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Introduction. S. Abhyankar, W. Heinzer and P. Eakin treated the
following problem in [1]; if A[X]=B|Y], when is 4 isomorphic or identical to
B? Replacing the polynomial ring by the torus extension we shall take up
the following problem; if A|X, X™']=B[Y, Y], when is A isomorphic or
identical to B? = We say that A is torus invariant (resp. strongly torus invariant)
whenever A[X, X '|=B[Y, Y'] implies A=~B (resp. A=B). The rolles
played by polynomial rings in [1] are played by the graded rings in our theory.
A graded ring A=234,, i€Z, with the property that 4,40 for each iEZ,
will be called a Z-graded ring. Main results are the followings.

An affine domain 4 of dimension one over a field & is always torus invariant.
Moreover A is not strongly torus invariant if and only if 4 has a graded ring
structure. An affine domain of dimension two is not always torus invariant.
We shall construct an affine domain of dimension two which is not torus in-
variant. Let 4 be an affine domain over &k of dimension two. Assume that
the field k& contains all roots of “unity”” and is of characteristic zero. If 4 is
not torus invariant, then 4 is a Z-graded ring such that there exist invertible
elements of non-zero degree.

In Section 1 we study elementary properties of graded rings. Especially
we are interested in Z-graded rings with invertible elements of non-zero degree.
In Section 2 we discuss some conditions for 4 to be torus invariant. In Sec-
tion 3 we give several sufficient conditions for an integral domain to be strongly
torus invariant. Some relevant results will be found in S. Iitaka and T. Fujita
[2]. Section 4 is devoted to the proof of the main results mentioned above.
In Section 5 we fix an integral domain D and we treat only D-algebras and
D-isomorphisms there. We shall prove the following two results. When 4 is
a D-algebra of tr. deg, A=1 and 4 is not D-torus invariant, 4 is a Z-graded
ring such that D is contained in 4,. If 4 is a Z-graded ring such as D=A4,, then
the number of elements of the set of {D-isomorphic classes of D-algebras
B such that A[X, X '|=BlY, Y]} is ®(d), where d is the smallest positive
integer among the degrees of units in 4 and @ is the Euler function.

I'd like to express my sincere gratitude to the referee for his valiable advices.
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1. Some properties of graded rings

Let R be commutative ring with indentity. The ring R is said to be a
graded ring if R is a graded module, R=3>R;, and R,R,SR,.,.

Lemma 1.1. Let R be a graded domain. Then we have the following.

(1) The unity element of R is homogeneous.

(2) If a is homogeneous and a=bc, then b and c are both homogeneous. In
particular every invertible element is homogeneous.

(3) If R contains a field k, then k is a subring of R,.

Proof. (1) follows immediately from the relation 1°’=1. The proof of (2)
is easy and will be omitted. To prove (3) we can assume k is different from
F, by (1). Let a be an element of k different from 1. Then 1—a is homo-
geneous from (2). The unity 1 is homogeneous of degree 0 by (1). Hence a
should be homogeneous of degree 0.

We call a graded ring R=2R; to be a Z-graded ring if R;=0, for some i€
Z*and Z~.

Proposition 1.2. Let R be a Z-graded domain. Let S={icZ; R;#0}.
Then S=nZ for a certain integer n.

Proof. Since R is a domain, S is a semi-group. Hence (1.2) is immedia-
tely seen by the following lemma.

Lemma 1.3. Let SSZ be a semi-group. If SNZ*£0 and SNZ 0,
then S is a subgroup of Z.

If R is a Z-graded domain, then we may assume R;=+0 for any i€ Z.

Proposition 1.4. Let R be a graded ring. If there is an invertible element
x in Ry, then R=R[x, x™"].

Proof. For any 1 €R,, r=r(x"'x)"=rx""x* and 7x™* is in R, therefore
rERyx*. Hence R=R[x, x™].

Corollary. Let R te a Z-graded domain. If R, is a field, so R=R[x,
x7'] for every x=R,, x=+0.

Proof. Choose non-zero elements xR,, and y=R,. Since R, is a
field, 0==xy is invertible, therefore x and y are units in R, hence R=R[x, x7'].

2. Torus invariant rings

A ring A is said to be torus invariant provided that A has the following
property:

If there exist a ring B, a variable Y over B, and a variable X over 4 such
that A[X, X™'] is isomorphic to B[Y, Y],
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®: A[X, X™] - B[Y, Y],

then 4 is always isomorphic to B.

Especially if we have always ®(4)=B in such case, we say that the ring
4 is strongly torus invariant.

To show A is torus invariant (resp. strongly torus invariant) it suffices to
prove that A is isomorphic to B (resp. A=B) under the assumption: A[X,
X =B[Y, Y.

