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Intoroduction. A complete connected riemannian manifold of positive
constant curvature 1 is called a Clifford-Klein spherical space form. In this
paper, we call such a riemannian manifold simply a spherical space form. An
n-dimensional spherical space form is obtained as Sn/G, the standard unit sphere
Sn modulo a finite group of fixed point free isometries G. In the previous
paper [4], we raised the problem,

"Does the spectrum of a spherical space form determine the spherical space

form among all spherical space forms •?"

The above problem was solved affirmatively first for a 3-dimensional lens
space M by Tanaka [6] in case where the order of fundamental group of M>
\πx(M)\ is prime or 2-times prime, by the author and Yamamoto in case
where ITΓ^M)! is prime power or 2-times prime power, and by Yamamoto [11]
in case where | π^M) | is any composite number. For any other 3-dimensional
spherical space forms and homogeneous space forms, it was also affirmatively
solved recently by the author [5].

In this paper, we shall attack the above problem for the spherical space
form with dimension of the form 4Λ-J-1 (^^1) Main tool in this paper is
also the generating function associated to the spectrum of a spherical space
form S4k+1/G constructed in [4] and [5]. The relations between the finite
group G and the generating function were studied in [5], Here, we investigate
the relations more details for (4&+l)-dimensional spherical space forms using
the complete classification of the manifolds due to Vincent [9] (see also [10]).

Our main results are the followings.

Theorem 3.1. Let d be an odd prime. Let M, N be (2d—l)-dimensional
spherical space forms. Suppose M is isospectral to N. Then their fundamental
groups are isomorphic.

Theorem 3.9. Let M be a 5-dimensional spherical space form with non-
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cyclic fundamental group. Let N be a compact connected riemannian manifold.

Suppose N is ίsospectral to M. Then they are isometric.

1. Spherical space forms and their generating functions

In this section, we recall some properties of the generating function of a
spherical space form obtained in the previous paper [5], We state their pro-
perties without proofs. The proofs should be referred to [5],

Let Sn (n^2) be the unit sphere centered at the origin in Rtt+1 the (ft+1)-

dimensional Euclidean space. We denote by O(n-\-\) (resp. SO(n+\)) the

orthogonal (resp. the special orthogonal) group acting on Rn+1. A finite sub-

group G of O(/ί+l) is said to be fixed point free if foi any g^G with gΦl n + 1 (the

unit matrix in O(w+1)) 1 is not an eigenvalue of g. A fixed point free finite

subgroup G of O(n+1) acts on Sn fixed point freely, so that the quotient mani-

fold SnfG becomes a riemannian manifold of positive constant curvature 1 in a

natural way. Conversely, any compact connected riemannian manifold of

positive constant curvature 1 is obtained in this way. We call a compact rie-

mannian manifold of positive constant curvature 1 a spherical space form.

Fundamental properties for spherical space forms are

Proposition 1.1 (see [5]). 1. Even dimensional spherical space forms are only

the standard spheres and the real protective spaces.

2. A finite fixed point free subgroup G of O(2n) is contained in S0(2n).

3. Let Sn/G and S"IG' be spherical space forms. Then they ate isometric if

and only if G is conjugate to Gf in O(n+1).

In the followings, we shall consider only odd dimensional spherical space
forms of dimension greater than 3. Let M=S2n~ιjG (n7>2) be a (2n—^-dimen-
sional spherical space form and Δ the Laplacian acting on the space of smooth
functions on M. Then each eigenvalue of Δ on M is of the form k(k-\-2n—2)
(k=09 1, 2, •••) and the eigenspace Ek(k+2n-2) f°r eigenvalue k(k-\-2n—2) is
isomorphic to the space of G-invariant elements in the eigenspace Hk of the
Laplacian on Sn for eigenvalue k{k + 2n—2). Then the generating function
associated to the spectrum of the Laplacian on M is defined by

FG(Z) = Έ (dim Ek(k+2n.2))zk.
k = 0

By the definition, we have

Proposition 1.2. Let S2n~ιlG and S2n-ιjGf be spherical space forms. Then

S2n~ηG is isospectral to S2n~lIG' if and only if FG(z)=FG,(z).
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An important formula for the generating function FG(z) of spherical space

form Sίn~ιjG is given by

Theorem 1.3. We have

1 y
* Π (z-Ύ)'

where \G\ is the order of G and E(g) is the set of eigenvalues of g, with multiplicity

counted.

