport operator defined by

(5.48) = DΛ + Σ fliy)(<, *

±

Now we set

(5.49) Bl(t, x, ξ) = Hh(t, h*x, h

Then, from (5.2), (5.25) and (5.39) we can write
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(.ββί) (t, s;x,ξ) = (_/>*) (t, s h*x, *->£)

(5.50) = A«ί + Σ3 H<»(t, x, Vxφ)D,.aί

t, *,

Theorem 5.7. Lei I(φh(t, s)) έe Zfo Fourier integral operator with phase
function φh(t, s) and symbol 1 . Then, I(φh(t, s)) is the approximate fundamental
solution of order zero for Lh.

Proof. It is easy to see /(φA(s, $))=/. Consider Lhl(φh(t,s)). Noting

HV k\t,x, Vxφh)-^φh(Ξ$\Iτ* ,B^(h)), by (5.48) we see that Xhah belongs to
oXj°Xk

. Hence, from (5.47) we obtain (5.29)-i). Q.E.D.

Theorem 5.8. When 0^δ<p^l, there exists a symbol eh(t,s\
(/Γo

2;5p°>δ(/?)) such that Eh(φh(tίs})=eh(φh(tys)\tJs',X,Dx] is the approximate
fundamental solution of order infinity for Lh.

Furthermore, there exists a series of symbols av(t,s\x,ξ)&3ί\Iτ*\ £B(R2n)) such

that

( ' }

and

(5.52) eh(t, S-, x, ξ )- Σ W-^a^t, s;

Proof. I) Noting (5.4) we define transport operators DTCA and OH cor-

responding to Xh and -C'h, respectively, by

(5.53)

and

OTCα = Dta + Σ Jϊω(ί, *,

(5'54) + {~4( έ^ϋ 4)(ί, *, V,φ)
£ J 11 * ox.oXk

where H0(t,x,ξ) is a symbol of (5.5) and

(5.55) H0tk(t, x, ξ) = H,(t, h-*x, h'ξ) .

We set for av(t,s;x^)e$\ITo

2;$(Rz»))

(5.56) a^h(t, s x, ξ) = a,(t, ,; h~*x, h"
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Then, in the similar way to the discussion from (5.40) to (5.46) in order to get
(5.47) we see by (5.4) that we can write

(φh(tί s)\ t, s\ X, Dx))

(5.57) ~ailAav.*(f, * x,

for some b^k(t,s\x^)^^P(ITQ

2\^(R2n)} determined by H, H, (j=Q, I — ) of (5.4)
and av.

II) Now, we first determine a0th(t,s',x,ζ) by

,- „, J3TlΛ.*(ί, ') = 0 on [0, T0]
2 X R2" ,

( j . j o ) Ί
(ββA ί)=1 on [0,Γ0

which is equivalent to

) = 0 on [0, Γ0(559)
k(ί,*)=l on [0, T0]XR2".

Then, a0(t,s) can be solved as

aa(t,s;x,ξ}

(5.60)

x

where JY"(τ)=g'(τ,ί;3;(ί,ί;Λ;,^)) f), and j(ίjϊ) and τ?(ί,ί) are the functions in
Proposition 5.1-ii). Then, it is easy to see that

(5.61) «„(*, *;*,!)«

Now, by induction we determine av k(t,s;x,ξ) (v=l,2, •••) by the equations

_,(£, s:h~sx, hpξ) = 0 on
(5.62)

on [0,ΓJxlP ,

which are equivalent to

,v-ί,ί;*,f = 0 on
(5.63) < i-6

U(*,*) = 0 on [0, Γ0]xΛ2».

Then, the solutions a^,(t,s) are given by

(5.64)

= -aϋ(t, s; x, ξ)^ "* a(τ s.'χ(τ\ ε\
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Then, step by step we can check that

(5.65) a»(t, s x, ξ )e^(/ro

2; <3(R2"))

Now, for any fixed N^ 1 set

(5.66) eN h(t, r, *, ξ) = &(P"5)X *(ί, * *, f ) .
v=o '

Then, from (5.57), (5.58) and (5.62) we see that for ENιh(φh(t,ή)=eN>l,(φk(t,s) ,

t,t;X,Dt)

(σ(LkEN,h(φh(t, *)))e <3°(/To

2; W(A)) ,

' ' \ENιh(φh(s,S}) = I.

