Marubayashi, H. Osaka J. Math. 17 (1980), 391-406

COMPLETIONS OF HEREDITARY NOETHERIAN PRIME RINGS

HIDETOSHI MARUBAYASHI

(Received June 26, 1979)

Let R be a hereditary noetherian prime ring with quotient ring Q and let $A=M_1\cap\cdots\cap M_p$ be a maximal invertible ideal of R, where M_1, \dots, M_p is a cycle (cf. [2] for the definition of cycles). The main purpose of this paper is to prove the following theorem:

Theorem 1.1. (1) The completion \hat{R} of R with respect to A is a bounded hereditary noetherian prime ring with quotient ring $Q \otimes \hat{R}$. The Jacobson radical \hat{A} of \hat{R} is $A\hat{R} = \hat{R}A$ and \hat{A}^p is a principal right and left ideal of \hat{R} .

(2) \hat{R} has the following decomposition;

$$\hat{R} = (e_1 \hat{R} \oplus \cdots \oplus e_1 \hat{R}) \oplus (e_2 \hat{R} \oplus \cdots \oplus e_2 \hat{R}) \oplus \cdots \oplus (e_p \hat{R} \oplus \cdots \oplus e_p \hat{R})$$

such that each $e_i \hat{R}$ is a uniform right ideal of \hat{R} , e_i is an idempotent in \hat{R} and $e_i \hat{R}/e_i \hat{A}$ is a simple right R-module which is annihilated by M_i , where k_i is the Goldie dimension of R/M_i .

In case R is a Dedekind prime ring and A is a maximal ideal of R, Gwynne and Robson proved that \hat{R} is also a Dedekind prime ring [5] (in fact, it is a principal ideal ring). We can not use their techniques to prove the theorem. The theorem is proved by using properties of cotosion R-modules.

Applying the theorem to module theory, we prove, in section 2, the following theorems:

Theorem 2.1. Any module over \hat{R} has a basic submodule.

Theorem 2.2. Under the same notations as in Theorem 1.1, any indecomposable right \hat{R} -module is isomorphic to one of the following \hat{R} -modules;

 $e_i\hat{R}/e_i\hat{A}^n$ $(n=1,2,\cdots)$, $e_i\hat{R}$, $e_i(Q\otimes\hat{R})$, $E(e_i\hat{R}/e_i\hat{A})$ $(i=1,\cdots,p)$

where $E(e_i\hat{R}/e_i\hat{A})$ is the R-injective hull of $e_i\hat{R}/e_i\hat{A}$.

In [18], Singh determined the structure of those bounded hereditary noetherian prime rings over which every module admits a basic submodule. If R is a commutative complete discrete valuation ring, then Theorem 2.2 was proved by Kaplansky [7, p. 53]. The author generalized the result to modules over g-discrete valuation rings [11, Corollary 4.4]

In an appendix we present some properties on cotorsion *R*-modules which are obtained by modifying the methods used in the corresponding ones in modules over Dedekind prime rings.

This paper was written while the author was a visitor at Guru Nanak Dev university, India. As I was doing my research, I got several hints from Prof. Singh's lectures and from discussions with him. I would like to express my tahnks to him for his kind invitation to G.N.D. univ. and for his hospitality.

1. The proof of Theorem 1.1

Throughout this paper, R denotes a hereditary neotherian prime ring (for short: hnp-ring) with quotient ring Q and K=Q/R=0. In place of \otimes_R , Hom_R, Ext_R and Tor^R, we just write \otimes , Hom, Ext and Tor, respectively. Since R is hereditary, $\operatorname{Tor}_n = 0 = \operatorname{Ext}^n$ for all n > 1 and so we use Ext for Ext¹ and Tor for Tor_1 . Let M be a right R-module. An element m of M is said to be torsion if $O(m) = \{r \in R \mid mr = 0\}$ is an essential right ideal of R. We say that M is a torsion module if every element of M is torsion. If M has no nonzero torsion elements, then it is called *torsion-free*. M is called *divisible* if MJ=Mfor every essentail left ideal J of R. Since R is an hnp-ring, the divisibility is equivalent to the injectivity by [10]. We denote the Jacobson radical of a ring S by J(S). Let I be an essential right ideal of R. Define I^* by $I^* =$ $\{q \in Q \mid qI \subseteq R\}$ Similarly $*J = \{q \in | Jq \subseteq R\}$ for essential left ideal J of R. An ideal B of R is called *invertible* if $(B^*)B=B(*B)=R$. In this case we have $B^* = {}^*B$, denote it by B^{-1} . Let A be a maximal invertible ideal of R. The cancellation set of A, C(A), is defined to be $\{c \in R \mid cx \in A \Rightarrow x \in A\} = \{c \in R \mid cx \in A \Rightarrow x \in A\}$ $xc \in A \Rightarrow x \in A$ }. By [9], each element of C(A) is regular. We denote the subring of Q generated by $\{a, c^{-1} | a \in \mathbb{R}, c \in C(A)\}$ by \mathbb{R}_A . The following lemma was proved by Kuzmanovich [9, §3].

Lemma 1.1. (1) R satisfies the Ore condition with respect to C(A), i.e., $R_A = \{ac^{-1} | a \in R, c \in C(A)\} = \{d^{-1}b | b \in R, d \in C(A)\}.$

(2) $J(R_A) = AR_A = R_A A$ and $R/A^n \simeq R_A/J(R_A)^n$ for all n.

(3) If A is a maximal ideal, then R_A is a principal ideal ring with a unique maximal ideal $J(R_A)$. So it is a Dedekind prime ring and every ideal of R_A is a power of $J(R_A)$.

(4) If A is an intersection of a cycle, say, $A = M_1 \cap \cdots \cap M_p$, where M_1, \cdots, M_p is a cycle, then $J(R_A) = M_1 R_A \cap \cdots \cap M_p R_A$ and $M_1 R_A, \cdots, M_p R_A$ is a cycle.

 $M_i R_A$'s are only maximal ideals of R_A , all are idempotents and $M_i R_A = R_A M_i$. (5) $R/M_i \approx R_A/M_i R_A$ for all *i*.

We denote the inverse limit of the rings R/A^n $(n=1, 2, \dots)$ by \hat{R} . If A is a maximal ideal of R, then \hat{R} is a principal ideal ring by Theorem 2.3 of [5] and Lemma 1.1. So, to prove Theorem 1.1, we may assume that A is not a maximal ideal of R. Further, since $\hat{R} \cong \hat{R}_A$, we may assume that R satisfies the following two conditions;

(a) J(R) = A is a maximal invertible ideal of R, and

(b) $A=M_1\cap\cdots\cap M_p$, where M_i are idempotent maximal ideals of R and M_1, \dots, M_p is a cycle.

From now on, R denotes an hnp-ring which satisfies the above conditions (a) and (b) unless otherwise stated. Then, by [2], we have

(i) Every invertible ideal of R is a power of A.

(ii) R is bounded and any essential one-sided ideal of R contains a power of A. Especially $Q = \bigcup_n A^{-n}$.