(2.0) We begin with some elementary observations. Assume that

(1) R=A[X, X "=B[Y,Y].

Then X and Y are units of R. It follows from (1.1) that we have

(2) X=9Y and Y=uX",veBand ucd,

or equivalently

(3) v=u'X"" and u= oY/,
In the rest of our paper we shall use the letters # and v to denote the elements
of 4 and B respectively satisfying the relations (2) and (3) whenever we en-
counter the situation (1).
(2.1) The element u is in B if and only if ff’=1. In this case we have A[X,

X=B[X, X"], thus we have A=B.
Proof is easy and is omitted.

Proposition 2.2. Let k be a field and A be a k-algebra. If A* (the set of
all invertible elements in A)=k*, then the ring A is torus invariant.

Proof. Let R=A[X, X '|=B[Y, Y™*]. By (1.1) the field & is contained
in B. Since A*=k*, the unit element u of A4 is in k, hence in B, It follows
from (2.1) that A4 is torus invariant.

Proposition 2.3. Let A=At t,, ***, t,, (tity>=-t,)""] where t,'s are inde-
pendent variables over k-algebra A, and Af=k*, then A is torus invariant.

Proof. Let R=A[X, X']=B[Y, Y™']. Then by the lemma (1.1) Y=
uX’ and X=o0Y’. Since u is invertible in A=At} by, ***, t,, (t>+t,) "], Y=
rteton, re A¥=k*. We may assume that r=1, so Y=t1---£:2X/".

On the other hand as ¢, is invertible in R=B[Y, Y], t,=b,Y’i, b, B*.
Then we have that

fASefi=1.

Therefore the following natural homomorphism is surjective.
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j: Z('H’l) — Z@...@Z-—)Z
oy tyy +es 8) = dof '+ 23 dse;

Since Z is P.I.D., we can construct a basis of Z**) containing this vector (f,
e, ***, ¢,). Put this basis

&= (fi fir, > fin)
and put u;=t{in---thin X’i.
R = Ajuy, -, u, (u-u,) ][V, Y] = A[X, X ] = B[Y,Y].
Therefore A is isomorphic to B. Hence 4 is torus invariant.

(24) Let R=A[X, X |=B[Y, Y']. An ideal I of R is said to be vertical
relative to A if therc exists an ideal J of 4 such that JR=I. If ] is an ideal of
A such that JR is vertical relative to B, then we will simply say that ] is vertical
relative to B. If 4 is a k-affine domain, the prime ideals defined by the singular
locus of Spec A are vertical relative to B.

Proposition 2.5. Let R=A[X, X "|=B[Y, Y. If there exists a maxi-
mal ideal of A which is vertical relative to B, then A[X, X '|=B[X, X™']. In
particular A and B are isomorphic.

Proof. Let m be a maximal ideal of 4 which is vertical :elative to B. Then
there exists an ideal # of B such that mR=nR. Therefore R/mR=A[m[X,
X =R/nR=B/n[Y, Y '], where X=0Y/ and Y=uX’". Since m is a maxi-
mal ideal, A/m is a field. Hence # is in B/n by (1.1). Therefore we obtain
f=41 by (2.1). Thus 4 is isomorphic to B.

Corollary 2.6. Let A be a k-affine domain with isolated singular points,
then A is torus invariant.

3. Strongly torus invariant rings

In this section we investigate strongly torus invariant rings.

Proposition 3.1. Let A[X, X '|=B[Y,Y™"]. If O(A)SO(B), then A=B,
where Q(R) is the total quotient field of R.

Proof. Let x be an element of A4, then there exist two elements b and b’ of
B such as x=b/b’. Hence b=>b'x. In the graded ring B[Y, Y] the elements
b and b’ are homogeneous of degree zero, thus « is also degree zero. Hence we
have ASB. Let b be an element of B. Then b=34;X’, a;€A. By (2) of
(2.0) we have that b=23}a;v’Y#/. 1f =0, then XeB. Thus A[X, X 'S B,
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it’s a contradiction, hence f=0. Since a;v’€B and Y is a variable over B,
b=a,=A. Thus A=B.

Corollary 3.2. Let A denote the integral closure of A. If A is strongly torus
invariant, then A is also so.

_ Proof. It is easily seen that if A[X, X™|=B[Y, V'] then A[X, X ']=
B[Y, Y. Since 4 is strongly torus invariant, 4=B. Hence Q(4)=Q(B),
and we have that A=B.

Proposition 3.3. Let A be a domain with J(A)=0, where J(D) is the Jacob-
son radical of a ring D. Then A is strongly torus invariant.

Proof. Let a be a non-zero element of J(4). Then 1+4a is unit, so in
the graded ring B[Y, Y], 14a is homogeneous. Since the “unity 1” is a
homogeneous element of degree 0, the element a 1s also so. Thus the element
a 1s contained in B.