Ill) Finally, by Theorem 1.3 we can find eh(t,s;x,ξ) satisfying (5.52) in
the form

(5.68) eh(t, s; x, ξ) = Σ h^ ^^K^^t, s; x, ξ) .
v=o

Noting Proposition 5.6, we can write for vSίf

LhEh(φh(t,ή}v

= ^h^-^%(B^h)LhaVfk(φh(t,s) t,.s;X,D,)f>

(5.69) =LkENtk(φh(t,s))v

+ f] hV-^X&tyL^Mt, *); t, s; X, Dx)v
V = j?Γ

+bNth(φh(t,s) ,tίS',X,Dx)v

for some bNth(tys^ξ)^^(ITQ

2\B^(h)}. We note from (5.57) and (5.62) that

(5.70) σ(Lha^h(φh(t, j); ί, f; X, Dx))

Hence, taking an appropriately decreasing sequence {^y}7-ι again if ne-
cessary, we see from (5.67), (5.69) and (5.70) that for any N

(5.71) σ(LhEh(φh(t, »)))

which proves (5.30). Q.E.D.

As a special case of LA we consider an operator LH defined by

(5.72) Lk = Dt+Hk(t,X,Df).

Then, we can show that the approximate fundamental solutions have stronger
properties which are effective to guarantee the convergence of the iterated
integral of Feynman's type.

Theorem 5.9. 1) Set
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(5.73) gΰ.h(t, s; x, ξ) = σ(LHI(φh(t, ί))) .

Then we have

(5.74) " {go.h(t, s x, £)/(*-*)} oSί>(Sro is bounded in B°^(h) ".

2) Let Eh(φh(t,s)')=gh(φh(t,s)\t>s ,X,Dx) be the approximate fundamental
solution (of order infinity) for Lh which is constructed in Theorem 5.8 with Sk(t,
x,ξ)=0. Set

(5.75) g^h(t, s *, ξ) =

Then we have

"{(eh(t, s; x, l;)-l)/(*-ί

(5.76) {dteh(r, s; x, ξ)/(t-s), β£h(t, s; x, ξ)/(t-s)}0^tsT(l

are bounded in B°ftS(h)",

and

(5.77) " {gmιh(t, s ; x , ξ ) / (t-s)} OSs_,STo ύ bounded in B-s(h)".

Proof. 1) By Proposition 5.6-2) and Taylor's expansion of order 1 we
can write

t, s; x, ξ', x

(5.78) '

Γ[θ.- ( («-""{ Σ ̂ '̂  *, f '
Jo JJ J,k=ι

' s' x+θιy> t'

; *,

Then, noting (5.26) and (5.28) we get (5.74).
2) In (5.60) set H0=0. Then, noting (5.28) we see that

^ ' } is bounded in $(R2a)n,

which means that for aoh defined by (5.56)

( ' ' is bounded in 5P%(̂ 2")"

Now we assume that for αv,* defined by (5.56)

, * ,

^ ' J is bounded in ̂
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Consider

7v.»(ί, *;*,£)
= σ(Hh(t, X, Dt)a^h(φh(t, »); t, *; X, D,))

(5.82) = Hh(t, x, V^»)βv

where

(5.83) *».M(f, *; *, I) = \*(ί, *; *""*' A"£)

for όv,ί of (5.57) with H0=Q, and £„,#.* are the remainder terms.
Set

sh(t, s; x, ξ, x',ζ')
(5<84) = Hh(t, x, ξ+VtJt(t, s; x, ξ', *'))βv.*(ί, *ί *', ξ

Then by Proposition 5.6-2) we have

Ύ v k ( t , s ; x , ξ ' )
(5.85) f f

= 03-J )*-'>%(*, *; *, ξ'+η, x+y, ξ'

In (5.85) we make Taylor's expansion. Then using (5.81) we see by

(5.84) that

bounded in Bpι8(h) (k = 1, 2, •••)"
and

v ' ' bounded in BQ

Pt8(h) (N = 1, 2, •••)".

Hence, by (5.80) we see that we obtain (5.86) and (5.87) for v=0. Then, by
means of (5.64) we see that for αv A defined by (5.56) the statement (5.81) holds
with v=\. Consequently we obtain (5.81), (5.86), (5.87) for any v=Q, 1, •••.

Now we remind by Theorem 1.3 that eh(t,s\x^} has the form

eh(t, s] x< ξ)
(5.88) ~ '

^Γ^ h^p~{

v=o

for an appropriately decreasing sequence {£; }7=o Then, by (5.81) we get (5.76).
Now from (5.62), (5.82) and (5.86), (5.87) we see that

"{σ(I*flv.*(φfc(f, *); *, si X, Dg))l(t-s
( ' ) is bounded in B?.ι(h)".
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Hence, in the similar discussion as in III) of the proof of Theorem 5.8 we can
obtain (5.77). Q.E.D.