Let F be the family of all essential right ideals of R and let F_i be the family of all essential left ideals of R. We write $\hat{R}_F = \varprojlim R/I(I \in F)$ and $\hat{R}_{F_I} = \varprojlim R/J(J \in F_i)$. They are both rings (cf. [21] for more detailed results). The ring homomorphisms $\varphi: \hat{R}_F \to \hat{R}$ and $\psi: \hat{R}_{F_i} \to \hat{R}$, given by $\varphi(\hat{r}) = ([r_A^n + A^n])$ and $\psi(\hat{s}) = ([s_A^n + A^n])$, where $\hat{r} = ([r_I + I]) \in \hat{R}_F$ and $\hat{s} = ([s_I + J]) \in \hat{R}_{F_i}$ are both isomorphisms by the above (ii). Thus we have

Lemma 1.2. There is a commutative diagram;

where the vertical maps are all natural inclusions. All maps are (R, R)-bihomomorphisms.

Lemma 1.3. (1) \hat{R}/R is torsion-free and injective as right and left R-modules. (2) \hat{R} is torsion-free as right and left R-modules. Especially, \hat{R} and \hat{R}/R are both flat as right and left R-modules.

Proof. (1) In view of Proposition A.3 in the appendix, we have the following commutative diagram with exact rows:

$$\begin{array}{cccc} 0 & \longrightarrow & R & \longrightarrow & \hat{R}_{F_{l}} & \longrightarrow & \hat{R}_{F_{l}}/R & \longrightarrow & 0 \\ & & & & & & \\ & & & & & \\ 0 & \longrightarrow & R & \longrightarrow & \operatorname{Ext}(K, R) & \to & \operatorname{Ext}(Q, R) & \longrightarrow & 0 \end{array}.$$

Ext(Q, R) is a right Q-module. So it is R-injective and R-torsion free. By

Lemma 1.2, so is \hat{R}/R . By symmetry, \hat{R}/R is torsion-free and injective as left *R*-modules. The second assertion is obvious, because *R* is hereditary.

Lemma 1.4. Let M be a right \hat{R} -module. If M is \hat{R} -injective, then it is R-injective.

Proof. By Lemma 1.3, $\operatorname{Tor}_n(N, \hat{R}) = 0$ for any right *R*-module *N* and any $n \ge 1$. Thus the lemma follows from Proposition 4.1.3 of [1, Chap. VI].

From the exact sequence $0 \rightarrow R \rightarrow Q \rightarrow K \rightarrow 0$, we get an exact sequence $0 \rightarrow \hat{R} \rightarrow Q \otimes \hat{R} \rightarrow K \otimes \hat{R} \rightarrow 0$.

Lemma 1.5. (1) $M \otimes \hat{R} \simeq M$ for any torsion right R-module M. So M is a right \hat{R} -module. Especially, $K \simeq K \otimes \hat{R} \simeq (Q \otimes \hat{R})/\hat{R}$.

(2) $Q \otimes \hat{R}$ is injective and torsion-free as right and left R-modules, and $Q \otimes \hat{R}$ is the injective hull of \hat{R} as left and right R-modules.

Proof. From the exact sequence $0 \to R \to \hat{R} \to \hat{R}/R \to 0$, we get the exact sequence $\operatorname{Tor}(M, \hat{R}/R) \to M \otimes R \to M \otimes \hat{R} \to M \otimes \hat{R}/R$. By Lemma 1.3, $\operatorname{Tor}(M, \hat{R}/R) = 0 = M \otimes R/\hat{R}$. Thus $M \cong M \otimes \hat{R}$.

(2) By Proposition A.9 and Lemma 1.2, $J(\hat{R}) = A\hat{R} = \hat{R}A$. Thus we have $(Q \otimes \hat{R})A = (Q \otimes \hat{R}A) = Q \otimes A\hat{R} = Q \otimes \hat{R}$. This means $Q \otimes \hat{R}$ is divisible as right *R*-modules and so it is *R*-injective. To prove that $Q \otimes \hat{R}$ is torsion-free as right *R*-modules, let $x = c^{-1} \otimes \hat{r}$ be any element in $Q \otimes \hat{R}$, where *c* is a regular element in *R* and $\hat{r} = ([r_n + A^n])$. If $xA^m = 0$ for some *m*. Then $(1 \otimes \hat{r})A^m = 0$ and $\hat{r}A^m = 0$. This means $r_iA^m \subseteq A^i$ for every *l* and $r_i \in A^{l-m}(l=m+1, m+2, \cdots)$. Write $\hat{s} = ([r_i + A^{l-m}])$ $(l=m+1, m+2, \cdots)$ is zero in \hat{R} . Clearly $\hat{r} = \hat{s}$. Thus $Q \otimes \hat{R}$ is torsion-free as right *R*-modules. It is clear that $Q \otimes \hat{R}$ is torsion-free and injective as left *R*-modules. To prove that $Q \otimes \hat{R}$ is the *R*-injective hull of \hat{R} , we consider the exact sequence $0 \rightarrow \hat{R} \rightarrow Q \otimes \hat{R} \rightarrow K \rightarrow 0$. Since *K* is torsion and $Q \otimes \hat{R}$ is torsion-free, $Q \otimes \hat{R}$ is an essential extension of \hat{R} as right and left *R*-modules.

Lemma 1.6. Let M be a right \hat{R} -module such that it is torsion-free and injective as R-modules. Then M is \hat{R} -injective.

Proof. We let E be the \hat{R} -injective hull of M. Then we have $E=M\oplus N$ for some R-submodule N of E. By Lemma 1.4, E is R-injective. So N is also R-injective. Write $N=\Sigma\oplus N_{\alpha}$, where N_{α} are uniform and injective right R-modules. If N_{α} is torsion for some α , then it is an \hat{R} -module by Lemma 1.5. Thus we have $M\subseteq M\oplus N_{\alpha}\subseteq E$. This is a contradiction. So N_{α} are all torsion-free as R-modules and hence E=E/M is torsion-free. E is Rinjective, because E is R-injective. It follows that \bar{E} is embeddable in a direct sum of Q. From the exact sequence $0 \to R \to \hat{R} \to \hat{R}/R \to 0$, we have the follow-

ing diagram with exact rows and colums:

By Proposition A.10, the right singular ideal $Z_{\hat{k}}(\hat{R})$ of \hat{R} is zero and so $Z_{\hat{k}}(Q \otimes \hat{R}) = 0$. It follows that $Z_{\hat{k}}((\Sigma \oplus Q) \otimes \hat{R}) = 0$. Thus $Z_{\hat{k}}(\bar{E}) = \bar{E} \cap Z_{\hat{k}}((\Sigma \oplus Q) \otimes \hat{R}) = 0$. On the other hand, $Z_{\hat{k}}(\bar{E}) = \bar{E}$. This means $\bar{E} = 0$, from which we have M is \hat{R} -injective.