Let x be any element of 4. Since xa is contained in J(4), xa is in B.
Hence 4 is contained in Q(B). By (3.1), we have that A=B.

Corollary 3.4. If A is a local domain, then A is strongly torus invariant.

Proposition 3.5. Let A be an affine ring over a field k and let A[X, X ']
=B[Y,Y™"]. Then A=B if and only if every maximal ideals of A is vertical
relative to B.

Proof. It suffices to prove the “if” part of the (3.5). By (3.3) we may
assume that J(4)=0. Let x be an element of B and let xzianf', where

=
s<t,a;€A and a,%0 and a,%0. For any maximal ideal m of A there exists a
maximal ideal #» of B such as mR=nR, where R=A[X, X7']. Let X denote
the residue class of x in B/n. Then % is algebraic over the coefficient field k,
hence there exist elements A, A, ***A,_; in k, such that f(x)=x"4n,_x" 714
+xEnR=mR. If t+0, then the highest degree term of f(x) with respect to
X is alx"* €mR, thus q, is contained in m for every maximal ideal in 4. Since
J(A)=0, a,=0. It’s a contradiction. Therefore t=0. By the same way,
we have that s=0, hence x is in 4. Thus A=B.
We denote the subring generated by all the units of A by 4,.

Proposition 3.6. Let A be a k-affine domain with an isolated singular point.
If A is algebraic over A,, then A is strongly torus invariant.

Proof. Let A[X, X !,=B[Y, Y] and let m be the maximal ideal defined
by the 1solated singular point. Then there exists a maximal ideal n of B such
as mR=nR. Let a be a unit element of 4. In the graded ring B[Y, Y], the
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element a is also invertible, so a=bY7, for some invertible element b in B and a
certain integer j. Since A/m is algebraic over k, there exist elements Ag, Ay, =+, A,
€k such that A,a"+-+Na+r,EmR=nR. If j=£0, A,0" is in n, hence b
is not invertible, it’s a contradiction. Thus we have that A, B. By the
following lemma our proof is over.

Lemma 3.7. Let A[X, X"|=B[Y, Y™']. If A is algebraic over ANB,
then A=B.

Proof. Since 4 is algebraic over AN B, A is also algebraic over B, but B
is algebraically closed in B[Y, Y], therefore A is contained in B. Thus we
have that A=B.

Let A be an integral domain containing a field k. We denote the set of
all automorphisms of 4 over k by Aut.(4).

Proposition 3.8. Let A be an integral domain containing an infinite field
k. If Auty(A) is a finite set, then A is strongly torus invariant.

Proof. Let R=A[X, X '|=B[Y, Y™']. Let ®,, A&k®*, be an automor-
phism of R defined by ®,(Y)=AY and ®,(b)=>b for b=B. Following the
notation of (2.0) we have X=vY”/, thus ®,(X)=\’X, therefore R=®,(4) [X,
X™. Let p be the projection A[X, X™]— A4 defined by p(X)=:1 and ¢ be the
canonical injection 4 — A[X, X™']. Define oy=¢o®,0i. Then o, is an en-
domorphism of 4. We shall show that o, is surjective. Let x be an element
of A. Since R=®,(4)[X, X7], there exist elements a;'s of A such as x=
21 ®@(a;)X’. Hence x=p(x)=2>2]pP,(a;). Let x'=>a;€A4, then o\(x)=
21pPi(a;)=x. Thus o, is surjective. Next we shall show that &, is injective.
Since OF((X—1RNP(A)=P7(X—1)RNA=(A"'X—1)RNA=0, we have
(X—1)RN®(A)=0, tberefore o, is injective. Hence o, is an automorphism
of 4.

We shall prove that the set {o,|A€k*} is infinite when A=B. Since
u=v" /Y| gy(u)=A"/"u. Therefore our assertion is proved when 1—ff’
+0. Suppose ff'=1. Then we may assume that R=A[X, X ']=B[X, X'].
If ASB, then A=B, so there exists an element x of A not contained in B, say
xzfl‘_, b;X’, t>s. Since ker p=(X—1)R and (X—1)RNB=0, p(b;)+0 for

=
b;=0. Since o,(¥)=>] p(5,)\’ and p(b;)+0 for some j=0, the set {o,; A EL*}
is infinite.