By the above theorem, we see the generating function FG(z) has a unique
meromorphic extension to the whole complex plane C. Moreover, FG(z) is a
rational function on C, and has a zero at infinity.

DEFINITIONS. Let G be a finite group. The subset Gk of the finite group
G consists of all elements of order k in G, so that G = (J Gk (disjoint union).

σ(G) is the set of positive integers consisting of orders of elements in G.

For a spherical space form S2n~ιjG and for

Then we have the following two Propositions.

Proposition 1.4. FG(z) has a pole at any primitive k-th root of 1, but no

poles eleswhere.

Proposition 1.5. Let S2n~ιIG and S2n~ιlG' be spherical space forms. Sup-

pose they are ίsospectraL Then

1. | G | = | G ' | ,
2. σ{G)=σ{G'), particularly max. σ(G)=max. σ(G'),

3. FkJ(z)=Fk

G,(z)for any k(=σ(G).

Proof. Only the proof of 3 is not given in [5]. By the assumption, for

any ^Gσ(G) we have

FG{z)-FUz) = Σ {F'β,{z)-F'G{z)).

/φ*

Applying Proposition 1.4 to the identity, we can see easily that the rational

function Fk

G(z)—Fk

Gf(z) is holomorphic on the whole complex plane C. Clearly
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this function has a zero at infinity, so that the function is identically zero. Thus
we have proved 3. q.e.d.

2. Vincent's results for spherical space forms

The complete classification of 3-dimensional spherical space forms was
obtained by Seifert and Threlfall [8]. In this section we shall state Vincent's
results [9] on the classification of spherical space forms for higher dimensional
cases, mainly according to Wolf [10].

DEFINITIONS. A finite dimensional orthogonal representation of a finite
group is fixed point free if it is faithful and its image is a fixed point free subgroup

of the orthogonal group. A finite group is called a fixed point free group if it has

a fixed point free representation.

REMARKS. A fixed point free representation is decomposed into the sum
of irreducible representations, all of which are fixed point free. The sum of
fixed point free representations is fixed point free. For a fixed point free sub-
group Gd SO(2ή), G is considered as the image of the natural representation
iG of the abstract group G, so that the abstract group G is fixed point free.

Proposition 2.1. Let Gl9 G2 be fixed point free subgroups of SO(2n). Then

Gx is conjugate to G2 in O(2ή) if and only if Gλ is ίsomorphίc to G2 and there is an

automorphism a of Gx such that iGl°a is equivalent to iGz, identifying Gx with G2.

Under these considerations, Vincent reduced the classification problem to
the followings (for details see [9], [10]);
1. To determine finite groups which admit fixed point free representations.
2. To determine irreducible fixed point free representations of a finite fixed
point free group.
3. To determine all the automorphisms of a fixed point free finite group G
and their actions on irreducible fixed point ίree representations of G.

Fixed point free groups are divided into following two classes;
First type: Every Sylow subgroup of G is cyclic.
Second type: Every ^-Sylow subgroup (£Φ2) of G is cyclic and the 2-Sylow
subgroups of G are generalized quoternion groups Q2a (fl>2), where Q2a is the
finite group of order 2a generated b\ two elements A and B with relations;

A2"1 = 1, A2"2 = B2 and BAB'1 = A~ι.

In [9], Vincent determined finite fixed point free groups of First type and
their fixed point free representations.

For any non-zero integei m> Km denotes the multiplicative group of residue
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classes modulo m of integers prime to m. The order of Km is denoted by φ(m).
Let m, n be positive integers and r be an integer with ((r— \)n, m)=l> rn = \
(modm). We consider the finite group of order N=mn generated by two ele-
ments A and B with defining relations

Let d be the order of the residue class of r in Km and n=n'd. Assume n' is
divisible by every prime divivor of d. Then this finite group is denoted by
Td(m, n, r). Note that the following four conditions are equivalent for the
Yd(m, n, r): (i) Yd{ms n, r) is cyclic, (ii) A=l> (iii) r = l , and (iv) d=l. We shall
determine the automorphisms of Td(m,n,r). Whenever s, t and u are integers
with (s, m)=l=(t, n) and t= 1 (mod d), we put

ψStttU(A) = As and ψs>ttU(B) = BΆ\

Then we can see easily ψs ttU defines an autormorphism of Td(m, n, r) onto

itself.