We know from Lemmas 1.5 and 1.6 that $Q \otimes \hat{R}$ is the injective hull of \hat{R} as right and left \hat{R} -modules. Thus $Q \otimes \hat{R}$ is the maximal right and left quotient ring of \hat{R} by 1. +2. Theorem of [3, p. 69]. We denote the ring $Q \otimes \hat{R}$ by \hat{Q} . From the exact sequence $0 \rightarrow R \rightarrow \hat{R} \rightarrow \hat{R}/R \rightarrow 0$, we get the exact sequence $0 \rightarrow Q \otimes R \rightarrow Q \otimes \hat{R}$. Thus we may identify $q \otimes 1$ with q in $Q \otimes \hat{R}$, where $q \in Q$. The exact sequence $0 \rightarrow R \rightarrow Q \rightarrow K \rightarrow 0$ induces the following exact sequence $\operatorname{Hom}(Q, M) \rightarrow M \rightarrow \operatorname{Ext}(K, M) \rightarrow \operatorname{Ext}(Q, M)$ for any right R-module M. Any indecomposable, injective right R-module is a homomorphic image of Q and any injective right R-module is a direct sum of indecomposable, injective right R-modules. So M is reduced, i.e., it has no nonzero injective submodules, if and only if $\operatorname{Hom}(Q, M)=0$. M is called *cotorsion* if $\operatorname{Ext}(Q, M)=0$.

Lemma 1.7. $Tor_1^{\hat{R}}(M, \hat{Q}) = 0$ for any right \hat{R} -module M.

Proof. It is enough to prove that any finitely generated left \hat{R} -submodule of \hat{Q} is \hat{R} -projective. To prove this let $\hat{R}x_1 + \cdots + \hat{R}x_n$ be any finitely generated \hat{R} -submodule of \hat{Q} . Write $x_i = c^{-1} \otimes \hat{r}_i$, where c is a regular element in R and $\hat{r}_i \in \hat{R}$. $c^{-1}A^n \subseteq R$ for some n. Thus we have $x_iA^n = (c^{-1} \otimes \hat{r}_i)A^n \subseteq (c^{-1} \otimes \hat{R})A^n =$ $(c^{-1}A^n \otimes \hat{R}) \subseteq \hat{R}$ and so $x_i d \in \hat{R}$ for any regular element d in A^n . Thus we have $\sum_{i=1}^n \hat{R}x_i \cong \sum_{i=1}^n \hat{R}x_i d$ which is contained in \hat{R} . Hence $\sum_{i=1}^n \hat{R}x_i$ is \hat{R} -projective by Proposition A.10.

Since A is invertible, dim $A^{-1}/R = \dim R/A$ (dim denotes the (right) Goldie dimension). Clearly socle $K = A^{-1}/R$. Thus we have $k = \dim R/A = \dim K$. Write $K = \sum_{i=1}^{k} \bigoplus D_i$, where D_i are uniform, injective, torsion right *R*-modules. By periodicity theorem ([16] and also [4]), there exists a homomorphism $f: D_i \rightarrow D_i$ such that Ker f is zero or finite length.

Lemma 1.8. \hat{Q} is a simple arittian ring and dim_k \hat{R} =dim R/A.

Proof. Firstly we shall prove that \hat{Q} is a semi-simple artinian ring. To prove this let I be any right ideal of \hat{Q} . It is a right Q-module. So it is torsionfree and injective as right R-modules. Since I is a right \hat{R} -module, it is \hat{R} injective by Lemma 1.6 and so we have $I \oplus L = Q$ for some right \hat{R} -submodule L of \hat{Q} . It follows that $I \oplus L \hat{Q} = \hat{Q}$. This means \hat{Q} is a semi-simple artinian ring. Next we shall prove that $k = \dim R/A = \dim_{\hat{K}} \hat{R}$. Let $K = \sum_{i=1}^{k} \oplus D_i$. By Proposition A.3, $\hat{R} = \text{Hom}(K, K) = \sum_{i=1}^{k} \oplus \text{Hom}(K, D_i) = \sum_{i=1}^{k} \oplus e_i \hat{R}$, where $e_i \in \hat{R}$ and $e_i = e_i^2$. Suppose that $e_i \hat{R}$ is not uniform for some *i*. Then $e\hat{Q} =$ $X \oplus Y$ for some nonzero right ideals X, Y of \hat{Q} , where $e = e_i$. Since X is a direct summand of \hat{Q} , we have $X=Q_{\hat{Q}}(q)=\{x\in \hat{Q} \mid qx=0\}$ for some idempotent g in \hat{Q} . There is a regular element c in R such that $cg \in \hat{R}$. Thus we have $X=O_{\delta}(cg)$. On the other hand, $e\hat{R}=e\hat{Q}\cap \hat{R}\supseteq X\cap \hat{R}=O_{\delta}(cg)\cap \hat{R}=O_{\delta}(cg)$. Thus, by Proposition A.10, $O_{\hat{R}}(cg)$ is a direct summand of \hat{R} . Write $O_{\hat{R}}(cg) =$ $f\hat{R}$ for some idempotent f in \hat{R} . It follows that $e\hat{R} = f\hat{R} \oplus ((1-f)\hat{R} \cap e\hat{R})$ and that $e\hat{R} = f\hat{R}$, because $e\hat{R}$ is indecomposable by Proposition A.6. So $e\hat{Q} =$ $f\hat{Q}=X$, which is a contradiction. Therefore each $e_i\hat{R}$ is a uniform right ideal of \hat{R} and thus dim_{$\hat{R}} <math>\hat{R}$ =dim R/A. Finally we shall prove that \hat{Q} is a simple</sub> artinian ring. To prove this let D_i , D_j be any indecomposable, injective, torsion direct summands of K. As was shown in before the lemma, there exists an exact sequence $0 \rightarrow \text{Ker } f \rightarrow D_i \rightarrow D_i \rightarrow 0$ and Ker f is zero or finite length. Applying Hom(K,) to the exact sequence, we get the exact sequence $\operatorname{Hom}(K, \operatorname{Ker} f) \to \operatorname{Hom}(K, D_i) \to \operatorname{Hom}(K, D_i)$. The first term is zero, since Ker f is reduced and K is injective. Thus we have the exact sequence $0 \rightarrow$ $e_i \hat{R} \rightarrow \hat{R}$. Applying $\bigotimes_{\hat{R}} \hat{Q}$ to the sequence we get, by Lemma 1.7, the exact sequence $0 \rightarrow e_i \hat{R} \otimes_{\hat{R}} \hat{Q} \rightarrow e_i \hat{R} \otimes_{\hat{R}} \hat{Q}$. But $e_i \hat{R} \otimes_{\hat{R}} \hat{Q}$ is a simple right \hat{Q} -module and so $e_i \hat{R} \otimes_{\hat{k}} \hat{Q} \simeq e_i \hat{R} \otimes_{\hat{k}} \hat{Q}$. Now, since $\hat{R} = \sum_{i=1}^k \oplus e_i \hat{R}$, we have $\hat{Q} = \sum_{i=1}^k \oplus e_i \hat{R}$. $e_i\hat{Q}$ and $e_i\hat{Q} \simeq e_i\hat{Q}$ for any pair *i*, *j*. This means *Q* is a simple artinian ring.