Next we shall give two cases of rings which are not strongly torus invariant.
If A has a non-trivial locally finite iterative higher derivation ~: A—A[T],
then A[T]=B[T], where B=+(4) and A=+B, as is proved in [4]. Hence
we have that A[T, T |=B[T, T™"] and A+B. If A4 is a graded ring, then 4
is not strongly torus invariant. Indeed, let X be a variable over 4 and let
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B;={a;X’; a;€4;}. Then B; is an A,module contained in A[X, X1
Let B=2)B;. Then B is a graded ring and we easily see that A[X, X |=B[X,
X™'. We shall show that X is a variable over B. Assume that there exist
elements &, b,, -+, b, in B such that b,%0 and b, X"+---+bX+b,=0. By the
definition of B we denote b;=>%a;;X’, a;;€A;. In the graded ring A[X, X 7]
the homogeneous term of degree ¢ of this equation is that

(an,t~n+an—1,t—n+1+ "'+ao,;)X' =0 .

Since A is a graded ring and «;; is a homogeneous element of degree j, we obtain
a;;=0 for all index 7 and j, hence X is a variable over B.

By [4] we have that a k-algebra A has a non-trivial locally finite iterative
higher derivation if and only if Aut(4) has a subgroup isomorphic to G,=
Spec k[T]. We easily see that A is a non-trivial graded ring if and only if
Auti(A4) has a subgroup isomorphic to G, =Spec(k[T, T™)).

Proposition 3.9. A k-algebra A is not strongly torus invariant, if Auty (A4)
has a subgroup isomorphic to G, or G,,.

Assume that Auti (4) is an infinite group. If Aut (4) has an algebraic
group structure, then there exists the following exact sequence;

0— T — Aut (4),— 6 — 0

where Auty(4), is the connected component containing the identity /,, and T
is a maximal torus subgroup of Aut;(A), and 0 is an abelian variety. Let P
be an arbitrary closed point of Spec(A). If T=0, then there exists a regular

map
D: Auty (4), — Spec(4)
c—>a(P).
Since Im(®) is a projective variety contained in the affine variety Spec(4), the

set Im(®) consists of one point, it contradicts dim Aut;(4),>0. Hence we
have that T=0. Since T2G, or G,,, we have the following result:

Proposition 3.10. If Auti(A) is not a finite set and has an algebraic group
structure, then A is not strongly torus invariant.

4, Affine domains of dimension <2

Let k be a field of characteristic zero which contains all roots of “unity”.
In this section let A be an affine domain over k. We shall see that if dim 4=1,
then A is always torus invariant. Moreover 4 is not strongly torus invariant
if and only if Autx(4)2G,. Let dim A=2. Then A is not always torus
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invariant. But if an integrally closed domain A4 is not a Z-graded ring, then
A is torus invariant.
For the proof we need a lemma.

Lemma 4.1. Let K be a finite separable algebraic field extension of a field
k. If A is a one-dimensional affine normal ring such that kC ASK[X, X™],

then A is a polynomial ring or a torus ring over k' where k' is the algebraic closure
of kin A.

Proof. We may assume that k=k’. Following the similar device to the
proof of (2.9) in [1, p 322], we have Q(A)=k(f) for some element 6 of A.

Since k[0S ACk(f), A=Kk[0] or A:kl:@,]%g—)j\ for some polynomial
f(O)EK[0]. Let A:k[@,f(%)jl. Then we may assume that f(6) has no
multiple factors. The element f(#) is invertible in A4, so is also invertible in
K[X, X7'. Thus we have f(§)=pBX", BeK, 6=K[X, X '. We may
assume that =0, if neccessary, by replacing X with X~ Then we easily
see that 0=K[X]. The uniqueness of the irreducible decomposition in a
polynomial ring implies that deg,f(#)=1, since the polynomial f(f) has not
multiple factors and f(f)=BX". Hence we may assume that f(6)=0 and we

obtain A=k|:9, %‘J

Let A be an integral domain. If A4 is contained in K[X, X7, then 4 is
a polynomial ring or a torus ring over k'.

Proposition 4.2. Let A be a one-dimensional affine domain over a field k
of characteristics zero. Then we obtain that

(1) A is torus invariant,

(2) A is not strongly torus invariant if and only if Auty(A) has a subgroup
isomorphic to Gn,. If A is not strongly torus invariant and A is intesrally closed,
then A is a polynomial ring or a torus ring over the algebraic closure of k in A.

Proof. At first we shall prove (2). The sufficiency follows from (3.9). Let
R=A4[X, X "=B[Y, Y™'] in which A=%B. If mRNA=0 for any maximal
ideal m of B, then m is vertical relative to 4, and we have A=B by (3.5). Hence
there exists a maximal ideal m such as mRN A=0. Since ¢k k=0, B/m=K is
a finite separable algebraic field over k. The residue mapping of R to R/mR
yields (up to isomorphism) kCASK[Y, Y™'] where Y is algebraiclly inde-
pendent over K. Therefore 4 is a polynomial ring or a torus ring by the lemma
(4.1). Thus the automorphism group Autx4 contains a subgroup isomorphic
to G,,.