6. Fundamental solution

In this section, using the approximate fundamental solution, we construct
the fundamental solution Uh(t,s) for Lh, and derive the main properties of
Uh(t,s).

Theorem 6.1. For a sufficiently small 0<T0^T there exists uniquely the
fundamentl solution Uh(t,s) in the class of Fourier integral operators with phase
function φh(t}s) and symbols of class <B\IT*\Blj(h))y and there exist symbols d0fk

(t, s\x,ξ)^ $l(IT* BQ

Ptι(h)) in case 0 ̂  δ ̂  p ̂  1 and d^fa s;x,ξ)G Ά\IT^ B£8(h))
in case 0 ̂  δ < p ̂  1 such that for

(6-1) l/>..»(Φ*(ί, *)) = d-.k(Φk(*. *); t, s; X, D,)

we can write

Uh(t. s) = I(φh(t,
(6.2) *V ' ' mv'

and

Uh(t, s) = Eh(φh(t, s))+D.ιk(φk(t, s))

where Eh(φh(t,s))—eh(φh(t,s);t,s 9X,Dx) is the approximate fundamental solution
of order infinity (given in Theorem 5.8).

Furthermore, we have

(6.4) "{d0,h(t> *)/(*-*)}<*,.«TO ώ bounded in B°p>δ(hγ\

and

(6.5) "{ .̂*(ί, *)l(t-s)}o^τQ ^ bounded in £P~δ(/*)"

Proof. We consider only the case 0^δ<p<;i for Eh(φh(t,s)). Then the
case O^δ^p^Π is proved similarly for I(φh(t,s)).

I) Let Ί=21n0-^l (n0>n, even) and choose a sufficiently small 0<τ<l
such that Theorem 3.8 holds. Take a small 0<Γ0^Γ such that the con-
stant CT of (5.8) in Proposition 5.3 satisfies

(6.6) cr

Then, we see that for any subdivision Δ:

tjti •••$<!>
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is well defined. On the other hand we can easily see that

(6.7) φh(t, θ)$φh(θ, s) = φh(t, s) (t, te [0, T0], t^θ^ή

holds (cf. for example, the proof of Theorem 2.3 in [10]). Hence, we have

Φk(t, t^φh(t,, t,)% - # φfa, t) = φh(t, s)

&*e[0, Γ0],

Now we define

W*.*(Φ*(f, *)) = Wv.*(Φ*(ί, *) t, s *, Df)

by

(6.10) W^(φh(t, s)) = -ίLhEh(φh(t, ,))

and

(6.11) f t f / l f / v_,
= \ - .̂.(Φ*^ ίι))Wι.»(Φ*(«ι,

JsJs J s

where t^—(tly 9t^) and dtv=dt1 dtv. Then we see by Theorem 5.8 that
there exists a symbol

such that we have (6.9) with v=l.

Furthermore, we see from Theorem 4.3 and (6.8) that there exist symbols

(6.12) 0v+1.*(*, *v, s; x, ?)e^°(Ωv; B?.δ(h))

such that

(613) ^M(Φ*(<,ίι))-^M(Φ*(ίv,ί))

= 0v+ι.*(Φ*(f, *) ί, ίv, * -ϊ, Z),) ,

where Ωv denotes the domain defined by

(6.14) Ωv = {(*, ίv, *) I ί, ί e [0, Γ0], ί̂ ί̂  ... ̂ t^s} .

Hence, we see that there exists a symbol

(6.15) wvti(ί, ί; *, ξ)e&(ITβ* t β-,(Λ)) (i; = 1, 2, -)

such that (6.9) holds for any v.

II) Next we investigate the convergence of
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(fi ΛfΛ Jf (f c , γ ε\ XΊ „.. (f c. r er\
^O.IU^ ^oo, A\ > > > =/ — . ' ^^,h\^ί * y Xy ζ)

We note that for any N^Q we see that

an .if C * V )
W\ / t l t « » <^Ί '

(6.17)

and that

(6.18) K*(M)I(/0)^K

where (leϋi^ll/^^ max \zϋlfh(t,s)\(ιN\

In (6.13) we regard wlfA(ίy,ίy+1) as

(6.19)