By Proposition A.9 and Lemma 1.2, $J(\hat{R}) = A\hat{R} = \hat{R}A$. We denote it by \hat{A} . Clearly $\hat{A}^n = A^n \hat{R} = \hat{R}A^n$ for every *n*.

Lemma 1.9. (1) Any ideal B of \hat{R} contains a power of \hat{A} . (2) \hat{R} is a bounded hnp-ring with quotient ring \hat{Q} .

Proof. (1) Since \hat{Q} is a simple artinian ring, we have $\hat{Q} = \hat{Q}B\hat{Q}$. Write $1 = \sum q_i b_i p_i$, where $q_i \in \hat{Q}$, $b_i \in B$ and $p_i \in \hat{Q}$. There exists a natural number l such that $A^l q_i \subseteq \hat{R}$. Write $p_i = \sum x_{ij} \otimes \hat{r}_{ij}$, where $x_{ij} \in Q$ and $\hat{r}_{ij} \in \hat{R}$. Again $x_{ij}A^m \subseteq R$ for some m, and so $p_iA^m = (\sum x_{ij} \otimes \hat{r}_{ij})A \subseteq (\sum x_{ij} \otimes \hat{R})A^m = \sum x_{ij}A^m \otimes \hat{R} \subseteq \hat{R}$. Thus $B \supseteq A^l (\sum q_i b_i p_i)A^m = A^{l+m}$ and so $B \supseteq \hat{A}^{l+m}$.

(2) Since $A^n \neq 0$ for every n, \hat{R} is a prime ring by (1). Let I be an essential right ideal of \hat{R} . Then $IQ = \hat{Q}$. By the same way as in (1), I contains a power of \hat{A} . So \hat{R} is right bounded and I is a finitely generated right ideal of

 \hat{R} , because $\hat{R}/\hat{A}^n \simeq R/A^n$, by Proposition A.9, which is an artinian ring for every n and A^n is finitely generated. Since $\dim_{\hat{k}} \hat{R} = k$, \hat{R} is right noetherian. By symmetry, \hat{R} is left bounded and left noetherian. Thus it follows that \hat{R} is hereditary by Proposition A.10. Clearly \hat{Q} is the classical quotient ring of \hat{R} .

Let $k=\dim R/A$, let $A=M_1\cap\cdots\cap M_p$, where M_1,\cdots,M_p is a cycle. We denote the dim R/M_i by k_i . Then $k=k_1+\cdots+k_p$, because $R/A\cong R/M_1\oplus\cdots\oplus R/M_p$. Let S_i be a simple right R-module such that $S_iM_i=0$.

Lemma 1.10. \hat{R} has the following decomposition:

$$\hat{R} = (e_1 \stackrel{k_1}{\widehat{R} \oplus \dots \oplus e_1} \stackrel{k_2}{\widehat{R}}) \oplus (e_2 \stackrel{k_2}{\widehat{R} \oplus \dots \oplus e_2} \stackrel{k_p}{\widehat{R}}) \oplus \dots \oplus (e_p \stackrel{k_p}{\widehat{R} \oplus \dots \oplus e_p} \stackrel{k_p}{\widehat{R}})$$

such that each $e_i \hat{R}$ is a uniform right ideal of \hat{R} , $e_i^2 = e_i$ and $e_i \hat{R}/e_i \hat{A} \simeq S_i$ $(1 \le i \le p)$.

Proof. By Lemma 6, Theorems 7 and 8 of [4], we have

It is clear that socle $K = A^{-1}/R = O_l(M_2)/R \oplus \cdots \oplus O_l(M_p)/R \oplus O_l(M_1)/R$ (cf. Lemma 4.8 of [8]). Thus we get the following decomposition:

$$K = D_1 \bigoplus \cdots \bigoplus D_1 \oplus D_2 \bigoplus \cdots \oplus D_2 \oplus \cdots \oplus D_p \bigoplus \cdots \bigoplus D_p$$

where D_i are injective, uniform and torsion right *R*-modules such that socle $D_i \cong S_{i+1}$ $(1 \le i \le p-1)$ and socle $D_p \cong S_1$. By proposition A.3, we get $\hat{R} = \text{Hom}(K, K) = \sum_{i=1}^{p} \bigoplus \sum_{i=1}^{k_i} \bigoplus \text{Hom}(K, D_i) = \sum_{i=1}^{p} \bigoplus \sum_{i=1}^{k_i} \bigoplus e_i \hat{R}$, where $e_i \hat{R}$ are uniform right ideals of \hat{R} and e_i are idempotents in \hat{R} . If $i \ne j$, then $e_i \hat{R}$ is non-isomorphic to $e_i \hat{R}$ by Proposition A.6. We consider the factor ring;

$$\hat{R}/\hat{A} = (e_1\hat{R}/e_1\hat{A} \oplus \cdots \oplus e_1\hat{R}/e_1\hat{A}) \oplus \cdots \oplus (e_p\hat{R}/e_p\hat{A} \oplus \cdots \oplus e_p\hat{R}/e_p\hat{A})$$
.

 \hat{R}/\hat{A} is a right R/A-module. So it is completely reducible. Further $k = \dim R/A = \dim \hat{R}/\hat{A} = \dim_{\hat{R}} \hat{R}$. Thus each $e_i \hat{R}/e_i \hat{A}$ is a simple right *R*-module. For each *i*, we consider the exact sequence

(*)
$$0 \to e_i \hat{A} \to e_i \hat{R} \to e_i \hat{R} / e_i \hat{A} \to 0$$
.

Applying Tor(, K) to (*), we have $\operatorname{Tor}(e_i/\hat{R}, K) \to \operatorname{Tor}(e_i\hat{R}/e_i\hat{A}, K) \to e_i\hat{A} \otimes K \to C$

 $e_i \hat{R} \otimes K \rightarrow e_i \hat{R}/e_i \hat{A} \otimes K$. The first and last terms are zero, because $e_i \hat{R}$ is *R*-flat by Lemma 1.3, $e_i \hat{R}/e_i \hat{A}$ is torsion and *K* is divisible. Further, $\operatorname{Tor}(e_i \hat{R}/e_i \hat{A}, K) \cong e_i \hat{R}/e_i \hat{A}$ by Exersise 2 of [22, p. 81]. Thus we have the exact sequence

$$(^{**}) \qquad 0 \to e_i \hat{R}/e_i \hat{A} \to e_i \hat{A} \otimes K \to e_i \hat{R} \otimes K (\simeq D_i) \to 0 .$$

Again, applying Hom(Q,) to (*), we get $0 = \text{Hom}(Q, e_i \hat{R}/e_i \hat{A}) \rightarrow \text{Ext}(Q, e_i \hat{A}) \rightarrow \text{Ext}(Q, e_i \hat{R}) = 0$, because $e_i \hat{R}$ is cotorsion. Hence $\text{Ext}(Q, e_i \hat{A}) = 0$, from which we have $e_i \hat{A}$ is a reduced, cotorsion and uniform right ideal of \hat{R} . It follows that $e_i \hat{A} \otimes K \simeq D_j$ for some j by Proposition A.6. But, by periodicity theorem, if $i \neq 1$, then j = i - 1, and if i = 1, then j = p. Hence $e_i \hat{R}/e_i \hat{A} \simeq S_i$ for any i.