Assume that 4 is not integrally closed. Then prime divisors in A of the
conductor t(4/A4) are vertical relative to B. Hence we may assume X=Y by
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(2.5). The above lemma (4.1) implies that A=%k'[t, t™'] or A=k'[t] where k’
is the algebraic closure of & in 4.

Firstly let A=k'[f]. Since A= B, there exists an element s in B such as
B=k'[s]. Since R=A[X, X ]=B[X, XY, we have k'[X, X '] [t{|=k'[X, X ]
[s], hence we easily see that t=f(X)s+f(X) and s=g,(X)t+g(X) where f,(X)
&(X)=1 and f(X), g(X)EKk'[X, X7']. We may assume that ¢=X"s+f(X) and
s=X""t+g(X). Let # be a prime divisor in 4 of the conductor t(4/A4).

Then there exists a maximal ideal # of B such as aR=mR. Since A/ is
algebraic over k, there exist elements Ay, \;, ==+, A;_;Ek such that #47'4n,_,
t* N EMR=nR. Hence we have that (X"s-£(X))*+ 1, (X s (X))
+--4+1enR. The constant term of this polynomial with respect to s is
the following;

FXY AN XY AN S R[] [X, X7

Therefore f(X)=f<k’'. Hence we may assume that t=X"s. We shall show
that A is a graded ring. Let a be an element of 4. Since a is contained in
A=FK'[t] and t=X"s, we have that a=3>\ =3I ;X" \;€B. On the
other hand, as the element a is contained in B[X, X7'], a=>1b,X’, b,€B.
Comparing the coefficient of the each term in the following; >\ ;¢/X/"=31b, X",
we have b;=n;s/ (i=jn) and b,=0 (iEnZ). If b;=+0, then bX'=%\;/X/"=
MtieB[X, X NA=A[X, XN A=A. Therefore A has a graded ring
structure.

Secondary let A=FK'[t,t™"]. Then B=k'[s,s™"]. Since ¢ and s are invertible
in R, we may assume that t=s'X" and s=#/X", then t=(t/X") X —=¢iiXim+n
therefore 7j=1. Hence we may assume t=sX". By the same method as in the
case A=k'[t] we have that 4 is a graded ring.

Proof of (1). If A is not integrally closed, then the prime divisors of the
conductor t(A/A) are vertical relative to B. Since non-zero prime ideals
of A are maximal, the ring A is isomorphic to B by (2.5). If A is integrally
closed and A4 is neither a polynomial ring nor a torus ring, then 4 is strongly torus
invariant, hence 4 is torus invariant. If A4 is either a polynomial ring or a
torus ring, A is torus invariant by (2.2) and (2.3).

Next we shall consider the case; the coefficient field & has all roots of “unity”
and its characteristic is zero. Then we prove the following:

Theorem 4.3. Let A be an integrally closed k-affine domain of dimension
two, where the field k has all roots of “unity” and ch k=0. If A is not torus in-
variant, then A is a Z-graded ring which contains units of non-zero degree.

Proof. Assume that 4 is not torus invariant. Then there exist a k-algebra
B and independent variables X, Y such that 4 is not isomorphic to B and R=
A[X, X |=B[Y, Y. By (2.0) and (2,1) we obtain ff's=1. We shall show
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that it follows from ff'=1 that 4 is a Z-graded ring. We may only consider
the case 1—ff'>0. Let x be a (1—ff")—th root of u and let y=x"//X. Then
¥/ =v. Since (y'y) /' =u, x=nry~"'Y for some (1—ff')—th root A of
“unity”. From the relations; y=x"/X and Y=uX’", we have A=1.

Since y=x"/X and x=y"/"Y are invertible, we have A[x] [X, X ]=B[y]
1Y, Y =A[x] [y, y"1=B[y] [*, x™']. Define a surjective homomorphism
j: Ax] [y, y"11—A[x] by j(y)=1. Let A,=j(B[y])SA4[x]. We shall show
that A[x]=A,[x, x™*]. Let a be an element of A. Then a=3>bx', b,=B.
Since j(a)=a and j(x)=x, we have that a=2j(b;)x’, j(b;,)€4,. Thus A[x]=
Ajx, x7'] and x is algebraically independent over A,. By the same way B[y]=
By, y7'].

Since the every (1—ff’)—th roots of “unity” is contained in &k and ¢k k=0
and A4 is normal, the extension A[x]/4 is a Galois extension with a cyclic group
G=<a) (cf. [3] p 214). Indeed when |G|=mn, n|1—ff" and there exists a
primitive n—th root X of “unity”’ such that o(x)=Ax and the invariant subring
(A[x])’=4 and A[x]=A+Ax+--+Ax""" is a free A-module.

