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SOME REMARKS ON THE EQUATION

Ytt — σ(γx)γxx — y*tχ = f
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1. Introduction

In [4], Greenberg, MacCamy and Mizel considered the following initial-

boundary value problem which we denote by (Pr.I):

(1.1) ytt-<r(y,}yx,-yxtx=f, (*,f)<=(0,l)x(0,oo),

(1.2) y(0,f) = y(l,t) = 0, ίe(0,oo),

(1.3) y(x,Q) = ye(x), yt(x,Q) = yι(x),

where y is an unknown function and y0y y1 and / are given functions. (For
the physical meaning of this problem, see [4].) They established the existence,
uniqueness and stability of smooth solutions of (Pr.I) under the assumptions
that σ is a positive C2(— oo, oo) function and that initial data y0 and yλ are,
respectively, C4[0, 1] and C2[0, 1] functions vanishing together with their second
derivatives at zero and one. The method of proof used in [4] are rather com-
plicate and heavily depends upon some special properties of the Green function
of the heat equation. (See also Davis [1], Ebihara [2] and Greenberg [3].)

The main purpose of the present paper is to weaken the assumptions in
[4] and give a simplified proof of the existence, uniqueness and stability of
smooth solutions of (Pr.I). We assume that σ is a non-negative C\— oo, oo)
function and that initial data y0 and y1 are, respectively, C2[0, 1] and C[0, 1]

functions such that Λ(0)=y0(l)=Λi«(0)=yo.«(l)=0 and y1(0)=y1(l)=0.
Under these assumptions, we choose a Banach space X0={y^C[Q, 1]; y(0)=
^(1)=0} and regard y as a map from [0, oo) to XQ. Let A=d2/dx?. We can
formally rewrite (Pr.I) in an abstract form:

(ytt-Ayt-By = /, f e(0, oo) ,

where B is a nonlinear operator defined by By(x)— σ(yx(x))yxx(x). Set u=
and v—Ay. Then (1.4) is equivalent to the following:
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We can regard (1.5) as the Cauchy problem for a single equation in the product

space X0χX0\ so that the original problem (Pr.I) is reduced to the Cauchy

problem for an abstract evolution equation. The existence result of (Pr.I)

will follow from that of (1.5). Moreover, we can show that, if σ is positive
and /tends rapidly to zero as f-* oo, any solution of (Pr.I) decays exponentially
to zero as ί->oo.

In §2, we state main results; Theorem 1 (uniqueness), Theorem 2 (exist-

ence), Theorem 3 (dependence on data) and Theorem 4 (asymptotic behavior
as £-»oo). In §3, we prepare some abstract formulation of (Pr.I), which

will justify the ideas in the preceding paragraph. We give some a priori esti-

mates of smooth solutions of (Pr.I) in §4. §§5-8 are devoted to the proofs of

Theorems 1, 2, 3 and 4, respectively.

2. Assumptions and results

First we shall prepare some notation which will be used later. Throughout

this paper functions are all real. Let u and v be continuous functions on [0,1].
We put

I u I oo = max I u(x) \ ,
o<s*<α

J i
u(x)v(x)dx ,

0
and

IMI = («,«)•>*.

Let X be any real Banach space. For any interval / of real numbers we denote
by C(I\ X) the space of all X- valued functions u on / such that u is strongly

continuous on /. Furthermore, we denote by C\I\ X) the space of all u^
C(I\ X) such that u is i times strongly continuously differentiate on 7.

Now we consider the initial-boundary value problem (Pr.I). For the
functions σ^y^yi and/ appearing in (1.1) and (1.3), we make the following
assumptions.

(A.I) σ is a non-negative Cl(— °°, oo) function.

(A.2) yQ is C2 on [0, 1] and satisfies

or,

(A.2)' y0 is C2 on [0, 1] and satisfies
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(A.3) y1 is continuous on [0, 1] and satisfies

3Ί(0)=Jι(l) = 0.

(A.4) / is a continuous function in (x,t)^[Q, 1] X [0, °o) such that

Furthermore, / satisfies

with some constants L>0 and
Under these assumptions we seek a smooth solution of (Pr.I) in the follow-

ing sense.