Then, noting (6.18) we have by Theorem 4.3

ffi 9^ U7> ^/ / e^ I (N)<(Γ* l lc/ι l lWλΉ-i^o.zυj l ^ v + i ^ i ^ f v j ^ J I / ^^/ll^i.Ail/ '

for an integar /' and a constant C/. Hence, noting that

Π *ι f*v-ι
— \ tf*+lh(t,t^S'yX,

s J s

we obtain

(6.22)

from which we get

(6.23) IK-H.JIf ̂  ̂ (Γ0C;||«;M||HV+1 -

Hence, we see that the series (6.16) converges in <£P(ITo

2;B"s(h)) for any N,
which means that the series (6.16) converges in ^°(ITo

2;B^,s(h)).
Ill) Setting DL h(φh(t,ή)=dL k(φh(t,s)\t,s;X,Dx), we define Ώm h(φk(t,s))

by

(6.24) D^t(φt(t, s)) = \Έh(φh(t, θ))DL,h(φh(θ, s))dθ
Js

and consider (6.3). Then, noting Proposition 5.6, we have for

Lk Uk(t, s)υ = LkEh(φh(t, s))v

-iDL,k(φh(t,s))v+\LkEk(φk(t, θ))DL,h(φh(θ,
J S
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Then, by the definition (6.10), (6.16), (6.11) we have

LkUh(t, s)o = iWιιh(φh(t, s))v-iDL,h(φh(t, s))v

h(φh(θ, s)}vdθ = 0 ,

which means, together with Uh(s}s)=I, that Uh(t,s) is the desired fundamental
solution for Lh.

Replacing Eh(φh(t,s)) by I(φk(t,s))9 we define WVtk(φk(t,ή) by (6.10) and
(6.11). Then, fixing N=0 in II), we get the convergence of ^>A(£,£;#,|)=

Σ«?v h(t,s;x,ξ) in ^°(/Γo

2;β°>δ(A)), and see that Uk(t,s) defined by (6.2) is also
V = l '

the fundamental solution for Lh.
IV) Finally we prove the uniqueness of Uh(t,s). Consider Lf defined by

(6.25) Lt = Dl+Kt(t,Dt,X'),

where Kί(t,ξ,xf) is defined by

(6.26) Kt(t, ξ, *') = Hh(t, x', ξ)+Hk(t, x', ξ) .

Then, we have

(6.27) \\Lhu, u)dt = \'\u, Ltΰ)dt
J f o J tQ

for «, we^X^ίJ if) (0^tQ<t^ T0) such that tt(ί0)M(ί0)=M(ίιXίι)=0 On the

other hand, by (5.2) we see that there exists #£(*,#, f)e^(/Γ;5j!fδ(A)) such that

(6.28) Kί(t, Dx, X') = Hh(t, Xy D,)+ffi(t, X, Dx) .

Then, by the existence part of the present theorem we can construct the funda-
mental solution Uf(t,s) for Lf of the form (6.2).

Now assume that there exists another fundamentl solution U'h(t,s) in the
class of Fourier integral operators. Set for v^ίf and a fixed s^[0, Γ0]

(6.29) u(t, s) = ( U'h(t, s) - Uk(t, s))v .

Then, we see that

(6.30) Lhu(t,s) = Q on [0, Γ0], u(s,s) = 0.

Set

β(f,*) = iΓ Uf(t,θ)u(θ,s)dθ.
JTo

Then, we have

(6.31) LγU(t,s) = u(t,s) on [0, Γ0], u(TQ,s) = Q.
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Then, noting (6.27), we have by (6.30), (6.31)

0 = (T\Lhu, H}dt = \T\u, L%u)dt
(6.32) ;o <

= \\u(t,s),u(t,s))dt.
Js

Hence, we get a(ί,ί)=0 on [ί,T0]. Then, by (6.29) we have

(U'k(t,ή-Uh(t,s))v = 0

for any v^ίf. From this we see that the symbols of U'h(tys) and Uh(t,s) coin-
cide. Q.E.D.

The fundamental solution Uh(t,s) of Theorem 6.1 has the following pro-
perties.

Theorem 6.2. Let Uh(t,s) be the fundamental solution constructed in Theorem
6.1. Then, we have the following :

1) The Cauchy problem

(6.33)

can be solved uniquely by

(6.34) uh(t, s) = Uh(t, s)v+i\' Uh(t, θ)f(θ)dθ
J s

2) The following relations hold:

(6.35) Uh(t,θ)U,,(θ,s)=Uh(t,s),

(6.36) Ds Uh(t, ή - Uh(t, s)Kh(s, X, D,) = 0 .