Lemma 1.11. Under the same notations as in Lemma 1.10, $\hat{A}^{\flat} = \hat{a}\hat{R} = \hat{R}\hat{a}$ for some $\hat{a} \in \hat{A}^{\flat}$.

Proof. We consider the decomposition;

$$\hat{R}/\hat{A}^{p+1} = (e_1\hat{R}/e_1\hat{A}^{p+1} \oplus \cdots \oplus e_1\hat{R}/e_1\hat{A}^{p+1}) \oplus \cdots \oplus (e_p\hat{R}/e_p\hat{A}^{p+1} \oplus \cdots \oplus e_p\hat{R}/e_p\hat{A}^{p+1}).$$

Since \hat{A} is invertible, $\dim_{\hat{R}} \hat{R} = \dim R/A = \dim \hat{R}/\hat{A}^{p+1}$. Thus each $e_i \hat{R}/e_i \hat{A}^{p+1}$ is a uniform *R*-module and so it is a uniserial *R*-module by Lemma 2 of [16]. Clearly the members of chain $e_i \hat{R} > e_i \hat{A} > \cdots > e_i \hat{A}^{p+1}$ are only \hat{R} -submodules of $e_i \hat{R}$ containing $e_i \hat{A}^{p+1}$. Especially, socle $e_i \hat{R}/e_i \hat{A}^{p+1} = e_i \hat{A}^p/e_i \hat{A}^{p+1}$ for each *i*. Periodicity theorem says that $e_i \hat{R}/e_i \hat{A} \simeq e_i \hat{A}^p/e_i \hat{A}^{p+1}$. Thus $\hat{R}/\hat{A} \simeq \hat{A}^p/\hat{A}^{p+1}$ and $\hat{A}^p/\hat{A}^{p+1} = [\hat{a} + \hat{A}^{p+1}]\hat{R}$ for some $\hat{a} \in \hat{A}^p$. It follows that $\hat{A}^p = \hat{a}\hat{R} + \hat{A}^{p+1}$. By Nakayama's Lemma, $\hat{A}^p = \hat{a}\hat{R}$ and, by symmetry, $\hat{A}^p = \hat{R}\hat{b}$ for some $\hat{b} \in \hat{A}^p$. But, by the same way as in [6, p. 37], we have $\hat{A}^p = \hat{R}\hat{a}$.

From Lemmas 1.2, 1.9, 1.10, 1.11 and Proposition A.9 we have the first theorem mentioned in the introduction.

Theorem 1.1. Let R be an hnp-ring with quotient ring Q and let $A = M_1 \cap \cdots \cap M_p$ be a maximal invertible ideal of R, where M_i are idempotent maximal ideals of R and M_1, \dots, M_p is a cycle. Then

(1) \hat{R} is a bounded hnp-ring with quotient ring $Q \otimes \hat{R}$. $J(\hat{R}) = A \hat{R} = \hat{R}A$ and \hat{A}^{p} is a principal right and left ideal of \hat{R} .

(2) \hat{R} has the following decomposition:

$$\hat{R} = (e_1 \hat{R} \oplus \cdots \oplus e_1 \hat{R}) \oplus (e_2 \hat{R} \oplus \cdots \oplus e_2 \hat{R}) \oplus \cdots \oplus (e_p \hat{R} \oplus \cdots \oplus e_p \hat{R})$$

such that each $e_i \hat{R}$ is a uniform right ideal of \hat{R} , e_i is an idempotent in \hat{R} and $e_i \hat{R}/e_i \hat{A}$ is a simple right R-module which is annihilated by M_i , where $k_i = \dim R/M_i$.

2. Applications

In this section, we shall prove, by using Theorem 1.1, that any \hat{R} -module has a basic submodule, and shall characterize the structure of indecomposable \hat{R} -modules. By Theorem 1.1, $\hat{R} = (e_1\hat{R} \oplus \cdots \oplus e_1\hat{R}) \oplus \cdots \oplus (e_p\hat{R} \oplus \cdots \oplus e_p\hat{R})$, where e_i are uniform idempotents in \hat{R} . Then $\hat{Q} = (e_1\hat{Q} \oplus \cdots \oplus e_1\hat{Q}) \oplus \cdots \oplus (e_p\hat{Q} \oplus \cdots \oplus e_p\hat{Q})$. So $\hat{Q}/\hat{R} = \sum_{i=1}^{b} \oplus \sum_{i=1}^{k_i} \oplus e_i\hat{Q}/e_i\hat{R}$. Since $K \simeq \hat{Q}/\hat{R}$ and dim K =dim \hat{k} \hat{R} , each $e_i\hat{Q}/e_i\hat{R}$ is a uniform, injective and torsion right R-module. By Theorem 4 of [15], the set of right R-submodules of $e_i\hat{Q}/e_i\hat{R}$ is linearly ordered by inclusion. In this case, the set of right R-submodules of $e_i\hat{Q}/e_i\hat{R}$ is $\{e_i\hat{A}^{-n}/e_i\hat{R}|n=0, 1, 2, \cdots\}$. Thus $e_i\hat{R} < e_i\hat{A}^{-1} < \cdots < e_i\hat{A}^{-n} < \cdots$ are only propen right \hat{R} -submodules of $e_i\hat{Q}$ containing $e_i\hat{R}$.

Lemma 2.1. Under the same notations as in Theorem 1.1, any torsionfree and uniform right \hat{R} -module is isomorphic to $e_i\hat{Q}$ or $e_i\hat{R}$ for some *i*.

Proof. Let M be a torsion-free and uniform right \hat{R} -module. If M is \hat{R} -injective, then it is isomorphic to $e_i\hat{Q}$ for any i. If M is not injective, then it is reduced. Since $M=M\hat{R}=M(\sum_{i=1}^{k}\bigoplus_{j=1}^{k}\oplus_{i}\hat{R})$, we have $0\neq Me_j\hat{R}$ for some j and $0\neq xe_j\hat{R}$ for some $x\in M$. There exists an epimorphism $f:e_j\hat{R}\rightarrow xe_j\hat{R}$. If Ker f is non zero, then $e_j\hat{R}/\text{Ker } f$ is torsion. But $xe_j\hat{R}$ is torsion-free. This is a contradiction. Thus f is an isomorphism. Consider the diagram

$$\begin{array}{c} 0 \to x e_j \hat{R} \to M \\ & \downarrow f^{-1} \\ e_j \hat{R} \\ & \uparrow \\ e_j \hat{Q} \end{array}$$

Since $e_j\hat{Q}$ is injective, f^{-1} is extended to $g: M \to e_j\hat{Q}$. It is clear that g is a monomorphism and g(M) is a proper \hat{R} -submodule of $e_j\hat{Q}$ containing $e_j\hat{R}$, because M is reduced. Thus $g(M)=e_j\hat{A}^{-n}$ for some n. Since $e_j\hat{A}^{-n}/e_j\hat{A}^{-n+1}$ is a simple right R-module, $e_j\hat{A}^{-n}/e_j\hat{A}^{-n+1}=[\hat{a}+e_j\hat{A}^{-n+1}]\hat{R}$ and $e_j\hat{A}^{-n}=\hat{a}\hat{R}+(e_j\hat{A}^{-n})\hat{A}$ for some $\hat{a} \in e_j\hat{A}^{-n}$. By Nakayama's Lemma, $e_j\hat{A}^{-n}=\hat{a}\hat{R}$. Since $\hat{a}\hat{R}$ is \hat{R} -projective, it is isomorphic to a direct summand of \hat{R} and so it is reduced, torsion-free, uniform and cotorsion \hat{R} -module. Thus, by Proposition A.6, $\hat{a}\hat{R} \cong \operatorname{Hom}(K, D_i) \cong e_i\hat{R}$ for some uniform, torsion, injective right R-module D_i . Hence $M \cong e_i\hat{R}$, as desired.