DEFINITION 2.1. Let y be a function on [0,1] x [0, °o). Then y is called
a solution of (Pr.I) if, for each Γ>0, y has the following properties:

(i) yeCl([0,l]x[Of71),
(ii) j^eC([0,l]x[0,71), y,r=yte and y«eC([0,l]x(0,71),

(ϋi) y,«=:V,*=J^eC([(), 1] X (0, Γ]), and
(iv) y satisfies (1.1) on [0,l]x(0,Γ] and conditions (1.2) and (1.3).

We now state our main results. We have the following uniqueness result
for solutions of (Pr.I).

Theorem 1. Under assumptions (A.I), (A.2)', (A.3) and (A.4) there exists
at most one solution o/(Pr.I).

As to the existence of solutions of (Pr.I), we have

Theorem 2. Under assumptions (A.I), (A.2), (A.3) and (A.4) there exists

a (unique) solution o/(Pr.I) such that

y«(0,ί)=y«(l,ί) = 0, /e[0,oo),

and

y,*(0,f) = y,*(U) = 0, f e(0, oo) .

7ft addition y assume that y1 also satisfies (A. 2) αrcd ίA^ί /^ is continuous on
[0,l]x[0,co). Then

y EΞC2([0, 1] X [0, oo)), ytχχ = yχtχ = Λjrf6=C([0, 1] X [0, oo)) ,

andy satisfies (1.1) on [0, 1] X [0, oo).

REMARK 2.2. Since the compatibility conditions at zero and one do not
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necessarily imply yxx(0)= yxx(l)= 0, it is natural to seek a solution of (Pr.I) by

assuming (A.2)' rather than (A.2). However, by the technical reason, we shall

prove the existence of a solution of (Pr.I) under assumption (A.2) (see also §3).

REMARK 2.3. Greenberg, MacCamy and Mizel [4, Theorem 2] established

the existence and uniqueness of solutions of (Pr.I) under the assumptions that

σ is a positive C2(— °°, oo) function and that initial data y0 and yλ are, respec-

tively, C4[0,l] and C2[0,l] functions which vanish together with their second
derivatives at zero and one. Therefore, our existence and uniqueness results
(Theorems 1 and 2) generalize their results (see also Davis [1], Ebihara [2] and

Greenberg [3].)

Next we present below the result on the dependence of solutions of (Pr.I)
upon jo, y1 and/.

Theorem 3. Let σ satisfy (A.I) and v0, j>0GΞC2[0,l], yl9 AeCfO,!] and
/,/<ΞC([0, 1] X [0, oo )) satisfy (A.2), (A.3) and (A.4), respectively. Then for each

T>0, the corresponding solutions y,§ of (Pr.I) satisfy

\y(t}-Kt)\~+ WO-A
£N( I ?o.«-A.« I ~+ 1 3Ί-A I ~+ sup I /(*)-/(*) I .), ί e [0, T] ,

O^S^T

where N is a positive number depending continuously on T, |j>0,**U> IA**U>

lyiU, I A I oo, sup |/(ί)|coέ»ιdsυρ |/(*)U.
O^S^T O^s^T

By Theorems 1, 2 and 3, the initial-boundary value problem (Pr.I) is well
posed in the sense that there exists a unique solution which is stable with re-
spect to perturbations in the given data.

Finally we give the stability result of solutions of (Pr.I).

Theorem 4. In addition to (A.I), (A.2), (A.3) and (A.4), assume that σ is

positive on (—00,00) and that | /(*)!«,, !//(*) I ~=0(*~Y0 with r/>0 as t-*°o.
Then there exists a positive constant S (which depends on cr(0) an d γ) such that

= 0(ίΓδί), as t-»°o .

REMARK 2.4. Greenberg, MacCamy and Mizel [4, Theorem 1] proved
that y together with its derivatives appearing in Theorem 4 tends to zero as
/->oo if / = 0. Theorem 4 gives the decay estimates of solutions of (Pr.I).

3. Reduction to abstract forms

In this section, we shall rewrite the original problem (Pr.I) in abstract
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forms to seek a solution of (Pr.I).