Proof. 1) It is easy to see that uh(t,s) given by (6.34) satisfies (6.33). Now
let u^t^e^I^ ίf) satisfy

,,„, t,s) = 0 on [0,Γ0],
(6 37) ku. = o.
Set

(6.38) ΰί(t,s) = i\t Ut(t,θ)Ul(θ,s)dθ.
Jτ0

Then, we have

Lfu&s^^u&s) on [0, Γ0],^(Γ0

Hence, we have
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(T\ul(tts), tt1(tft))dt
Js

So we have u1(t>s)=0 on [s, T0]. Replacing Γ0 by 0 in (6.38) we get
on [0,$]. Hence, the uniqueness of the solution of (6.33) is proved.

2) For^e^set

u(t,θ,s)=Uk(t,θ)Uh(θ,s)v.

Then, we have

\Lhu(t, θ,s) = Q on [0, ΓJ ,
(6 39) 4V ; U(0, 0, ί) = Uk(θ, s)v .

On the other hand consider u(t,s)~Uh(t,s)v. Then we have

ίLXM) = 0 on [0, Γ0],
1 ' j U(^j)=C7Jk(β,j)t;.

Hence, by the uniqueness of the solution of the problem (6.33) we get Uh(tyθ)
Uh(θ,s)v=Uh(t,s)v for any vϊΞίf. So we get (6.35).

From (6.35) we have for v^ίf

Q = Dβ(Uh(t,θ)Uh(θ,s))v

= DβUh(t, θ) Uh(θ,s)v+ Uh(t, θ) DβUh(θ,s)v

= DθUh(t, θ) Uh(θ,s)v-Uh(t, θ) Kh(θ,X,D,)Uh(θ, s)v .

Hence, setting θ—s, we get (6.36). Q.E.D.

For Lh=Dt+Hh(t,X,Ds} we have

Theorem 6.3. Let Uk(t,s) be the fundamental solution for Lh, and let

r A.*(Φ*(ί, *)) = **.>(<!»(*> *) ** * x>D*)'
' \D-.Mt,*)) = J-.k(Φk(t,s);t,s ,X,Dlt)

corresdond to Doh(φk(t,s)), D«, h(φh(t,s)) in Theorem 6.1, respectively. Then,
we have

(6.42)
is bounded in J8jfδ(A)",

and
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(6 43) ~'( ' is bounded in B£8(h)".

Proof. In II) of the proof of Theorem 6.1 we have from Theorem 5.9
that

I «!.*& *ι) I P^Cί I *-*! I (f, ίxe [0, Γ0])

for the case d0th(t,s) with N=Q and for the case 3*>th(t>s) with anY N^O. Then
we can get (6.42) and (6.43). Q.E.D.

In what follows we investigate the ZΛ properties of Uh(t,s). Let H0—L2(Rn)
and let H2 denote the Hubert space obtained as the completion of if with re-
spect to the norm

(6.44) (Mi, = {αΣJI

We denote H2 by H2 hy when ||ϋ||2 is replaced by an equivalent norm

(6.45) |M|M = {^(h-^r^D^^x)^^}^ ,

and similarly HQ by H0 h when lbl|L

2(Λ

n) is replaced by λp~δ|M(L

2(j?«). We often

write |k|lo=lblL2(je«)

Proposition 6.4. Let Sl>h for real I be pseudo-differential operators with
symbols slth(x,ξ) such that

(6.46)

and let φh(x,ξ)^Pf^,Ί;h) for τ, I of Theorem 3.8. Then, for any Ph(φh)=
ph(φh;X,D,}

(6.47)

Proof. Consider Ph(Φh)Sιth f°r /2^0. Then, by Proposition 5.6 we see
that there exists rlth(xyξ)^B™;l(h) such that

/s ΛQ\ ~D ί JL \ O D /JL \ Λ* (JL . V T\ \
(O.4θ) *h\ψh)^lth — •^ lth(Φh):=rl>h((t>hy <&y ^Jx)

Now, by Theorem 3.8 we write I=Rk(φf)I(φh), and by (6.48) write

(6.49) Pk(Φk)S,.k = (Rl9k(φk)Rk(φt))I(Φk) -

Then, as in Theorem 3.5-i), setting

(6.50) 9l'k*' ' X ~Tl k*'
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and

(6.51) 7,f Λ(*, ξ) = Om-

we can write

(6.52) Rl>h(φh)Rh(φf) = Ύl>k(X, Dx) ,

where rh(ξ ,#') is the symbol of Rh(φf).

Then, noting r^h(x,ξ)&B™'z(h) we see that #/ /,(#,£,#') satisfies

(6-53) \q,.Ά')(x, ξ, x') I ^Caιβιβ,h

where <*;f ;*/>=(l+ \x\2+\ξ\2+ |*T)1/2

Then, setting

and making a change of variables y=h*3>, η=h~*ή, we can write

(6.54) ?,.,(*, f ) = o.- J 5*-<? '?,.»(*, ?+A"-δγ, x+y)#tdy .