Proposition 2.2 (cf. Wolf [10]). The automorphisms cf Γd(m, n, r) are just

the ψS)ttuS.

Proof. Let a be an automorphism of Td(m,n,r). Since the commutator
subgroup Γ" of Td{m, n, r) is the cyclic subgroup {̂ 4} generated by A, a(A)=As

for some integer s with (s9m)=l. Let a(B)=B*Au. Since BV generates
the quotient group Yd(msnsr)IY\ we have (f, n) = l. Then a is an automor-
phism if and only if a{Ar)=a{BAB~1)=a{B)a{A)a(B)-\ On the other hand,
a(B)a{A)a(B)-1=BtAuAsA-uB-t=Asrt. Hence, sr=sr* (modai). This means
t = \ (mod d). q.e.d.

In the same way as the above, we have

Proposition 2.3. The group Td(m, n, rj is isomorphic to the group Γd(m, n, r2)
if and only if there exists an integer c such that i\ = rC2 (mod m).

Theorem 2.4 (see [9], [10]). A finite fixed point free group of First type is
isomorphic to some Td(m, n, r).

Theorem 2.5 (see [9], [10]). Let G=Yd{m} ny r)f and let R{θ) denotes
the rotational matrix on the plane:

( cos 2πθ sin 2πθ\

V-sin27r<9 cos2τr0/

Given integers k and I with (k, m)=l = (l, n), let πkι be the real representation of
degree 2d of G defined by
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iR{kjm)

and

M is irreducible and a real representation of G is fixed point free if and

only if it is equivalent to a sum of these representations πkl. πkl is equivalent to

ύk'X if and vnly if there exist numbers e=±l and c=0, 1, "-,d—1 such that

k' = ekrc (mod /w) and Γ = el (modn'). πkloψstu is equivalent to πsk'tl', where

ψs,t,u is the automorphism of G defined before. There are just φ(N)/d2 or just

φ(N)βd2 inequίvalent πkι according to whether n'=2 or w'Φ2.

REMARK. Any irreducible fixed point free representation of Td(m, n, r) has
the same degree Id.

Theorem 2.6 (see [10]). The fundamental group of every spherical space form

with dimension of the form 4&+1 is of First type.

From these theorems we have

Corollary 2.7. Let d be an odd prime. Then every non-cyclic finite fixed

point free subgroup of SO(2d) is conjugate to the image of an irreducible fixed point

free representation of some Td(m, n, r).

Corollary 2.8. Let G and G' be finite fixed point free subgroups of SO(6).

Assume G is isomorphίc to G' and is not of cyclic. Then G is conjugate to Gr in

0(6).

Pi oof. By Corollary 2.7, G, G' are isomorphic to a Γ3(m,n, r). Hence, it
suffices to show that for any two irreducible finite fixed point free representa-
tions πkh πkrjf of Γ3(ra,n,r), there exists an automorphism a of Tz{m,n,r)
such that πkι°a is equivalent to πy,/'- We fix integers k*> /* such that
k^k=l (mod m) and / * / = l (modw/3). Take the automorphism a = ψk*k',ι*ι',o
or Λ/T_£*£/_/*,/(, according to whether /*/ '=l (mod 3) or W Ξ - 1 (mod 3),
respectively. By Theorem 2.5, πkιoa is equivalent to πk'tlf or π_kr _//, respec-
tively. It follows easily from Theorem 2.5 that πy^ is equivalent to π_k^_^.
Hence the representation πkJoa is equivalent to π^^. This completes the
proof of the corollary. q.e.d.
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3. Isospectral problem for (2d — l)-dimensional spherical space
forms, where d is an odd prime

Our main goal in this section is to prove

Theorem 3.1. Let d be an odd prime, and let M, N be (2d—\)-dimensional
spherical space forms. Suppose M is isospectral to N. Then their fundamental
groups are isomorphic.

Let m be a positive integer. We denote by Zm the ring of residue classes
modulus m of integers. For any real number x, we denote by [x] the largest
integer which does not exceed x.