Since the element « is a unit of 4 and ch(k)=0, the extension A[x]/4 is étale.
Since A4 is a normal domain, A|x], hence A[x, x7!), is also a normal domain.
From this we see that 4, is always normal.

We shall show that there exists a subring 4§ in A[x] such that A[x]=A{[x,
x7'] and o(4¢)=44. If A, is strongly torus invariant, then o(4y)=4,; for
a(4y) [x, x71]=A[x, x7'], therefore A, satisfies the conditions. If A, is not
strongly torus invariant, then A,=k'[f] or=Kk'[t, t7'] by (4.2). Firstly let
A,=k'[t]. Since k'[x, x™"] [{]=k'[x, x™*] [c(t)], we easily see that o(t)=px't+
f(x), p€k* and f(x)€k'[x, x']. The order of & is n, i.e. o"=Identity, so
o"(f)=t, the other hand &"(t)=p"A """ Vit g(x), g(x)Ek'[x, x7"], therefore
we have that i=0, thus o(f)=ut-+f(x) and p"=1. Let f(x)=2)fx' and define
the set A={jEeZ; M+pu}. Let h(x):—-ghjxf, where hj=f;,(p—>¥)7!, and put

je

s=t+h(x). Then o(s)=pus+2f;x', hence o"(s)=p"s+np" (2] fix')=s+np"
TEA iED

X fx'). Since o*(s)=s, we have o(s)=pus. We set A;=k'[s], then Aj satisfies

iEA

the conditions.

Secondary let A)=k'[t, t™*]. Since k'[x, x™"] [¢,t"]=K'[x, x™"] [ (?), o(t) "],
we easily see that o(f)=pux't or o(t)=px't™!, pck’*.

Case (i); o(t)=pa't. Since o"(t)=p" A0+ ** Vix*t and o"(f)=t, we have
that o(f)=put, so o(4y)=4,.

Case (ii); o(t)=px't™". If n is odd, say n=2m+1, then o"(t)=pr"xt"},
but this is imposible for ¢"(t)=t. Therefore n is even, say n=2m. Then
o"(t)=\"t. Since A is a primitive n—th root of ‘“unity”, the integer i is
even, say i=2j. Let s=x77t and A;=k'[s,s']. Then Aj satisfies the condi-
tions.
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Next we shall show that 4 has a Z-graded ring structure. Let a be an
element of A. Since a€di[x, x7'], a=>la;x’. Then a=o(a)=2)a(a;)\'x’
and o(a;,)€ 4. Comparing the coefficient of each [term in the equality; >Ja,x'=
Do(a;)\'x’, we have that a,=o(a;)\!, then o(ax)=ax’. Thus ax' is an
element of A. Therefore A is a graded ring. Since there exists units of
non-zero degree, A has a Z-graded ring structure.

RemARK. The converse of this theorem is false. Indeed we find by
(2.3) that the ring K[T][X, X '] is a Z-graded ring with respect to X which is
torus invariant.

ExampLE. We shall construct an example of an affine dimension A4 of
dimension two which is not torus invariant.

Let D be an integrally closed domain of dimension one over an algebraically
closed field k and D*=k*. Let a be a non-unit of D and a®=a, a =D. Assume
that D is noetherian and D[a] is strongly torus invariant. Since an affine do-
main ot dimension one whose totally quotient field has a positive genus is strongly
torus invariant by (4.2), this assumption can be satisfied for a suitable choice
of D. Let T be a variable over D and A=D[aT, T° T7°]. Let X be a variable
over A and S=T?X and Y=T°X% Let B=D[aS3 S°% S7°. Since T=
S7%Y and X=S5°Y "% we have that 4[X, X'|=B[Y, Y™']. By (1.1) invertible
elements in the graded ring A are homogeneous. Since D*=k*, we obtain
A*={nT%; nek* and i=Z}. Hence the quotient A*/k* is generated by
T°. Similary B*/k* 1s generated by S°. We shall show that 4 is not isomor-
phic to B. We assume that there exists an isomorphism o of 4 to B. Since
o is a group-isomorphism of A4* to B*, we have o(T%)=uS® or o(T%)=uS3,
pEKk*. We shall only consider the case: o(7°)=uS% since the proof of the
other case is the similar. Let & be an isomorphism of A[T] to B[S] defined
by 6=0c on A and &(T)=¢S, &=p. Then we have that D] [S, S7']=
a(Dla]) [S, S71, therefore &(D[a])=D[a]; for D[a] is strongly torus in-
variant. Since o(D)SD[a]NB=D, we have o(D)=D, therefore we easily
see that o is an isomorphism as graded rings. Thus we have o((aT)D)=
(a?S)D, hence o(a)€a’D. Since the element a is not a unit, a’DSaD, thus
o(@)DSa’DSaD, so aDSo ' (a)D, hence we have a proper ascending chain
{e"*(a)D}, but it contradicts the netherian assumption of D. Hence A4 is
net torus invariant.