We first introduce the following real Banach space of all real continuous
functions on [0,1]:

with norm | |°° Set

Then XQ is also a real Banach space with norm | !«>. Define a closed linear
operator A : X0-*X0 with a domain D(A) by

^3'^ I (Au)(*) = «„(*) for

It is well known that A generates an analytic semigroup of bounded linear
operators T(t), ί^O, on X0

(T(t)u)(x) = \1E(t>x,ξ)u(ξ)dξ for
Jo

where

E(t,x,ξ) = 2-7=jjl {CXP(- (*~g+2^2)-exp(- (*+£+

It is easily verified that T(t) satisfies

(3.2) \T(t)u\00^\u\00 for u(ΞX0.

Note that A has a bounded inverse operator ^l"1 given by

(3.3) (A-^ι)(x) = \\x-ξ)u(ξ)dξ+x\\ς-l)ιι(ξ)dξ for u^X0.
Jo Jo

Now we regard the function y in (1.1) as a map from [0, °°) to X0. By
(3.1) we can formally rewrite (Pr.I) in the following abstract Cauchy problem
to the second-order equation;

(3.4) ytt(t)-Ayt(t)-By(t)=f(t), ίe(0,oo),

(3-5) MO) = Jo> ^^(0) = Λ >

where B is a nonlinear operator defined by

(3.6)

with a domain D(B)=D(A). By (Pr.II) we mean this Cauchy problem (3.4)
and (3.5). We define a solution of (Pr.II) as follows.
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DEFINITION 3.1. Let y be an Jί0-valued function on [0, °o). Then y is
called a strong solution of (Pr.II) if, for each T>0, it has the following properties:

(i) j;ecmr];*o)ncmr];*o),
(ϋ) Ay and By e C([0, T\ X0), ̂ / e C((0, T\ X0), and

(iii) y satisfies (3.4) on (0, T] and initial conditions (3.5).

If y is a strong solution of (Pr.II), then y is actually a solution of (Pr.I). To
see this fact, we have only to note that by (3.3)

y(X,t) =

holds for O^x^l and ί^O. However, the converse is not necessarily true,
for yxx is in C([0, oo); X) (not in C([0, oo); X0)) when y is a solution of (Pr.I)
in the sense of Definition 2.1.

In order to solve (Pr.II), we shall reduce the second-order equation to a
system of the first-order equations (cf. Krein [5, chap. 3]). Let y be a strong
solution of (Pr.II). Since A is closed,

(3.7) j-tAy(t)=Ayt(t\.

We introduce new functions u(t)= yt(t) and v(t)=Ay(t). Since u(t) and v(t)
are strongly continuously differentiate in ί, we find in view of (3.4) and (3.7)
that they satisfy

ut(t) = Au(t)+B(A-*v(t))+f(t),
( ' } f€Ξ(0,oo).

Set [/(ί)='(ί/(/),z;(ί)). The system (3.8) may be considered as one equation
in the product space X0χX0; so that (Pr.II) is reduced to the following Cauchy
problem which we denote by (Pr.III);

(3.9) U,(t) = AU(t)+C(U(t))+F(t), ί<=(0, oo) ,

(3.10)

where

(For the properties of C(C7), see Lemma 6.1 (ii) and (iii).) It is easily seen
that A is a closed linear operator in X0χX0 with a dense domain D(A)=
D(A)xX0 and generates an analytic semigroup of bounded linear operators
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where T(ί) is an analytic semigroup generated by A. Therefore, we can regard
(Pr.III) as the Cauchy problem for an abstract semilinear evolution equation
of parabolic type. We define a strong solution of (Pr.III) in the same way as
Definition 3.1.

DEFINITION 3.2. Let U^fav): [Q,oo)-*XQχXQf Then U is called a
strong solution of (Pr.III) if, for each T>0, it has the following properties:

(i) U e= C([0, T\ X. x X.) n C'tfO, T\ X0 X *0),

(ii) AJ7eC((0,Γ|; ^0X^0) and C(C/)eC([0,Γ]; ^0X^o)> and
(iii) U satisfies (3.9) on (0,Γ] and initial condition (3.10).
Then we have the following relations between strong solutions of (Pr.II)

and (Pr.III).

Proposition 3.3. Let y: [0, oo)->J£0 be a strong solution of (Pr.II). Define"

(3.13) u(t) = yt(t) and v(t) = Ay(t) .

Then U is a strong solution of (Pr.III).
Conversely, let U=\uyv): [0, oo)-*X0χX0 be a strong solution of (Pr.III).

Define y: [0, oo)->^Γ0 by

(3.14) y(t)=\tu(s)ds+yQ.
Jo

Then y is a strong solution of (Pr.II).

Proof. The first part of this proposition is evident from the above argu-
ments.

We shall prove the latter half. Let U be a strong solution of (Pr.III) and
define y by (3.14). It is clear from Definition 3.2 that y is in C\[Q, oo); χo)
and C2((0, oo); XQ). Since vt(t)=Au(t)=Ayt(t)&C((Q9 <*>)• χo)9 we get for

any £>0

v(t)-v(S) = Ayt(s)ds = A(y(t)-y(8)) ,

where we have used the closedness of A. In view of v^C([Q, oo); X0)y the

left-hand side tends to v(t)— Ay0 as £-»0. Since y(£)-*yQ as £->0, we see

v(t) = Ay(ή on [0, oo) ,

which implies AyeC([0, oo); X0). Since By = B(A'lv)^C([09 oo); χo)9 y
clearly satisfies (3.9) on (0, oo). Thus we have shown that y satisfies all the
properties in Definition 3.1. [q.e.d.]

By Proposition 3.3 we have established a one-to-one correspondence be-
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tween strong solutions of (Pr.II) and (Pr.III): they are mutually combined by

(3.13) and (3.14). In this sense, Cauchy problems (Pr.II) and (Pr.III) are

equivalent. Since any strong solution of (Pr.II) is a solution of (Pr.I), we

shall consider (Pr.II) or (Pr.III) to show the existence of a solution of (Pr.I).

REMARK 3.4. Greenberg, MacCamy and Mizel [4] considered (1.1) as

two different inhomogeneous equations: one is the heat equation for yt and

the other is the ordinary differential equation for yxx. They solved these

equations separately to obtain the existence result of solutions of (Pr.I). Davis
[1] and Ebihara [2] solved (Pr.I) by the Galerkin's method.

Our idea is different from theirs. By introducing two unknown functions
u and v by (3.13), we regard (1.1) as a system of two differential equations (3.8).
Hence, (3.8), or equivalently (3.9), can be treated as a single semilinear equa-

tion of evolution.

4. A priori estimates for solutions of (Pr.I)

In this section we assume that (A.I), (A.2)', (A.3) and (A.4) always hold.

We shall derive some a priori estimates for solutions of (Pr.I). These estimates
will play an important role in the proofs of our theorems.

We first note the following result which will be of frequent use.

Lemma 4.1. Let y be a C2[0,l] function which vanishes at zero and one.

Then

Proof. It suffices to note the following equalities:

y(x) = \Xyx(ξ)dξ

and

?*(*)=( y«(?y£ for some *0e[0,l].
J*o

[q.e.d.]

Lemma 4.2 (cf. [2, Lemma 4.1]). Let y be a solution of (Pr.I). Then

\\y,(t)\ I2+2(Σ (yK*. t})dχ+ Γl \y,M\ I2*
Jo Jo

o

where ̂  is defined by
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Σ(r)=
o o

Proof. Since y e C^O, 1] X [0, oo)), we have

(4.1) y(0,f) = χi,f) = y,(0,f) = Λ(M) - 0,

Multiplying (1.1) by yt and integrating over (0,1), we have

(4-2) y ̂

for f >0 (use (4.1)). By Lemma 4.1,

Hence, rearranging (4.2) and integrating the resulting expression over (0,£),
we obtain the conclusion. [q.e.d.]

Moreover, we have

Lemma 4.3 (cf. [2, Lemma 4.2]). Let y be a solution of (Pr.I). Then

oJo

||.||y0.

i t }l/2 ft

oll/(*)ll2*} +]o

Proof. Multiplying (1.1) by —ytx and integrating over (0,1), we have

||llj^OII2+fσ(j
(4.3) 2 at Jo

= -(/«, j««)
Integration of (4.3) over (0,£) leads to the following:

(Ί ly/,(
Jo
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Therefore, using Lemma 4.2 we get

o o

Jo

In other words, we have

(4.4)

where F(t)=±-\\y,J(t)\\> G(t)=2\\f(t)\\ and

H(t) = lb.

Since (4.4) implies

sup H(s)1/2

we obtain the estimate of Lemma 4.3. [q.e.d.]

5. Proof of Theorem 1

In this section we shall prove Theorem 1. Let y and j) be two solutions
of (Pr.I). Let T be any fixed positive number. Then there exists a positive
constant N such that

(5.1) \\yxx(t)\\^N and HJUOH^ for

(see also Lemma 4.3)). Set

K = max {max σ(r), max | σ'(r) \ } .
\r\^JT |»Ί^.Zr

By Lemma 4.1 and (5.1), we have

(5.2) σ(yx(

and

(5.3) \<τ(yt(x,

Now we put z=y— j). Then z satisfies the following equation:

(5.4) ztt-<r(y*)z**-z*tl = (<τ(y *}-<?($,))$ **
Multiplying the both sides of (5.4) by st and integrating over (0,1), we have
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—I

(5.5) = (σ(yx(t))Z,,(ή+ {σ(y,(t))-σ(Mt))} UO, *.('))

where we have used (5.2) and (5.3). Next multiplying the both sides of (5.4)
by — \zxx with 0<λ<l and integrating over (0,1), we have

(5.6) = -

(In the last inequality of (5.6) we have used (5.3).) Hence, by virtue of (5.1),
Lemma 4.1 and the non-negativity of <τ, we see from (5.5) and (5.6) that

(5.7)

holds for every O^f^ Γ and 0<λ<l. Note

ϊ

Hence (5.7) implies \\zt(ί)\\2+\\zxx(t)\\2=Q (i.e. ̂ ^0) with the aid of Gron-
walΓs inequality. Thus we have shown the uniqueness of solutions of (Pr.I).

[q.e.d.]

6. Proof of Theorem 2

In order to show the existence of a solution of (Pr.I), we shall consider the
Cauchy problem (Pr.III). Recall that (Pr.II) and (Pr.III) are equivalent in
the sense of Proposition 3.3. Hence, if we can show the existence of a strong
solution U of (Pr.III), the function y defined by (3.14) is a strong solution of
(Pr.II) and, therefore, is a solution of (Pr.I). Thus a solution of (Pr.I) will be
constructed.

We define the norm of the product space X0χX0 as follows:

| l / U = NOO+H- for U='(u,v)t=XQxX9.

Then we have:
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Lemma 6.1. Let A, C and T(t) be defined by (3.11) and (3.12). Then
the following properties hold.

(i)

(ϋ)
(in)

+ I

j dT£ defined by

M(r) = max σ(s) flmί M^r) = max | σ'(s) \ .

Proof. Since Γ(ί) is defined by (3.12), it is easy to show (i) by (3.2).
Next we shall show (ii). From (3.3), (3.6) and (3.11) we have

(6.1) C(U)(x) = VH*)H*)> 0), U = '(to,ι

where

(6.2) w(x) = \*v(ξ)dξ+ \\ξ- \)v(ξ)dξ .
Jo Jo

Since there exists an #0G![0, 1] such that

o(x) = Γ v(ξ)dξ for every *e[0,1] ,
Jχo

w(

we see

(6.3) Moo^lHI for v(ΞX0.

Hence it follows from (6.1) and (6.3) that property (ii) holds. Finally to prove
(iii), we define vb by (6.2) with ϋ replacing v. Since

C(U)(x)-C(U)(x) = \σ(w(x))v(κ)-σ(w(x))ύ(x), 0) ,

we have only to estimate

^ I <r(u(x))(v(x)-ύ(x)) I + I (σM*))-

Using (6.2) and (6.3) we can derive (iii). [q.e.d.]

Now we are in a position to prove the existence of strong solutions of (Pr.
III).

Proposition 6.2. Under assumptions (A.I), (A.2), (A.3) and (A.4) there
exists a unique strong solution U of (Pr.lll).

In addition, assume that yl also satisfies (A.2) and that ft is in C([0, oo);
X0). Then
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O, oo); X0XX0), AU£ΞC([Oy oo); ^0X^0) ,

and U satisfies (3.9) o# [0, oo).

Proof. First suppose that (A.I), (A.2), (A.3) and (A.4) hold. Let U be
a strong solution of (Pr.III). Then U satisfies the following integral equation

(6.4) U(t) = T(t)UQ+ Γ T(t-s)(C(U(s))+F(s))ds ,
Jo

where UQ=t(ylyAy0) (see e.g, Krein [5]). Conversely, if U is a strongly conti-
nuous function satisfying (6.4) (which we call a mild solution of (Pr.III)), then
U is a strong solution of (Pr.III). In fact, to see this, we have only to use the
result of Pazy [6, Theorem 5.2]. (Note that T(i) is an analytic semigroup.)
Hence, in order to show the existence of a strong solution of (Pr.III), it suffices
to prove the existence of a mild solution of (Pr.III).

Now we consider integral equation (6.4). Since C(U) is locally Lipshitz
continuous in U by Lemma 6.1, we can show, in a usual manner, by virtue of
the fixed point theorem of a strictly contraction mapping that there exists locally
(in time) a strongly continuous function U satisfying (6.4) (see e.g. Tanabe
[7, chap. 6]). In order to extend this U to the interval [0, oo), we shall derive
an a priori estimate of any mild solution U of (Pr.III).

Let T be an arbitrary fixed positive number. Let U=*(u,v) be a mild
solution (strong solution) of (Pr.III). By Proposition 3.3, the function y de-
fined by (3.14) is a strong solution of (Pr.II) and, therefore, a solution of (Pr.I).
Hence, by Lemma 4.3, there exists a positive constant N such that

\\Ay(t)\\^N

which implies by (3.13)

(6.5) \\v(t)\\£N, ί£Ξ[0,Γ].

Consequently, using Lemma 6.1 (ii) and (6.5), we get from (6.4)

U+ \F(s)\Jds}, ίe[0,T] ,

which, together with GronwalΓs inequality, yields

(6.6)

Since a priori estimate (6.6) is obtained, we can show the global existence and
uniqueness of a mild solution of (Pr.III) in the standard way (see e.g. Pazy



316 Y. YAMADA

[6, Theorem 3.1]).
Finally we shall prove the latter half of Proposition 6.2. In addition to

(A.I), (A.2), (A.3) and (A.4), assume that y^D(A) and /,eC([0, oo); X0).
Since U0=

t(y09Ayl)^D(A)=D(A)xX09 Ut(t) satisfies

Ut(t)= T(t)AUQ+T(t)(C(U0)+F(0))

(6'7) +

Here

(6.8) C(U(t(x) = '(σK^OKί^O+^'K^OX^O^^O, 0) >

where «;(#,*) is defined by (6.2) with v(x) replaced by v(x,t). Hence, it follows
from (6.7) and (6.8) that Ut is strongly continuous on [0, oo). Thus, noting
(3.9), we complete the proof. [q.e.d.]

Proof of Theorem 2. If U is a strong solution of (Pr.III), then y defined by

(3.14) gives a solution of (Pr.I). Therefore, in view of Theorem 1 and Propo-
sition 3.3, we obtain all the conclusions of Theorem 2 from Proposition 6.2.

[q.e.d.]

7. Proof of Theorem 3

Suppose that y0, j>0eC2[0, 1], yl9 AeC[0, 1] and /, /eC([0, l]x[0, oo))
satisfy (A.2), (A.3) and (A.4), respectively. Let y, j> be the corresponding
solutions of (Pr.I). (By Theorems 1 and 2, y and j> satisfy (3.4).) Let T be
any fixed positive number. Then, by Lemma 3.4,

(7.1) \\yxx(t)\\^ι and ||J

where NI is a positive number depending continuously on Γ, |y0,**U> IA,**U*
l^iU^ |j>ι|oo, sup \f(t)\co and sup |/(ί)|βo. In this section, we denote by N{%

positive numbers depending continuously on the above quantities. Define U and
U by (3.13), i.e.

U = \ύ,v) = \ytί Ay] and U = \Λ,ti) = \

Then U and U, respectively, satisfy the following integral equations:

U(t) = T(t)U0+\' T(t-s)WU(s))+F(ή)ds
Jo

and

U(t) =
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where F(t)='(f(t), 0),(ί)='((0,0), U^'foAyJ and Z70=(;MJ>o) (see (6.4)).
Consequently, we have

U(t)- ϋ(t) = Γ(0(Γ/0- #„)+ T(t-s)(C(U(s))-C(U(t)))dt
(7.2)

Note that, by (6.6),

(7.3) \U(t)\.£N, and \ϋ(t)\^Nt, ί€=[0,Γ],

for some JV2. Hence, Lemma 6.1 (iii), together with (7.1) and (7.3), gives

I C(U(t))-C(U(t)) I .^M(ΛΓO I v(t)-ύ(t) I

for some N3. Therefore, using Lemma 6,1 and (7.4) we get from (7.2)

I £7(0- U(t) 1 .5S3 13Ί-Λ I ~+ |̂ 0-^ol .+3JV.Γ | ί/(*)- 1>(*) I Jk

o

which yields by GronwalΓs inequality

I U(t)- U(t) U^ (3 \yι-h I «+ I ̂ 0- ĵ)0 1 0.+3
o

for O^t^T. Thus using Lemma 4.1 we obtain the conclusion of Theorem 3.
[q.e.d.]

8. Proof of Theorem 4

In this section, we assume, in addition to (A.I), (A.2), (A.3) and (A.4), that
σ is positive on (—00, oo) and that both |/(f) |«> and \ft(t)\oo decay like e~yt

with γ>0 as ί->oo.
Let y be a solution of (Pr.I). Then Lemmas 4.2 and 4.3 imply that there

exists a positive constant N such that

(8.1) \\yt(t)\\+\\yβ,(t)\teN, for all f ^ O .

First we shall prove the stronger result than (8.1):

(8.2) IWOII+IWOII = 0(e'β<) as ί-»oo ,

with some yS>0. As in the proof of Lemma 4.2, multiplying (1.1) by e°"yt
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(where a is a positive number which will be specified later) and integrating
over [0, 1] X [0, t], we have

) Jo

(8.3) -αj^*{y I W*)IP+ J Σ(yX*,*))ώ}Λ

where Σ(r)— \ \ σ(τ)dτds. If we put
J o J oΓΓJ o J o

m = inf σ(ί)>0 and M = M(N)= supσ(s),

then we get

1 2 i 2

(note Lemma 4.1 and (8.1)). Making use of (8.4) we rearrange (8.3): then

(8.5) -
2 Jo

-
2

for any £>0 and ί^O. Next, as in the proof of Lemma 4.3, multiplying (1.1)
by — \e* yxx (where λ is another positive number which will be specified later)
and integrating the resulting expression over [0, 1] X [0, Γ], we have

(8.6)
2- f f '

\ *Ί W*)H2Λ-λ\ β-| b
o Jo

Rearranging (8.6) we obtain
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(3.4), so that we introduce

and

Rewrite (3.9) in the following from:

(8.11) Ut(f) =

where

)andCi(E/) = ( Q "" *) '
0 o

Since A is an infinitesimal generator of the analytic semigroup T(t) on X0,
AI also generates an analytic semigroup of bounded linear operators TΊ(/),
£^0, on X0χX0 (see e.g. Krein [5]). We have the following lemma whose
proof will be found at the end of this section.

Lemma 8.1. Let T^t) be an analytic semigroup generated by A^ Then
there exist some positive constants K and p(<σ(0)) such that

for t^O and ?/='(«, ϋ

We shall continue the proof of Theorem 4. It follows from (8.11) that
U satisfies

(8.12) U(t) = T1(t)U0+(tT1(t-s){C1(U(s))+F(s)}dsί t^Q .
Jo

For the first conmponent of Cj(ί7), we have:

where w is defined by (6.2) and Mλ is defined as in Lemma 6.1. Hence, recall-

ing v(x,t)=yxx(x,t)9 w(x,t)=y,(x,t) and (8.10), we get

(8.13) I Ctf tf(f)) \^M,(NύN^ I U(t) \ - .

Therefore, (8.12), combined with Lemma 8.1 and (8.13), gives

(8.14) I U(t)\00^Ke-pt\ U^^+K^e-^-^M^N^N^l [/(*)
Jo

where we have used the assumption that \F(t)\0o^N4ιe~"*t with some ΛΓ

4>0.
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(8 7)

for any ε>0 and ί^O. Addition of (8.5) and (8.7) leads to the following:

o\ 2

(8.8) ;'°
yVIJΊ

where JVt is a positive number independent of t. In what follows, we denote
by Ns a positive number independent of t. In (8.8), put λ=l/2 and choose
a such that

0<«<min 2m \
2M+1/'

Then by taking a sufficiently small £ >0 we can show with the aid of Lemma

4.1

(8.9)

which implies (8.2) with /3=α/2. In particular, we have

(8.10)

for some Λ^3.
Next we shall prove that (8.2), or (8.9), holds with the ZΛnorm || ||

replaced by the maximum norm | | oo. As a map from [0, oo) to X0y y satisfies
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Now choose δ>0 such that δ^p and δ<γ. Then it follows from (8.14) that

o

-β>eSs \ U(ή \ »ds ,
Jo

which yields with the aid of GronwalΓs inequality

(8.15) est\ U(t)\^K{\ U^+NύΎ-Sr^GxpφMύNύNβ-1)

for every ί^O.

Next we shall estimate Ut(t). Since U(t)^D(A1)=D(A)xX0 for f>0,
we have

U,(ί) = Tft-

(8-16)

(cf. (6.7)). The first component of ^-d(U(t)) is estimated by
at

,at

^ \ σ'(w(x,t))wt(x,t)v(x,t') \ + I {σ(w(x,t)-σ(Q)}vt(x,f) \

By Lemma 4.1 and (6.3)

so that we see, by making use of (8.10) and (8.15),

(8.17) I j-CMt)) I ̂ WWJίN*-" I V,(t) I . ,

for some Ns. Therefore, it follows from (8.16), together with Lemma 8.1
and (8.17), that

I Ut(t) \^Ke~^\ I AJJ(\) U+ I C,(U(\}) U+

(8-18) +ΛΓJ V '<'

for some ΛΓ6>0 (cf. (8.14)). From (8.18) we can show, in the same way as
(8.15),

(8.19) lE/ΛOU^^V*1 for



322 Y. YAMADA

with some N7. Thus, from (8.15) and (8.19) we get the assertion of Theorem
4 (use Lemma 4.1). [q.e.d.]

Finally we shall prove Lemma 8.1.

Proof of Lemma 8.1. For UQ=\uQ,vQ)^XQxX^ put U(t) = *(u(t\v(t})

= ϊ\(0 tf0 Define yQ=A~lvQ, y^u^ and

Jo

Then we can show, as in §3, that y satisfies

p«-̂ ,-σ(0)̂  = 0 00,

' \m = y»y*W = yi'
Therefore, applying the preceding arguments in this section to (8.20), we see
that there exist some constants ^>0 and 0<p<σ(0) (which are independent
of U0) such that

(8.21)

(see (8.8) and (8.9)). Recall that T^t) is an analytic semigroup, so that

Utt(t)-AlUl(t) = Q, ί>0,

and

UHI(t)-A1UH(t) = Qt 00,

which imply

(8.22) y^-Ay^ή-σ^Ay^t) = 0, ί>0 ,

and

(8.23) ytM-Ayttt(t)-σ(0)Aytt(t) = 0, f>0,

respectively. Hence, using (8.21) we can show from (8.22) and (8.23)

(8.24) ||
and

(8.25) i

Noting Lemma 4.1 we have from (8.24)

κ*)ii =
( '

and also from (8.25)
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(8.27) y"* ~= yt>

On the other hand, since

at**

we get with the use of (8.27)

which implies

(8.28) |»(ί)U

for some ^2>0 (note σ(0)>ρ). Since — T^t) and — T^ί) are bounded opera-
dt at2

tors for £>0 (see e.g. Krein [5, chap. 1, §3] or Tanabe [7, chap. 3, §3]), we get
the conclusion from (8.26) and (8.28). [q.e.d.]
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