Lemma 3.2. Let p be a prime number and k a positive integer. Let q be an
integer with q=±l (mod p). Then the order of the residue class of q in KPk is
p{ or 2p* for some integer t^O.

Proof. If p=2y then the lemma is clear. Suppose p is an odd prime.
Let q=lp±l, where l=(qTl)/p. It suffices to show that qpk~1=±l (modpk).
We have

where ( ̂  ) = P^iP^-^-iP^-t
W \ t ) t{t-\){t-2) "2Λ

It is easy to see pk~1^k. We shall show ( ** J is divisible by pk~ι. Let a be

the largest integer such that pa is a divisor of t(t—1) 2 1. Then we have

Hence, (? ) is divisible by/)*"'. Thus we have

which implies the lemma. q.e.d.

Lemma 3.3. Let m} r be positive integers with (r(r—l), m)=ϊ and d the
order of r in Km. Suppose d is an odd prime with (d, m)=l. Then the integers

(i=l> 2, •••, d— 1) are all prime to m.

Proof. By the assumption, it is easy to see that m is odd. Let m=p"i "p"kf
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where pu -",pk are odd primes with pι<p2<"'<pk a ϊ l d #,2^1 ( ί = l , •••,Λ).
Then an isomorphism between the rings Zm and Z *iX ••• x Z «* is given by

# ι-> ((x modp"i), •••, (# mod/)?*)).

This isomorphism induces an isomorphism of the group Km onto i£ *iX ••• xK <*k.

Since r—1 is prime to m> r—1 is also prime to any prime divisor of m. Hence,

rι is also of order d in K <*i ( ί = l , •••,&). Thus, for any integer t prime to d, r*

is of order d'mK <*i ( / = 1 , •••,£). Together this fact with Lemma 3.2, we see
Pi

that ± ( r ' ' ± l ) 0 = 1 , •••, d— 1) are all prime to pi (i=ly •••,&), because ίί is

prime to p{ (i=l, •••, &). q.e.d.

REMARK. In the proof of the above lemma, we see also that for any prime

divisor p of m, p—\ is divisible by d, because 4>{p")=p<*~1{p—l).

The following lemma due to W. Franz [3].

L e m m a 3.4 (cf. Franz [3]). Let m be a positive integer, {an}n<ΞKm a set of

integers indexed by Km, and let γ be a primitive m-th root of 1. Suppose

(I) an=a_n for arty n<=Kmy

(li) Σ *.=0,

(iϋ) Π (l~7kn)an=l for any integer k^O (mod m).

Then we have an=0for all

Recall that Γd(m,n,i) is the finite group generated by two elements A, B

with relations:

Am = Bn = 1, BAB'1 = Ar

(n(r—\)}m) = 1, rn= 1 (mod m)

d is the order of r in Km and n=n'd.

In the followings, we assume d is an odd prime.

Let πk i be the fixed point free irreducible real representation of Td(m, n, r)

as in Theorem 2.5. Let G=πkι(Γd(m, n, r)) and GQ the cyclic subgroup of G

generated by πkι(ABd).

Lemma 3.5. The order of any element in G—Go is a divhor of n. Parti-

cularly, it is prime to m.

Proof. Any element in G—GQ is represented as πkl(AsBtd+i) where ί, j , s

are integers with Q<j<d. we have
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(AsBtd+j)n =

Since (d, j)=\=(r— 1 ,tn), we have

(l+rj+r2j+- +r<n-1») = n'(l+r+r2+---+rd-1) (mod m)

= 0 (mod m).

Thus, we have # j k f /((i4*βw + y) l l)=lw, which implies the lemma. q.e.d.

Corollary 3.6. σ(G)= {k: k is a divisor of mri or n}.

Let m be a positive integer, and let rl9 r2 be integers prime to m. Suppose
that ru r2 are of the same order d in Km. We consider the cyclic groups G{

(i=l, 2) generated by

Γ o \
(3.1) g ι = \ Ri'ih)^ (* = 1 , 2 ) ;

Then Gi, G2 are fixed point free finite subgroups of SO(2d) and these yield
the lens spaces L(m: 1, riy •• ,rf""1) ( ί = l , 2) (see [5]).

Theorem 3.7. Lei Gu G2 be as in the above. Suppose the spherical space
form S2d~ιjGι is isospectral to S2d~1jG2. Then they are isometric.