Furthermore, we have by (6.53)

Then, from (6.54) we see that

from which we obtain

(6.55) I r,.*ffi(*, f

Finally by (6.49), (6.52) we write

(6.56) S.lιhPh(φh)Sl>h = (S-lth7,9k(X, Dx))I(φh) .

We define μ>ιih(
χ>ζ} by

(6.57) μltk(x, ξ) = O.- J Jβ-'' VltA(*, ξ+ι)Ύ,.k(x+y, ξ)Λι,dy

Then, we have

(6.58) S_l>h7lth(X, Dx) = μι>h(X, Dx) ,

and, noting (6.46) for — / and (6.55), we have, in the same way as the method
to get (6.55), that μlth(x,ξ)^B™δ(fi). Hence, using Theorem 3.7, we see from
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(6.56), (6.58) that (6.47) holds with 7^0.
When 7^SO, we write

= I(φh) ((Rh(φf) (S_l>hPh(φh)))Slιk) .

Then, we get (6.47) with 7^0. Q.E.D.

Proposition 6.5. 1) Let T% be peudo-dίfferential operators with symbols

(6.59) tϊ(x, ξ) = <h-*x; Ap|>2, tΐ(x, ξ) = <rδ*; λ'D'2 -

Then, there exist pseudo-differential operators Rj th(j= 1,2) with symbols rίth(x,ξ)
satisfying

(6.60) |ry.»ίS(*, ξ) I ^Cβ.ίA'ί|"| 1 1>-ϊ<""+1'α-ί*; A'̂ -'-'" '̂ (j = 1, 2)

such that

(6.61) TtTϊ = /+Λ1>Λ) ΓΓΓί = I+R2-h .

Furthermore, we have for a constant C> 0

(6.62) C^HΓίϋllo

2) Let φA(Λ^)<ΞPp)δ(τ,7;λ) arfίA 7,τ o/ Theorem 3.8 and let Ph(φh}=ph(Φh\
X9Dx)^B^δ(φh). Then, we see that Ph(φh): H2h-*H2h is continuous and for a
constant C>0

(6.63) \\Pk(Φ^\\^Chm\\v\\2tk for

Proof. 1) We define rlfk(x,ξ) by

«™ r
(6.64)

Then, by the usual expansion formula of order 1 for σ(ThTh) (x,ξ) we see that
we can write TiTΐ=I+Rlfh. Furthermore, from (6.64) we obtain (6,60) for
y=l. Similarly we get (6.60), (6.61) for/=2.

Now by definition we have for

Tϊv = ^(l+ I h~δx\*+ \h'ξ\*)ύ(ξ)Λξ .

Thus, by Theorem 1.12 we obtain

IIΠ«llo^C(|H|0+|||A-β

Λ

( ' ^ \2h for
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On the other hand we write for \

= (λ-δ*)"(λp^ΓjΓ ̂  .

Then, noting

σUh^xryfDfTτ), σttΛ-'ΛΠΛ'i),)^.,) €=#.,(*) ,

we get again by Theorem 1.12

and get

(6.66) IHk^C"(l|7>llo+INIo) for

Hence, from (6.65) and (6.66) we obtain (6.62).
2) By (6.61) we write for v <= V

= (TtPMTϊ) (Ttv)-(TΪPh(φh}R2>h)v .

Then, from (5.34) with /=±2, (6.60) and Proposition 6.4 we have

Hence, by (6.62) we get (6.63). Q.E.D.

We have finally the following

Theorem 6.6. Let Uh(t,s) be the fundamental solution for Lh given by
Theorem 6.1. Then:

1) The operators Uh(t,s): H0-*H0, H2h-*H2h ore uniformly bounded in

2) Kh(t}X,Dx)Uh(t,s), Uk(t,s)Kk(t,X,Dx), DtUk(t,s), DsUh(t,s):.
are uniformly bounded on [0, Γ0]

2χ(0,1).

3) As an operator: H0-*H0 and H2>h~^H2)h we have

(6.67) Uk(t, θ)Uh(θ, s) = Uh(t, s) (t, θ, ίe[0, ΓJ).

4) As an operator: H2tk—*H0 h we have

hUh(t,s) = Q on [0,Γ0]
2,

[Uk(s,s) = I on [0,Γ0]

and

(6.69) D.Uk(t,ί)-Ut(t,s)Kk(s,X,D.) = 0 on [0, Γ0].
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5) The Cauchy problem

(6.70)

has a unique solution u(t,s) in <3y>(ITri;H2th)r\<Bi(ITtl\H<i^, represented by

(6.71) u(t, s) = Uk(t, s)v+i[ Uh(θ, s)f(θ)dθ .