An \hat{R} -submodule N of a right \hat{R} -module M is called *pure* if any finite system of linear equations $\sum_{j} x_{j} \hat{r}_{ij} = s_{i} \in N$ is solvable in M, where $\hat{r}_{ij} \in \hat{R}$, then it possesses a solution in N. By the remark to Theorem 3.6 of [20], N is pure in M if and only if $Mc \cap N = Nc$ for every regular element c in \hat{R} . By using the above result, Theorem 10 of [16], Lemma 2 of [17] and Lemma 2.1, the proof of the following two lemmas proceeds just like that of Lemmas 3.4 and 3.5 of [11], respectively.

Lemma 2.2. Any non injective right \hat{R} -module contains a non zero pure, uniform and cyclic right \hat{R} -submodule.

Lemma 2.3. Let M be a right \hat{R} -module and let N be a pure \hat{R} -submodule such that M/N is not injective. Then there exists an element $y \in M$ such that $N \cap y \hat{R} = 0$ and $N \oplus y \hat{R}$ is pure in M.

An \hat{R} -submodule B of a right \hat{R} -module M is said to be *basic* if it satisfies the following conditions:

- (i) B is a direct sum of uniform, cyclic right \hat{R} -modules,
- (ii) B is pure in M, and
- (iii) M/B is an injective \hat{R} -module.

From Lemmas 2.2 and 2.3, we have

Theorem 2.1. Any right \hat{R} -module possesses a basic \hat{R} -submodule.

REMARK. Any two basic submodules of a right \hat{R} -module are isomorphic (cf. the remark to Theorem 3 of [18])

Corollary 2.1. \hat{R} is a block lower triangular matrix ring over D/M, where D is a discrete valuation ring with maximal ideal M (cf. Theorem 2 of [18]).

Let R be an hnp-ring and let A be a maximal invertible ideal of R. A right R-module M is A-primary if any element in M is annihilated by a power of A.

Lemma 2.4. Let R be an hnp-ring, let A be a maximal invertible ideal of R and let M be a right R-module. Then

(1) M is A-primary if and only if it is a right \hat{R} -module and is torsion as right \hat{R} -modules.

(2) If M is A-primary, then M is R-injective if and only if it is \hat{R} -injective.

Proof. If M is A-primary, then $M \cong M \otimes R_A$ by the same way as in Lemma 1.5 and it is torsion as right R_A -modules. Thus it follows that M is R-injective if and only if it is R_A -injective by Proposition 3.11 of [23, p. 232]. So we may assume that $R=R_A$ and J(R)=A.

(1) is obvious, since $\hat{A}^n = A^n R = \hat{R} A^n$ for every *n*.

(2) Sufficiency follows from Lemma 1.4. To prove necessity, suppose that M is torsion and R-injective. Let E be any essential extension of M as right \hat{R} -modules. Any essential right ideal of \hat{R} contains a power of \hat{A} . This means E/M is torsion as right R-modules and so E is a torsion right R-module.

By assumption we have a decomposition $\hat{R}=M\oplus N$, where N is a right R-module. But N is a right \hat{R} -module by (1). Thus N=0 and M=E. Hence M is \hat{R} -injective.

Lemma 2.5. Under the same notations as in Theorem 1.1, any reduced, uniform and torsion right \hat{R} -module is isomorphic to $e_i \hat{R}/e_i \hat{A}^n$ for some *i* and some *n*.

Proof. By the same way as in Lemma 1.11, $e_i \hat{R}/e_i \hat{A}^n$ is a uniserial, torsion right *R*-module of length *n* and socle $e_i \hat{R}/e_i \hat{A}^n = e_i \hat{A}^{n-1}/e_i \hat{A}^n$ for each *i*. So, by the periodicity theorem, we have $\{e_1 \hat{A}^{n-1}/e_1 \hat{A}^n, \dots, e_p \hat{A}^{n-1}/e_p \hat{A}^n\} = \{S_1, \dots, S_p\}$. Now let *M* be any reduced, uniform and torsion right \hat{R} -module and let socle $M \approx S_j$. Then, by Lemma 2 of [16], *M* is uniserial. Suppose that the length of *M* is *n*, then we have the following diagram:

for some *i*, where *E* is the injective hull of $e_i \hat{A}^{n-1}/e_i \hat{A}^n$. The monomorphism is extended $f: M \to E$. Clearly *f* is also a monomorphism. Hence $M \simeq f(M) = e_i \hat{R}/e_i \hat{A}^n$, because $e_i \hat{R}/e_i \hat{A}^n$ is the only \hat{R} -submodule of *E* which is of length *n*.

Under the same notations as in §1, we obtained the exact sequence (cf. Lemma 1.10) $0 \rightarrow S_i \rightarrow e_i \hat{A} \otimes K \rightarrow D_i \rightarrow 0$ and $D_{i-1} \simeq e_i \hat{A} \otimes K$ $(2 \le i \le p)$, $D_p \simeq e_1 \hat{A} \otimes K$. By Proposition A.6, we have $f_i: e_i \hat{R} \simeq e_{i+1} \hat{A}$ $(1 \le i \le p-1)$ and $f_p: e_p \hat{R} \simeq e_1 \hat{A}$. These f_j 's induce the isomorphisms

$$f_i^{(n)}: e_i \hat{R} / e_i \hat{A}^n \simeq e_{i+1} \hat{A} / e_{i+1} \hat{A}^{n+1}, \quad f_p^{(n)}: e_p \hat{R} / e_p \hat{A}^n \simeq e_1 \hat{A} / e_1 \hat{A}^{n+1}$$

for every *n*. Thus we have the following ascending chains:

$$e_{1}\hat{R}/e_{1}\hat{A} \stackrel{f_{1}^{(1)}}{\simeq} e_{2}\hat{A}/e_{2}\hat{A}^{2} \subseteq e_{2}\hat{R}/e_{2}\hat{A}^{2} \subseteq \cdots \subseteq e_{p}\hat{R}/e_{p}\hat{A}^{p} \stackrel{f_{p}^{(p)}}{\simeq} e_{1}\hat{A}/e_{1}\hat{A}^{p+1} \subseteq e_{1}\hat{R}/e_{1}\hat{A}^{p+1} \subseteq \cdots \subseteq e_{i}\hat{R}/e_{i}\hat{A}^{pn+i} \stackrel{f_{i}^{(pn+i)}}{\simeq} e_{i+1}\hat{A}/e_{i+1}\hat{A}^{pn+i+1} \subseteq e_{i+1}\hat{R}/e_{i+1}\hat{A}^{pn+i+1} \subseteq \cdots .$$