Proof. Let FGi{z)y FG2(z) be the generating functions of S2d-ιlGλ and
S2d~ιIG2i respectively. Then

(

where γ is a primitive m-ύi root of 1.
By Lemma 3.3, ± ( ^ ± 1 ) (0<f</, ί = l , 2) are all prime to m. Hence, the
order of pole of FG.(z) at any m-th. root z of 1 (#φl) is 1. We compute the
residue of FG.(z) ( ί = l , 2) at z=7k {k^O (mod m)\

z+Ί* ' m k -*\ TT/ * kr<Λ( k -kr*)

Hence, by the assumption, we see

a - i / f . .

(3.2) Π (i-(<y*)ri~1)(l-CyTri~1) = Π

d-\

Π(
/ = 1
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for any k=l, 2, 3, •••, m— 1.

Multiplying each side of (3.2) by its conjugate, we obtain

(3.3)

(l-(γ*) r2-1)-1(l-(γ*)-y2+1)-1(l-(γ f ty2+1)-1(l-(γA)-''2-1)-1= 1.

Now, we apply Lemma 3.4 to (3.3). Suppose for any s (0<s<d), there exist
s' and s" (0</, έ"<d) such that

and — r\—\ = ±

Then by Lemma 3.4

d-l d-1

Σ ( Ί - i ) + Σ (—rί—1)=

Hence,

4(d-ί)

Since m and d are odd, we see

(d-l)/:

d - l

Σ (y2-

= 0

2=0

ί (mod m)

1 (mod m).

fi)+Σ(— r $2-

(mod /w).

(mod m).

(mod m).

Thus

On the other hand,

Hence we have a contradiction. Thus we can assume there exist integers s,
s' (0<ί, s'<d) such that

rf—1 = — rS2— 1 (mod m)

or rf—ί=rs

2— 1 (mod 7w).

If rf = —r^ (mod m), then

l = (rίy = (-r iV=-(r iV=-l (mod m),

which is a contradiction, since wφ2.
Hence we get

rl = rS2 (mod m).

This means that g[ is conjugate to g5

2' in O(2d). Hence Gx is conjugate to G2

in O(2d), which shows the theorem. q.e.d.
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REMARK. In the proof of the above theorem, we obtained r[=r2 (mod m)

only from the assumption FGi(z)—FG2(z).

Proof of Theorem 3.1. By Proposition 1.5, σ(Gι)=σ{G2) and | Gλ \ = \ G2|.

From these we see easily that if Gx is cyclic then G2 is also cyclic and iso-

morphic to G2. Hence, by Corollary 2.7, we may assume that Gly G2 are

isomorphic to some Td(mly nly rx) and Td(m2y n2, r2), respectively. Since \Gλ\ =

\G2\, nt1n1=m1nΊd=m2n2d=m2n2. By Corollary 2.7, we can assume that G t

(£=1, 2) is the image of some irreducible fixed point free representation πkil.

of Td(miy niy r t ). By Theorem 2.5, we can assume Λf = l (£=1, 2). Now, we

shall show nλ=n2. By Corollary 3.6, n2 is a divisor of nx or m1n
/

1=m2fi2. Since

n2 is prime to m2y n^ As a divisor of nv Interchanging nx and n2y we see nx is

a divisor of n2. Thus n1=n2. We put m—m1=m2 and n=n1=n2=n'd. Let i/x

(resp. i/2) be the cyclic subgroup generated by gλ of (3.1) (resp. g2 of (3.1)).

Let F Λ («) (£=1, 2) be the generating function of S^/Gi (£=1, 2). Then

Since the order of any element of Gi—Hi is not a divisor of my we have

By the remark of Theorem 3.7, we have rι = r2 (modm) for some c = l , 2, •••, J — 1 .

By Proposition 2.3, this implies Gx is isomorphic to G2. q.e.d.

Together this with Corollary 2.8, we obtain

Theorem 3.8. If two 5-dimensίonαl spherical space forms with fundamental

groups non-cyclic are isospectral, then they are isometric.

From this with the result due to Tanno [7], we have

Theorem 3.9. Let M be a 5-dimensional spherical space fϋrm with non-

cyclic fundamental group. Let N be a compact connected riemannian manifold.

Suppose N is ίsospectral to M. Then they are isometric.
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