(44) Now let A=2314; be an integrally closed Z-graded domain which
contains invertible elements of non-zero degree. Let e be an invertible element
of A with the smallest positive degree d. Let a be a unit of A, then a is a
homogeneous elements with deg a=jd for some integer j, and there exists an
element £ of AF such as a=£e’. Let 7 be any positive integer and x be one
of the #jd-th roots of a, say x"*=a. Since A[x] is a Z-graded ring with the
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invertible elements x of degree one, A[x]=A44[x, x™'] by (1.4) where A contains
A,. Let f and f’ be integers such as ff'+ijd=1 and let X be a variable over
A. Put y=x"/X and Y=aX’. Then x=y /'Y and X=9Y/. Therefoie
Af[x, x 1 [X, X =A4i[y,y1[Y, Y7']. Since the every n-th roots of “unity”
is contained in k and A4 is integral closed, the extension A[x]/4 is a Galois
extension with a cyclic group G=<{¢)>. Indeed |G|=d:i and there exists a
primitive di-th root A of “unity” such as o(x)=2xx, and (A4[x])’=A. Since
Aj is algebraic over A4,, o(4s) is also so, hence o(A4f) is algebraic over Ag, but
Af is algebraically closed in Ag[x, 7], therefore o(4)=A4i. Since o(y)=1"7y,
o is an automorphism of A¢[y, y™']. Let B=A4; [y, y™']° and & be an auto-
morphism of A4g[x, x™'] [X, X '] defined by 6(X)=X and =0 over Af[x, x™"].
Since ¢(Y)=Y and &(X)=X, we obtain B[Y, Y '|[=4i[y, y ] [V, Y|
=Ag[x, x71] [X, X "=A4[X, X™].

Proposition 4.5. Let A be an integrally closed k-affine domain of dimension
2. If A[X, X |=B[Y, Y] and ff'*1, then A has a Z-graded ring structure
and B is isomorphic to one of algebras constructed in (4.4).

Proof. The first statement is already mentioned in the proof of (4.3)
and we obtained Aj[x, x7'] [X, X |=4i[y, y] [Y, Y] and o(4)=A4;. Let
B'=Ai[y, y™]". Then B’ is one of algebras in (4.4). Since B'[Y, Y ']=
B[Y, Y], B is isomorphic to B'.

5. D-torus invariant

Let D be an integral domain contining a field k& of characteristic zero and
A be a D-algebra. The ring 4 is called D-torus invariant; if A[X, X '|=B[Y,
Y] for a certain D-algebra B and independent variables X and Y, then we
have always A=,B. Then we have the following result:

Proposition 5.1. Let A be an integrally closed domain over D and tr. deg,
A=1. If A is not D-torus invariant, then A is a Z-graded ring containing units
of non-zero degree.

Proof. Let A[X, X '|=B[Y, Y], where B is a D-algebra and not D-
isomorphic to 4. By (2.0) and (2.1) we easily see that ff’=1. Then we may
assume 1—ff'>0. Let x be a (1—ff")—th root of u and y=x"/X. Then we
have that A[x]=4, [», x™'] and B[y]=B,[y, y~'] as the proof of (4.3), where 4,
and B, are respectively subalgebras of A[x] and B[y] containing D. Let o
be a generator of the cyclic Galois group of the extension A[x]/4. We shall
show that o(4,)=4,. Since tr. deg, A[x, X ']=1, A4, is algebraic over D,
thus o(4,) is also so. Since A4, is algebraically closed in A4, [x, x7*], we have
that o(4))=4, Following the similar devise to the proof of (4.3) we obtain
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that 4 is a Z-graded ring, and D is contained in A.
In the following we shall consider the case where 4 is a Z-graded ring
and 4,=D. We consider only D-isomorphisms of D-algebras.

Theorem 5.2. Let A be an integrally closed Z-graded ring. Assume that
the subring A, contains an algebraically closed field k and that Af=k*. Let d be
the smallest positive integer among the set of degrees of units in A. Then the number
of the isomorphic classes of A-algebra as B such that A[X, X '|=B[Y,Y™] equals
to ®(d), where @ is the Euler function.

Proof. Let 7 be an integer such as 1<7/<d and (7, d)=1. Since (¢, d)=1,
ij+dh=1 for some integers j and A. Moreover we may assume 2=0. Fix a
unit e of degree d. Let x be one of the d-t& roots of e. Then we have that
A[x]=A45[x, x™'] for a subring A{ containing A, by (1.4). Let o be a generator
of the cyclic Galois group of the extension A[x]/A. Then o(x)=xx, where A
is a primitive d-th root of “unity”. Since Aj is algebraic over 4, and algebrai-
cally closed in Ag[x, x7'], we obtain.s(4§)=A;. Let X be a variable over 4
and let y=x7'X and Y=e¢"x/. Then we have that A¢[x, x™*] [X, X =A{[y,
vy [Y,Y™"]. Define B;=A¢[y, y'1” and let 5 be an isomorphism of A{[x,
x7"] [X, X™'] defined by ¢(X)=X and 6=¢ on Aj[x, x7']. Since Y=e'X/,
#(Y)=Y, therefore we obtain that A[X, X '|=B,[Y, Y. We can easily
see that B; is a X-graded ring and (B;),=A, Especially we have B,=A.

Let 7, and 7, be integers such as 1=7,<7,<d and (7, d)=(3,, d)=1. Let
B'=A{[y, y7']" and B”"=A{[z, ¢7']° where o(y)=A""1y and o(2)=\"" ..,
B'=B; and B”=B,,. We shall show that B’ and B” are not isomorphic.
Assume that there exists an A -isomorphism +» of B’ to B”. Let a be a unit
in B’ of non-zero degree, say degree a=n, n=0. Let b be a homogeneous
element of B’ and degree b=¢. Then we have b"=ra’ for an element 7 in the
coefficient ring A4, hence Vr(b")=+r(b)"=r(a’). Since r and (a’) are homo-
geneous, r(b) is also homogeneous by (1.1), therefore + is an isomorphism
as graded rings.

Let ¢ be a homogeneous element in B’ of degree one. Then ¢=s,;y for an
element s, in A5. Since o(c)=c and o(y)=r"'1y, we have o(s;)=»A\"s, hence
s¢ is in B’. Since +r(s,y) is a homogeneous element of degree one, we obtain
Y(s,¥)=$82 for an element s, in Ag. Since o(5,2)=52 and o(z)=1""z, we
have o(s;)=MA'2s;, hence s is in B”. By the relations; siyr(y*)=v((s,y)%)=
Yr(s,y) =547, we obtain s=+(y%)z"%{. Since yr(y?)z~¢ is an invertible element
in B” and degree zero, we have { =r(y?)z € A¥=k*, therefore we have s,=7s,
for some neEk, n’=E. Hence o(s,)=»A"s,, but it contadicts the fact that o(s,)
=225, and A is a primitive d-th root of “unity”. Therefore B'cB”.

Finally we shall show that if A[X, X "]=B[Y, Y] then B is isomorphic
to B; for some 7 satisfying 0<i<<d and (7, d)=1. The invertible element u
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in (2.0) 1s homogeneous. Let 7 be the degree of u. If n=0, then 4 is isomor-
phic to B by (2.1), hence B==B,. Assume n=+0. Let ¢ be a non-zero homo-
geneous element of degree 1 and put #=c"«™!. Then % is an element of A4,.
In the graded ring B[Y, Y] the elements # and » are homogeneous, hence ¢
is also homogeneous, thus we denote c=5bY7 for some element b in B and some
integer j. Then we obtain that ¢"=50"Y". On the other hand we have ¢*=
nu=nv~""Y'=/7" by (2.0). Therefore we have 1—ff'=nj.

By the minimality of d we obtain n=Id for some integer / and u=C¢e,
€ A¥=k*. Since the field k is algebraically closed, we may assume £=1,
then the d-th root x of e is an n-th root of . Since the element A is a primitive
d-th root of “‘unity”, there exists the unique integer 7 such that A~ =x"% 0<
i<d, then (i,d)=1since (f,d)=1. Lety'=x"'X’and B'=(4{[y’,y'"*])°. Then
o(y)=1""y'=n1""y’, hence B'=B;. We can easily show that x=y'~/" Y/,
therefore we obtain Ag[x, x™'] [X, X |=44[y’, " ] [Y, Y *]. Since o(X)=X
and o(Y)=Y, we have A[X, X '|=B,[Y, Y], hence B[Y, Y™'|=B,[Y, Y]
Thus we have B=B,.

References

[11 S. Abhyankar, W. Heinzer and P. Eakin: On the uniqueness of the coefficient ring
in a polynomial ring, J. Algebra 23 (1972), 310-342.

[2]1 S. litaka and T. Fujita: Cancellation theorem for algebraic varieties, J. Fac. Sci.
Univ. of Tokyo, Sec. IA, 24 (1977), 123-127.

[3] S. Lang: Algebra, Addison-Weslay, New York, 1964.

[4] M. Miyanishi and Y. Nakai: Some remarks on strongly invariant rings, Osaka J.
Math. 12 (1975), 1-17.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560

Japan