We denote the inductive limit of $e_i \hat{R}/e_i \hat{A}^{pn+i}$ by $R(M_1^{\infty})$. It is clear that $R(M_1^{\infty})$ is a uniform, A-primary right R-module and that the length of it is infinite. Hence $R(M_1^{\infty}) = E(e_1 \hat{R}/e_1 \hat{A})$, the injective hull of $e_1 \hat{R}/e_1 \hat{A}$, by Theorem 19 of [4]. Similarly we can define $R(M_j^{\infty})$ $(2 \le j \le n)$. Thus we have

Proposition 2.1. Let R be an hnp-ring and let $A = M_1 \cap \cdots \cap M_p$ be a maximal invertible ideal of R, where M_1, \cdots, M_p is a cycle. Then $R(M_1^{\infty}), \cdots, R(M_p^{\infty})$

are only non-isomorphic indecomposable, injective and A-primary R-modules.

REMARK. $R(M_i^{\infty})$ are a natural generalization of the typical, divisible, indecomposable and torsion abelian group $Z(p^{\infty})$.

Theorem 2.2. Under the same notations as in Theorem 1.1, any indecomposable right \hat{R} -module is isomorphic to one of the following modules:

 $e_i \hat{R} / e_i \hat{A}^n (n=1, 2, \cdots), e_i \hat{R}, e_i (Q \otimes \hat{R}), R(M_i^{\infty}) (1 \le i \le p).$

Proof. Let M be an indecomposable right \hat{R} -module. Suppose that M is \hat{R} -injective. Then it can not be mixed, i.e., it is torsion or torsion-free. If M is torsion, then $M \simeq R(M_i^{\circ\circ})$ for some i by Lemma 2.4 and Proposition 2.1. If M is torsion-free, then it is isomorphic to $e_i(Q \otimes \hat{R})$. If M is not injective, then it is reduced. Assume that M is torsion-free. Then we have a following pure exact sequence $0 \rightarrow e_i \hat{R} \rightarrow M \rightarrow M/e_i \hat{R} \rightarrow 0$ for some i by Lemmas 2.1 and 2.2. $M/e_i \hat{R}$ is torsion-free by Lemma 1.5 of [20]. Thus $e_i \hat{R}$ is a direct summand of M by Proposition A.8. Hence $M \simeq e_i \hat{R}$. Finally if M is not torsion-free, then it has a uniserial torsion summand by Proposition 2.1 of [19]. Thus M is a uniserial torsion \hat{R} -module. By Lemma 2.5, we have $M \simeq e_i \hat{R}/e_i \hat{A}^n$ for some i and some n.

Appendix

We shall present, in this section, some results on cotorsion modules over hnp-rings which are obtained by modifying the methods used in the corresponding ones in modules over Dedekind prime rings (cf. [12] and [13]). So we shall omit the proof of these except Proposition A.10. Since Proposition A.10 is a new result, we shall give the proof of it. Let R be an hnp-ring with quotient ring Q and let F be any right additive topology on R. An element m of a right R-module M is said to be F-torsion if $O(m) = \{r \in R | mr = 0\} \in F$, and we denote the submodule of F-torsion elements of M by $t_F(M)$ (for short: t(M)). If t(M)=0, then we say that M is F-torsion-free. A right additive topology Fon R is called *trivial* if all modules are F-torsion or F-torsion-free. By the same way as in [12, p. 548], F is non-trivial if and only if it consists of essential right ideals of R (This result is true if R is a prime Goldie ring (cf. [14])).

From now on, F denotes a non-trivial right additive topology on R. We put $R_F = \bigcup I^*(I \in F)$, a ring of quotients of R with respect to F. The family F_I of left ideals J of R such that $R_F J = R_F$ is a left additive topology on R. We call it the left additive topology corresponding to F. F_I is also non-trivial by Proposition 1.1 of [12]. We write $R_{F_I} = \bigcup^* J(J \in F_I)$. Clearly $R_F = R_{F_I}$. It is well-known that R_F is R-flat and the inclusion map $R \rightarrow R_F$ is an epimorphism. A right R-module M is said to be F_I -divisible if MJ = M for every $J \in F_{l}$. We can define the concepts of F_{l} -torsion and F-divisible for any left R-module.

Proposition A.1. (1) $t(K) = R_F/R = t_{F_I}(K)$, where K = Q/R. Thus t(K) is (F, F_I) -divisible.

(2) Let I be an essential right ideal of R. Then $I \in F$ if and only if I^*/R is F_i -torsion (cf. Proposition 1.4 of [12]).

Following [22], a right *R*-module *D* is *F*-injective if Ext(R/I, D)=0 for every $I \in F$.

Proposition A.2. A right R-module is F-injective if and only if it is F_i -divisible. In particular, $M \otimes R_F$ and $M \otimes t(K)$ are both F-injective for any right R-module M (cf. Lemma 2.5 of [12]).

For a right *R*-module *M*, we define $\hat{M}_{F_l} = \lim_{t \to \infty} M/MJ \ (J \in F_l)$. Then it is a right R_{F_l} -module, where $R_{F_l} = \lim_{t \to \infty} R/J$, which is a ring (cf. [21, §4]).

Proposition A.3. Let M be an F-torsion-free right R-module. Then there is a commutative diagram:

Here $\alpha(\hat{m})(q) = m_L \otimes q$, where $\hat{m} = ([m_I + MJ]) \in \hat{M}_{F_I}$ and $q \in t(K)$ such that Lq = 0 and $L \in F_I$. β is the connecting homomorphism induced by the exact sequence $0 \rightarrow R \rightarrow R_F \rightarrow R_F/R \rightarrow 0$ (cf. Lemma 2.7 of [12]).

A right R-module G is said to be F-cotorsion if $\operatorname{Ext}(R_F, G)=0$. The union of all F_I -divisible sumbodules of a right R-module M is itself F_I -divisible and is denoted by MF^{∞} ; if $MF^{\infty}=0$, then M is said to be F-reduced. From the exact sequence $0 \to R \to R_F \to t(K) \to 0$ we derive an exact sequence $\operatorname{Hom}(R_F, M)$ $\stackrel{i^*}{\longrightarrow} M \to \operatorname{Ext}(t(K), M)$ for any right R-module M.

Proposition A.4. (1) M/MF^{∞} is F-reduced. (2) Im $i^*=MF^{\infty}$ (cf. Lemma 1.1 of [13]).

Proposition A.5. Let G be an F-reduced right R-module. Then G is F-cotorsion if and only if it is F^{∞} -pure injective in the sense of [13] (cf. Proposition 1.4 of [13]).