Proof. 1) is easy by Proposition 6.5—2).
2) We note that Kh(t,x,ξ)=hs-'>H(t,h-!ix,h''ξ)+ϊίh(t,x,ξ) satisfies

" {K"® (t> X> ξ} <h~*X ' /^>'*+f!l ~2}o^r0 is bounded in
( ) Btt+f™-tw(h) for \a+/3\£2",

and by (6.61)

Kh(t,X,D,)Uk(t,s)
} = (Kk(t)Tϊ) (Tί Uh(t, s))-(Kh(t)R2_,,)Uh(t, s) .

Then, noting by (5.31) and (6.60)

we see by Proposition 6.5 that Kh(f)Uh(tys): H2h-^HQh is uniformly bounded

on [0,Γ0]
2χ(0,l). Similarly we get 2) for Uh(tΐs)Kh(t,X,Dx).

3) is clear from Proposition 6.5.
4) holds for if by Theorem 6.2. Then, for v(ΞH2fh, choosing {v^^dff

such that Vj-+v in H2h we get 4) for v<=H2h. Then 2) for DtUh(tfs), DsUh(t,s)
can be easily obtained.

5) is clear from Theorem 6.2 and l)-4). Q.E.D.

Corollary. Let Kh(t,X,Dx} be symmetric. Then, we have that Uh(t,s):
HQ-+HQ is unitary, and have

(6.74) Uk(t,s)*Uh(t,s) = I on H0.

Proof. For v^ίf we have by Theorem 6.2

dt(Uk(t,s)v, Uk(t,s)v)

= (dtUk(t, s)v, Uk(t, s)v)+(Uh(t, s)v, dtUh(t, s)v)

= -(iKh(t)Uh(t, s)v, Uk(t, s)v)-(Uk(t, s)v, iKh(t)Uk(t, s)v) = 0 .

So we have

(Uh(t, s)v, Uh(t, s)v) = (Uh(s, s)v, Uh(s, ί)0)
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Hence, we have (6.74) on if, and using Theorem 6.6-1) we get (6.74) on H0.
Q.E.D.

Now, we consider the case Kh(tίX,Dx)=Kh(X,Dx) (independent of t).
Then, setting

(6.75) Uk(t) = Uk(ty 0) (O^ί^Γo), = E7A(0, -t) (-

we get

(6.76) Uk(t>s)=Ult(t-t).

For Kh(X,Dx] we define the domain 3)(Kh} of Kh(X,Dx} by

(6.77)

where Khv^H0 means that, for some {uy}7-iC£P satisfying Vj-+v in H0,KhVj
converges to some w in HQ (then we define Khv=w). Let Uf(t) be the fun-
damental solution for L/f, and let £D(K*) be defined similarly, where Kf =
K'h(Dx,X') (see (6.25)). Then, we have

Theorem 6.7. 1) Let Kh and Kf be considered as the closed operators

(6.78)
[Kΐ:(H,:

Then, we have that K* ύ the adjoint operator of Kh and have

(6.79) (Khv, w) — (vy Kfw)

2) // v e <D(Kh), then we have

(6.80) Uh(t

and have

(6.81) KkUk(t)υ = υh(t}Khv,

This holds also for K$ and Uϊ(t).

Corollary. IfKh is symmetric, then Kh: (H0^>)<£(Kh)-+H0 is self-adjoint.

Proof of Theorem 6.7. 1) The closedness of Kh and K$ is clear. For
assume that there exists ΰGH0 such that

(6.82) (υ,Ktw) = (ΰ,to) for

Since ίfc^K?), we have (6.82) for w^ίf. Hence Khv=v, which means

Now assume that v^3)(Kh). Then, noting Theorem 6.6-2) and choosing
so that Wj-^w^H2>h in H2>hy we see that
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(6.83) (

Now, let T,h be a pseudo-differential operator with symbol t,h(x,ξ)={\-\-
£</ί"δΛ;;Ap?>2}"1(0<£<l). Then, it is easy to see that t,ιh(x,ξ) satisfies

(6.84) I ftp4$(*, ξ) I ̂ Cβχ' ' -»""<*-'*;

and for any fixed 0<λ<l

(6.85) 2^0 -»0 ( £ J O ) in #0 for

Then, noting Tehw<=H2h for w^3)(Kf)c:H^ we have by (6.83)

(6.86) (v, JOT..**) - (*Λ ΓM«0 (weflW)) .

Hence from (6.86) we can write

(6.87) (β, T.ttKtto)+(Ό, [Kt, Tt> J«0 = (Jg>, Γ..̂ ) ,

where [̂ *, Γ8 J=J5Γ**ΓM- T^ίΓf. Then for rM=σ([^*)Γtι,])
σ(Γ8 ̂ Kjf), by Taylor's expansion of order 1, we see that 7εf *(#,?) satisfies

(6.88) |Ύ.f*ίS(Λ, f) I ̂ CΛ>β/ip|Λ1-δ|^α-^; Ap?>-'Λ+βl ,

and get

(6.89) [Kf, Tΐth]w - 0 (8 I 0) in HQ .

Then, from (6.85), (6.87) and (6.89), letting 6 I 0, we have

(6.90) (vy KtiD) = (̂ ,̂ to) for w = Φ(K%) ,

which means that α<Ξ.2)((./^*)*). Hence, we get (Kf)*=Kk.
2) From Theorem 6.6-(6.68), (6.69), and (6.75) we have

(6.91) KhUh(t)v=Uh(t)Khv for

Then, usmg Tζ A, for v^S)(Kh) we can write

( ' J = Uk(t)T.tkKkv+Uk(t) [Kh, Tζth]v .

Then, setting ΐiζfh=Uh(ΐ)Tζyhv, we have

which means that Uh(ί)v^3)(Kh) and KhUh(t)v= Uh(f)Khv. Q.E.D.

Finally we consider the convergence of the iterated integral of Feynman's
type. Let Uh(t,s) be the fundamental solution for Lh=Dt+Hh(tίXyDx) and let
Eh(Φh(tjs)) De the approximate fundamental solution of order infinity. Let
β0th, J9TO A be as given in Theorem 6.3.

Now for a subdivision Δv for t,s^[Q, TQ] defined by
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(6.93) Δv;

we set
/(Δv ; φh(t' 5)) =

( ' '

and

£4(ΔV; φ4(ί, *)) = £.(&(*, fO^foCu t2))

( '
Then, by Theorem 4.3 we see that there exist symbols

(6.96) *0f4(f, <VJ ί; *, ξ), ?..»(ί, ίv, *; *, e)e^(Ωv

such that

J/(ΔV; φk(t, ί)) = gflt»(φ4(ί, *); ί, fv, *; JΓ, Z),) ,

(£*(ΔV; φ»(/, ί)) = em,h(φh(t, s);t, tv,s; X, Dt) ,

where Ωv is defined by

(6 98)

Then, we have

Theorem 6.8. Let uh(t9s χ9ξ) be the symbol of Fourier integral operator

Uh(t,s), that is,

uh(t, s\ x, ξ) = l+Jθ9k(t, s; x, ξ)

' =eh(t)s'9xjξ)+d00th(t)s'ίx,ξ).

Then, we have

« ίe0,h(t, f v, s; x, ξ)—uh(t, s; x, ξ)\

(6.100) ^ l Δ v l ^

is bounded in fiJ^A)",

and

(6.101)

is bounded in jB~δ(A)",

where | Δv | = max | tj—tj^ | (tQ=t, fv+1=s),
ι^y^v+ι

Corollary. We have for

(6.102)

and
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(6.103)

for any N.

Proof of Theorem 6.8. We only prove (6.101). Then (6.100) will be
proved more easily.

By Theorem 6.3 we can write

(6.104) εk(φh(1, *)) = Όk(t, t)-D,th(φk(t, s)) .

Hence, by (6.94) we can write

£4(ΔV; φk(t, ή) = (Uh(t, t,)-D^h(φk(t, O))

(6.105) X(0*(fι, t2)-ΰ^k(φk(t1, t,))) -

Then, using the group property of Uh(t,s) we can write

(6.106)

where

Σ

(6.107)
x _ A _ _ f β.

Now from Theorem 5.9 and Theorem 6.3 we have

(6.108) \βk(t,ή\P£C, on [0, Γ0]
2

and for any N^O

(6 I09)

 Sc,,,,«-s|> on[o,nr
Then, regarding d^ h(tfs) as

0' = 2.
we see from (6.108), (6.109) and Theorem 4.3 that

s£ Σ
(6110) «s*»< <vs»
^ ' ;
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Hence, we see for a small 0<Γ0^Γ with Cϊ,NT0<l that for any N

I g (-ιyσ(r<ft) (x, ξ) I y> ̂  CN i ΔV |

uniformly in (t,s)e [0, Γ0]
2. Q.E.D.
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