Proposition A.6 (Harrison duality for modules over hnp-rings). The cor-

respondence

$$(A^*) D \to G = \operatorname{Hom}(t(K), D)$$

is one-to-one between all F-torsion, F-injective right R-modules D and all F-reduced, F-torsion-free, F-cotorsion right R-modules G. The inverse of (A^*) is given by the correspondence $G \rightarrow G \otimes t(K)$. The isomorphism f: Hom $(t(K), D) \otimes t(K) \rightarrow D$ is given by $f(x \otimes q) = x(q)$, where $x \in \text{Hom}(t(K), D)$ and $q \in t(K)$ (cf. Theorem 2.2 of [13]).

Proposition A.7. (1) Ext (t(K), M) is F-reduced and F-cotorsion for every right R-module M.

(2) Let G be F-reduced. Then G is F-cotorsion if and only if $G \cong \text{Ext}(t(K), G)$ (cf. Proposition 5.2 of [21] and Lemma 1.2 of [13]).

Proposition A.8. Let G be F-reduced and F-cotorsion. Then Ext(X, G) = 0 for every F-torsion-free right R-module X (cf. Lemma 1.2 of [13]).

Let M be an F-torsion right R-module. Then M is a right \hat{R}_F -module as follows: For any $m \in M$, $\hat{r} = ([r_I + I]) \in \hat{R}_F$, we define $m\hat{r} = mr_J$, where J = O(m). Similarly an F_I -torsion left R-module is a left \hat{R}_{F_I} -module. Let S(t(K)) be the right socle of t(K). Then it is a left R-module and is F_I -torsion. Thus it is a left \hat{R}_{F_I} -module. Let G = Hom(t(K), D), where D is an F-torsion and F-injective right R-module. From the exact sequence $0 \rightarrow$ $S(t(K)) \xrightarrow{j} t(K)$, we have an exact sequence $0 \rightarrow \text{Ker } j^* \rightarrow G \xrightarrow{j^*} \text{Hom}(S(t(K)), D) \rightarrow 0$ as right \hat{R}_{F_I} -modules.

Proposition A.9. (1) Ker $j^* = \cap GJ$, where J ranges over all maximal left ideals in F_i . Especially $J(\hat{R}_{F_i}) = \cap \hat{R}_{F_i}J$ (cf. Lemma 2.6 and Corollary 2.7 of [13]).

(2) $R/J \simeq \hat{R}_{F_l}/\hat{R}_{F_l}J$ for every $J \in F_l$ (cf. Corollary 2.8 of [12]).

By Proposition A.3, $\hat{R}_{F_i} \simeq \text{Hom}(t(K), t(K))$ and t(K) is F-torsion and Finjective. So \hat{R}_{F_i} is F-reduced, F-torsion-free and F-cotorsion by Proposition A.6. Let I be any finitely generated right ideal of \hat{R}_{F_i} . Then there exists an exact sequence:

(A**)
$$0 \to \operatorname{Ker} f \to \sum_{i=1}^{n} \oplus \hat{R}_{F_{i}} \xrightarrow{f} I \to 0$$

for some *n*. Since $\hat{R}_{F_{I}}$ is *F*-reduced, Ker *f* and *I* are both *F*-reduced. Applying Hom(R_{F} ,) to (A^{**}), we get the exact sequence Hom(R_{F} , I) \rightarrow Ext(R_{F} , Ker *f*) \rightarrow Ext(R_{F} , $\sum_{i=1}^{n} \oplus \hat{R}_{F_{i}}$) \rightarrow Ext(R_{F} , I) \rightarrow 0. But Hom(R_{F} , I)=0= Ext(R_{F} , $\sum_{i=1}^{n} \oplus \hat{R}_{F_{i}}$), because R_{F} is *F*₁-divisible, *I* is *F*-reduced and $\hat{R}_{F_{I}}$ is *F*-cotorsion. Thus we have Ext(R_{F} , Ker *f*)=0. So Ker *f* is *F*-cotorsion. By

the same way as in Lemma 1.3, \hat{R}_{F_I} is an *F*-torsion-free right *R*-module and so *I* is also *F*-torsion-free. It follows from Proposition A.8 that the sequence (A**) splits. Hence *I* is \hat{R}_{F_I} -projective. Thus we have

Proposition A.10. \hat{R}_{F_i} is a right semi-hereditary ring and so the right singular ideal of \hat{R}_{F_i} is zero.

References

- H. Cartan and S. Eilenberg: Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956.
- [2] D. Eisenbud and J.C. Robson: Hereditary noetherian prime rings, J. Algebra 16 (1970), 86-104.
- [3] C. Faith: Lectures on injective modules and quotient rings, Lecture Notes in Math., 49. Berlin-Heidelberg-New York, Springer 1967.
- [4] K.R. Goodearl and R.B. Warfield, Jr: Simple modules over hereditary noetherian prime rings, J. Algebra, 57 (1979), 82-100.
- [5] W.D. Gwynne and J.C. Robson: Completion of non-commutative Dedekind prime rings, J. London Math. Soc. 4 (1971), 346-352.
- [6] N. Jacobson: The theory of rings, Mathematical Survey II, Amer. Math. Soc., Providence, 1943.
- [7] I. Kapalnsky: Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, 1968.
- [8] J. Kuzmanovich: Localizations of Dedekind prime rings, J. Algebra 21 (1972), 378-393.
- [9] J. Kuzmanovich: Localizations of HNP-rings, Trans. Amer. Math. Soc., 173 (1972), 137-157.
- [10] L. Levy: Torsion-free and divisible modules over non-integral domains, Canad. J. Math. 15 (1963), 132–151.
- [11] H. Marubayashi: Modules over bounded Dedekind prime rings II, Osaka J. Math. 9 (1972), 427–445.
- [12] H. Marubayashi: Modules over Dedekind prime rings III, Osaka J. Math. 11 (1974), 547-558.
- [13] H. Marubayashi: Modules over Dedekind prime rings IV, Osaka J. Math. 11 (1974), 559-567.
- [14] H. Marubayashi and K. Watanabe: Overrings of maximal orders over almost Dedekind domains, to appear.
- [15] S. Singh: Quasi-injective and quasi-projective modules over hereditary noetherian prime rings, Canad. J. Math. XXVI (1974), 1173-1185.
- [16] S. Singh: Modules over hereditary noetherian prime rings, Canad. J. Math. 27 (1975), 867–883.
- [17] S. Singh: Some decomposition theorems in abelian groups and their generalizations. In Ring Theory, Proc. of Ohio Univ. Conference, 1976, 183–189.
- S. Singh: (hnp)-rings over which every modules admits a basic submodule, Pacific J. Math. 76 (1978), 509-512.

- [19] S. Singh: A periodicity theorem and its applications, to appear.
- [20] S. Singh and S. Talwar: Pure submodules of modules over bounded (hnp)-rings, Arch. Math. 30 (1978), 570-577.
- [21] B.O. Stenström: On the completion of modules in an additive topology, J. Algebra 16 (1970), 523-540.
- [22] B.O. Stenström: Rings and modules of quotients, Lecture Notes in Math. 237, Berlin-Heidelberg-New York, Springer 1971.
- [23] B.O. Stenström: Rings of quotients, Berlin-Heidelberg-New York, 1975.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan