Yamada, Y.
Osaka J. Math.
17 (1980), 303-323

SOME REMARKS ON THE EQUATION
Yer — 0(Yx)Yax — Yaex=F

YosHio YAMADA

(Received June 29, 1979)

1. Introduction

In [4], Greenberg, MacCamy and Mizel considered the following initial-
boundary value problem which we denote by (Pr.I):

(1'1) ytl—o-(yx) xx " Vatx :f’ (x,f)E(O,l)X(0,00) ’
(1'2) y(O,t)———y(l,l‘)= 0’ tE(0,00),
(1.3) ¥(%,0) = yo(%), y:(x,0) = y(x), x€(0,1),

where y is an unknown function and y,, y, and f are given functions. (For
the physical meaning of this problem, see [4].) They established the existence,
uniqueness and stability of smooth solutions of (Pr.I) under the assumptions
that & is a positive C% —oo, oo) function and that initial data y, and y, are,
respectively, C*[0,1] and C?[0,1] functions vanishing together with their second
derivatives at zero and one. The method of proof used in [4] are rather com-
plicate and heavily depends upon some special properties of the Green function
of the heat equation. (See also Davis [1], Ebihara [2] and Greenberg [3].)

The main purpose of the present paper is to weaken the assumptions in
[4] and give a simplified proof of the existence, uniqueness and stability of
smooth solutions of (Pr.I). We assume that ¢ is a non-negative C(— oo, o0)
function and that initial data y, and y, are, respectively, C?0,1] and C[0,1]
functions such that y,(0)=y,(1)=9, ..(0)=20 :(1)=0 and y,(0)=y,(1)=0.
Under these assumptions, we choose a Banach space X,={yeC[0,1]; ¥(0)=
9(1)=0} and regard y as a map from [0, o) to X,. Let 4=0%0x*. We can
formally rewrite (Pr.I) in an abstract form:

(14_) {ytt_Ayt_By :fv tE(O’ 00)’

Y(0) = y0. y(0) = 1,

where B is a nonlinear operator defined by By(x)=a(y.(x))y..(x). Set u=y,
and v=Ay. Then (1.4) is equivalent to the following:



304 Y. Yamapa
#(0)-Go)(5)-C7) = () =0,

(5)o=(2)-

0

(1.5)

We can regard (1.5) as the Cauchy problem for a single equation in the product
space XX X,; so that the original problem (Pr.I) is reduced to the Cauchy
problem for an abstract evolution equation. The existence result of (Pr.I)
will follow from that of (1.5). Moreover, we can show that, if o is positive
and f tends rapidly to zero as #— oo, any solution of (Pr.I) decays exponentially
to zero as t—oo,

In §2, we state main results; Theorem 1 (uniqueness), Theorem 2 (exist-
ence), Theorem 3 (dependence on data) and Theorem 4 (asymptotic behavior
as t—>o0). In §3, we prepare some abstract formulation of (Pr.I), which
will justify the ideas in the preceding paragraph. We give some a priori esti-
mates of smooth solutions of (Pr.I) in §4. §§5-8 are devoted to the proofs of
Theorems 1, 2, 3 and 4, respectively.

2. Assumptions and results

First we shall prepare some notation which will be used later. Throughout
this paper functions are all real. Let % and v be continuous functions on [0,1].
We put

|ulo = max |u(x)] ,
0<r<1

(u,v) = S:u(x)v(x)dx ,
and

el = (u, ).

Let X be any real Banach space. For any interval I of real numbers we denote
by C(I; X) the space of all X-valued functions # on I such that u is strongly
continuous on I. Furthermore, we denote by Ci(I; X) the space of all ue
C(I; X) such that u is 7 times strongly continuously differentiable on I.

Now we consider the initial-boundary value problem (Pr.I). For the
functions ¢, ¥y, y1 and f appearing in (1.1) and (1.3), we make the following
assumptions.

(A.1) o is a non-negative C'(— oo, o) function.

(A.2) y,is C?on [0,1] and satisfies

yO(O) = yo(l) = yo,xx(O) = yo,xx(l) =0 )
or,

(A.2)" y,is C?on [0,1] and satisfies
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¥(0) = 54(1) = 0.
(A.3) 9, is continuous on [0, 1] and satisfies
7(0) = 3(1) = 0.
(A.4) fis a continuous function in (x,2)&[0,1]X [0, o) such that
f(0,2) = f(1,) =0, t=0.
Furthermore, f satisfies

| f(,8)—f(+,9) | = L|t—s]®, t,s€[0, o),

with some constants L>0 and 0<0<1.
Under these assumptions we seek a smooth solution of (Pr.I) in the follow-
ing sense.

DerINITION 2.1, Let y be a function on [0,1]X[0, ). Then y is called
a solution of (Pr.I) if, for each T'>0, y has the following properties:
() yECY(O,1]x[0,T]),
(i) 9€C([0,11X[0, T]), yu—=:s and y, € C([0,1]% (0, 1),
(i) Yir=Yare=se €C([0, 1] x (0, T7), and
(iv) y satisfies (1.1) on [0,1]X (0, T] and conditions (1.2) and (1.3).

We now state our main results. We have the following uniqueness result
for solutions of (Pr.I).

Theorem 1. Under assumptions (A.1), (A.2)’, (A.3) and (A.4) there exists
at most one solution of (Pr.I).

As to the existence of solutions of (Pr.I), we have

Theorem 2. Under assumptions (A.1), (A.2), (A.3) and (A.4) there exists
a (unique) solution of (Pr.I) such that

yxx(O)t) :yn(lyt) = 0’ ’E[O"X’),
and

yx:x(O, t) = yxtx(lvt) = 09 tE(O’ oo) .

In addition, assume that vy, also satisfies (A.2) and that f, is continuous on
[0,1]X [0, o). Then

yECZ([O, 1] X [0) oo))’ Vize = Yutz = yxxtec([01 1] X [O; oo)) ’
and y satisfies (1.1) on [0,1] X [0, o).

ReMARK 2.2. Since the compatibility conditions at zero and one do not
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necessarily imply ¥,,(0)=y,,(1)=0, it is natural to seek a solution of (Pr.I) by
assuming (A.2)’ rather than (A.2). However, by the technical reason, we shall
prove the existence of a solution of (Pr.I) under assumption (A.2) (see also §3).

RemARk 2.3. Greenberg, MacCamy and Mizel [4, Theorem 2] established
the existence and uniqueness of solutions of (Pr.I) under the assumptions that
o is a positive C*(— oo, oo) function and that initial data y, and y, are, respec-
tively, C¥[0,1] and C?0,1] functions which vanish together with their second
derivatives at zero and one. Therefore, our existence and uniqueness results
(Theorems 1 and 2) generalize their results (see also Davis [1], Ebihara [2] and
Greenberg [3].)

Next we present below the result on the dependence of solutions of (Pr.I)
upon y,, 3 and f.
Theorem 3. Let o satisfy (A.1) and y,, $,=C*0,1], y,, H=C[0,1] and

I f eC([0,1] X [0, c0)) satisfy (A.2), (A.3) and (A.4), respectively. Then for each
T >0, the corresponding solutions y,$ of (Pr.I) satisfy

|9 =90 |t 17O —9D) | 199D o4 | exl)—I1alt) |-
SN use—Fusel ot =il ot sup | fO—FOI), 20, T],

where N is a positive number depending continuously on T, | Y |, |Ho rxles
|911s 1911 Sup | fis) and sup (5.

By Theorems 1, 2 and 3, the initial-boundary value problem (Pr.I) is well
posed in the sense that there exists a unique solution which is stable with re-
spect to perturbations in the given data.

Finally we give the stability result of solutions of (Pr.I).

Theorem 4. In addition to (A.1), (A.2), (A.3) and (A.4), assume that & is
positive on (—o0, ) and that | f(t)|«, | fi(t)|«=0(e"") with v>0 as t—>oo,
Then there exists a positive constant & (which depends on o(0) and ) such that

|Y() ot 19B) [ | 728 [ oot | Yaxl(t) | o
+ 'yxt(t) ' °°+ U’u(t) |°°+ 'y:clx(t) ' L]

= 0(e™¥), as t—>oo .

REMARK 2.4. Greenberg, MacCamy and Mizel [4, Theorem 1] proved
that y together with its derivatives appearing in Theorem 4 tends to zero as
t—oco if f=0. Theorem 4 gives the decay estimates of solutions of (Pr.I).

3. Reduction to abstract forms

In this section, we shall rewrite the original problem (Pr.I) in abstract
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forms to seek a solution of (Pr.I).
We first introduce the following real Banach space of all real continuous
functions on [0,1]:

X = C[0,1]
with norm |«].. Set
= {ueX; u(0) = u(1) = 0} .

Then X, is also a real Banach space with norm |-|... Define a closed linear
operator A: Xy— X, with a domain D(4) by

{ D(4) = {ueX,; u.. X}

(3.1)
(Au)(x) = u.(x) for ucD(4).

It is well known that A generates an analytic semigroup of bounded linear
operators T(t), =0, on Xj;

(Tn)@) = | Bevu@yis  for uex,,
where

B ) = 5 5 fenp(( - B E20) (- (e EL 2]

2\/ tn=
It is easily verified that 7'(¢) satisfies
3.2) [T < 1| for ueX,.

Note that 4 has a bounded inverse operator 4! given by
x 1
33) (A = So(x——f)u(f)dg—l—xso(g—1)u(E)d§ for ueX,.

Now we regard the function y in (1.1) as a map from [0, ) to X,. By
(3.1) we can formally rewrite (Pr.I) in the following abstract Cauchy problem
to the second-order equation;

(34 yu(t)—Ay(t)—By(t) = f(1),  tE€(0,0),
(3-5) ¥(0) = 3o, 9(0) =31,

where B is a nonlinear operator defined by

(3.6) (By) (%) = a(y:(%))ys(x)

with a domain D(B)=D(4). By (Pr.II) we mean this Cauchy problem (3.4)
and (3.5). We define a solution of (Pr.II) as follows.
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DerINITION 3.1. Let y be an X-valued function on [0, o). Then y is
called a strong solution of (Pr.II) if, for each T >0, it has the following properties:
() yEC([0,T]; X)NCH(O, TT; Xy,
(ii) Ay and ByeC(([0,T]; X,), Ay,€C((0,T]; X,), and
(iii) y satisfies (3.4) on (0, 7] and initial conditions (3.5).
If y is a strong solution of (Pr.II), then y is actually a solution of (Pr.I). To
see this fact, we have only to note that by (3.3)

¥.0) = [ - (@O @dz-+] €~ 1) o) @

holds for 0<x<1 and #=0. However, the converse is not necessarily true,
for y,, is in C([0, o); X) (not in C([0, o0); X,)) when y is a solution of (Pr.I)
in the sense of Definition 2.1.

In order to solve (Pr.II), we shall reduce the second-order equation to a
system of the first-order equations (cf. Krein [5, chap. 3]). Let y be a strong
solution of (Pr.IT). Since 4 is closed,

(37) 2 ay(t) = 4yt).

We introduce new functions u(¢)=y,(t) and v(t)=Ay(t). Since u(t) and o(z)
are strongly continuously differentiable in ¢, we find in view of (3.4) and (3.7)
that they satisfy

{ u,(t) = Au(t)+ B4 v(2))+1(2), te(0,0),

38) oi(t) = Au(t) te(0,0).

Set U(t)="(u(t),v(t)). The system (3.8) may be considered as one equation
in the product space X,X X,; so that (Pr.II) is reduced to the following Cauchy
problem which we denote by (Pr.III);

(3.9) Ut) = AU@)+CU@)+F(®),  t€(0,),
(3.10) U©) = (y, Ay, ,

where

(3.11) A= (j g), CU) = (B(é:)“v)> and F(t) — ( fff’)-

(For the properties of C(U), see Lemma 6.1 (ii) and (iii).) It is easily seen
that A is a closed linear operator in X,X X, with a dense domain D(A4)=
D(A)x X, and generates an analytic semigroup of bounded linear operators
T(t), t=0, on X x X,;

ro-(9, )
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where T'(¢) is an analytic semigroup generated by 4. Therefore, we can regard
(Pr.III) as the Cauchy problem for an abstract semilinear evolution equation
of parabolic type. We define a strong solution of (Pr.III) in the same way as
Definition 3.1.

DerFINITION 3.2. Let U='(u,v): [0,00)—>X ;X X,. Then U is called a
strong solution of (Pr.IIl) if, for each T>0, it has the following properties:
() UEC(O,T]; Xox X;) N CH(O, T]; Xox Xy),
(i) AUeC((0,T]; X,xX,) and C(U)eC([0,T]; X X X,), and
(iti) U satisfies (3.9) on (0,77 and initial condition (3.10).
Then we have the following relations between strong solutions of (Pr.II)

and (Pr.III).

Proposition 3.3. Let y: [0, co)—X, be a strong solution of (Pr.I1). Define
U='(u,v): [0, o=)=X X X, by
(3.13) u(t) = y(t) and o(t) = Ay().

Then U is a strong solution of (Pr.III).
Conversely, let U="(u,v): [0, co)—>X X X, be a strong solution of (Pr.III).
Define y: [0, 0)—X, by

t
(3.14) y(t) = Sou(s)ds—l—yo.
Then y is a strong solution of (Pr.II).

Proof. The first part of this proposition is evident from the above argu-
ments.

We shall prove the latter half. Let U be a strong solution of (Pr.III) and
define y by (3.14). It is clear from Definition 3.2 that y is in C([0, o0); X)
and C%(0, >0); X,). Since v(t)=Au(t)=Ay(t)C((0, «); X,), we get for
any €>0

o(t)— (&) = | Ay(s)is = A6)—5(e),

where we have used the closedness of 4. In view of v& ([0, 0); X), the
left-hand side tends to v(f)—Ay, as &—0. Since y(€)—>y, as €0, we see

o(f) = Ay(e)  on [0, o),

which implies AyeC([0, «); X,). Since By=B(4 'v)eC([0, «); X,), ¥
clearly satisfies (3.9) on (0, o). Thus we have shown that y satisfies all the
properties in Definition 3.1. [q-e.d.]

By Proposition 3.3 we have established a one-to-one correspondence be-
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tween strong solutions of (Pr.IT) and (Pr.III): they are mutually combined by
(3.13) and (3.14). In this sense, Cauchy problems (Pr.II) and (Pr.III) are
equivalent. Since any strong solution of (Pr.II) is a solution of (Pr.I), we
shall consider (Pr.II) or (Pr.IIT) to show the existence of a solution of (Pr.I).

RemARk 3.4. Greenberg, MacCamy and Mizel [4] considered (1.1) as
two different inhomogeneous equations: one is the heat equation for y, and
the other is the ordinary differential equation for y,,. They solved these
equations separately to obtain the existence result of solutions of (Pr.I). Davis
[1] and Ebihara [2] solved (Pr.I) by the Galerkin’s method.

Our idea is different from theirs. By introducing two unknown functions
u and v by (3.13), we regard (1.1) as a system of two differential equations (3.8).
Hence, (3.8), or equivalently (3.9), can be treated as a single semilinear equa-
tion of evolution.

4. A priori estimates for solutions of (Pr.])

In this section we assume that (A.1), (A.2), (A.3) and (A.4) always hold.
We shall derive some a priori estimates for solutions of (Pr.I). These estimates
will play an important role in the proofs of our theorems.

We first note the following result which will be of frequent use.

Lemma 4.1. Let y be a C?0,1] function which vanishes at zero and one.
Then

YIS 1y l=lydI= 1yl o= Yall = [Pl -
Proof. It suffices to note the following equalities:
»() = | pe(erde
and

(%) = S yo(E)ME  for some x&[0,1].
[q.e.d.]

Lemma 4.2 (cf. [2, Lemma 4.1]). Let y be a solution of (Pr.I). Then
I OIE2 S )+ [ Nyl Pds
<lnlP+2] S0 st [ IO, 120,

where > is defined by
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20) = | |le(raraszo0.
0J0
Proof. Since yeC*([0,1] X [0, o)), we have
(4.1) 9(0,2) = y(1,t) = y(0,8) = y,(1,8) =0,  ¢=0.
Multiplying (1.1) by y, and integrating over (0,1), we have

“2 S Ly O+ )+ L@ = (0, 740)

2 dt
for >0 (use (4.1)). By Lemma 4.1,

| (@), v = DN Uy ON= DN Lyl
< IO+ lyudlF

Hence, rearranging (4.2) and integrating the resulting expression over (0,%),
we obtain the conclusion. [q.e.d.]

Moreover, we have

Lemma 4.3 (cf. [2, Lemma 4.2]). Let y be a solution of (Pr.I). Then
uy,,u)l12+4§‘$‘a(y,<x,s>)y,,<x sdsds
<4 {1 ol - 19 P2 S0 ()
+S:Hf(S)Ilzds}erS:Hf(S)HdS] , 120,
Proof. Multiplying (1.1) by —y,, and integrating over (0,1), we have
4y 2 Ly e+ o0l Dy tPdr—L (30), 3s) O
= —(f(t), 7u(8) -

Integration of (4.3) over (0,¢) leads to the following:
A lalP+ § o0t ydnds
= 19l U0, 90D~ O B0 1305 — [ (09, 3t
= LUy 1+l s+ O

+ [Nyt [ AN el
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Therefore, using Lemma 4.2 we get

1501+ [ [ o0y s)dnds

¢
0
1
< Il lall- Dol 3,02 200

+ [ s+ { 1A 1p2elds
In other words, we have
(4.4) Fy< S:F(s)G(s)ds—|—H(t) ,

where F(t)=%ny,,<t)n, G(t)=211f(#)ll and

HE) = Il ol -+ 1ol P+2] S50 0d+ { 1O

Since (4.4) implies
Fy=L S'G(s)dwr sup H(s)",
2 ) ol S

we obtain the estimate of Lemma 4.3. [q.e.d.]

5. Proof of Theorem 1

In this section we shall prove Theorem 1. Let y and § be two solutions
of (Pr.I). Let T be any fixed positive number. Then there exists a positive
constant N such that

G.1) Iy=@I=N and [9.@)I=N  for t€[0,T],
(see also Lemma 4.3)). Set
K = max {max o(r), max |o'(r)[} .
By Lemma 4.1 and (5.1), we have
(2)  ex)=K,  o(x)=K, (x2)€[0,1]X[0,T],

and

(5‘3) I‘T(yx(x: t))_‘f(.‘)x(x: t)) , éK Iyz(x’ t)—j),(x, t) ' ) (x: t)E [O: 1] X [Oa T] .

Now we put z=y—j. Then z satisfies the following equation:

(5:4) 2y (V) ¥er— Rtx = (a(y,)—c(j),,))ﬁ,, .
Multiplying the both sides of (5.4) by 2, and integrating over (0,1), we have
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1d,. 2 2
o ‘d—t”z:(t)” +lza@)
(5.5) = (6(¥:(0)2::()+ {o(¥:2)) — (D))} D:o(2), 24(2))
= K(llz®) 14 1 2:2) [ = [192:) D121

where we have used (5.2) and (5.3). Next multiplying the both sides of (5.4)
by —az,, with 0<A<1 and integrating over (0,1), we have

M L oI+ )30, 5:0)— & (30), 3u0)— IO

(56) = _7\‘( {o-(yx(t))—a-(j)x(t))} 9::(1’)) zxx(t))
= Kz () w191 122202 -

(In the last inequality of (5.6) we have used (5.3).) Hence, by virtue of (5.1),
Lemma 4.1 and the non-negativity of &, we see from (5.5) and (5.6) that

L) P—Met), 2@+ 2 s IF+1=2) o) s
(5.7) 2 2 0

< K[ AV Dl 6) 14Nl )

holds for every 0=t<T and 0<A<1. Note

-%Wﬂmt%wﬂxaﬁ»+%WAMF

2 152 s i 22 e i

Hence (5.7) implies ||z,()|[*4 [|2.:(2)I?=0 (i.e. 2=0) with the aid of Gron-
wall’s inequality. Thus we have shown the uniqueness of solutions of (Pr.T).
[q.e.d.]

6. Proof of Theorem 2

In order to show the existence of a solution of (Pr.I), we shall consider the
Cauchy problem (Pr.III). Recall that (Pr.II) and (Pr.III) are equivalent in
the sense of Proposition 3.3. Hence, if we can show the existence of a strong
solution U of (Pr.III), the function y defined by (3.14) is a strong solution of
(Pr.II) and, therefore, is a solution of (Pr.I). Thus a solution of (Pr.I) will be
constructed.

We define the norm of the product space XX X, as follows:

|Ulw = |t#t] ot 7] for U="*(u,v)eX xX,.

Then we have:
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Lemma 6.1. Let A, C and T(t) be defined by (3.11) and (3.12). Then
the following properties hold.

(1) 1 TOU|==3|t|et |2|«=3|Ul|w, U='(u,0)EX,X X,, t=0.

(1) [CU)|=M(0I)|2]=M(|U|x)|Ulw, U="(u,v)€X X X,.

(i) | C(U)—C(0)|= M(lloll) | o—B] o+ 8] M(lloll-+[[81)lo—0]|

= MU+ UlM(|U]at U]} U=Ul-
U="*(u,v), U="(4,0) e X X X,.
Here M and M, are defined by
M(r) = max a(s) and M\(r) = max la'(5)] .

Proof. Since T(¢) is defined by (3.12), it is easy to show (i) by (3.2).

Next we shall show (ii). From (3.3), (3.6) and (3.11) we have

(6.1) C(U) (@) = (o(w(®)v(@), 0), U= ") EX,x X,
where
(6.2) w(@) = | o(@dg+( E— et

Since there exists an x,&[0, 1] such that

w(x) = Sz o(E)dE for every x<[0,1],
we see
(6.3) o] =2l for velX,.

Hence it follows from (6.1) and (6.3) that property (ii) holds. Finally to prove
(iii), we define @ by (6.2) with 9 replacing v. Since

C(U)(x)—C(0) (%) = "(a(w(*))v(*)—a(d(x))b(x), 0),
we have only to estimate
| o ()0 (%) — o ((x))0(x) |
< lo(w(x)) (2(x)—0(x)) | + | (o (w(x)) — o (@ (x))D(x) | -
Using (6.2) and (6.3) we can derive (iii). [q.e.d.]

Now we are in a position to prove the existence of strong solutions of (Pr.
III).

Proposition 6.2. Under assumptions (A.1), (A.2), (A.3) and (A.4) there
exists a unique strong solution U of (Pr.III).

In addition, assume that y, alse satisfies (A.2) and that f, is in C([0, oo);
X,). Then
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UeCY([0, «); X,xX,), AUEC([0, ); Xyx X,),
and U satisfies (3.9) on [0, o).

Proof. First suppose that (A.1), (A.2), (A.3) and (A.4) hold. Let U be
a strong solution of (Pr.ITII). Then U satisfies the following integral equation

(6.4) U(t) = T()Uy+ S: T(t—s)(C(U(s))+F(s))ds ,

where U,="*(y,,A4y,) (see e.g, Krein [5]). Conversely, if U is a strongly conti-
nuous function satisfying (6.4) (which we call a mild solution of (Pr.III)), then
U is a strong solution of (Pr.III). In fact, to see this, we have only to use the
result of Pazy [6, Theorem 5.2]. (Note that 7'(¢) is an analytic semigroup.)
Hence, in order to show the existence of a strong solution of (Pr.III), it suffices
to prove the existence of a mild solution of (Pr.III).

Now we consider integral equation (6.4). Since C(U) is locally Lipshitz
continuous in U by Lemma 6.1, we can show, in a usual manner, by virtue of
the fixed point theorem of a strictly contraction mapping that there exists locally
(in time) a strongly continuous function U satisfying (6.4) (see e.g. Tanabe
[7, chap. 6]). In order to extend this U to the interval [0, co), we shall derive
an a priori estimate of any mild solution U of (Pr.III).

Let T be an arbitrary fixed positive number. Let U=‘(x,v) be a mild
solution (strong solution) of (Pr.III). By Proposition 3.3, the function y de-
fined by (3.14) is a strong solution of (Pr.II) and, therefore, a solution of (Pr.I).
Hence, by Lemma 4.3, there exists a positive constant /N such that

[Ay®II=N  t<[0,T],
which implies by (3.13)
(6.5) lo@II<N,  t[0,T].
Consequently, using Lemma 6.1 (ii) and (6.5), we get from (6.4)
t
1U@)-=1 T(t)Uo|m+Sol T(t—s)| (1 C(U($))| =1 F(s) | )ds
t
<3{IU, ot | (MAV) U)o+ [F)|)ds}, 1€ (0,11,
which, together with Gronwall’s inequality, yields

66)  1UOI-S3(1Usl-+{] 1 76)1-d)expBMQVY),  te[0,7].

Since a priori estimate (6.6) is obtained, we can show the global existence and
uniqueness of a mild solution of (Pr.III) in the standard way (see e.g. Pazy
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[6, Theorem 3.1]).

Finally we shall prove the latter half of Proposition 6.2. In addition to
(A.1), (A.2), (A.3) and (A.4), assume that y,D(4) and f,€C([0, ); X,).
Since U,="*(v,, Ay,)€D(A)=D(A) X X,, U,(2) satisfies

Udt) = T() AU+ T(#)(C(Uo)+F(0)

©.7) +[ ra—s) (4 cun+Fe)is,  rz0.

Here
6.8) <21d? c( U(t))(x) — o (w(x, 1))0,(x, )+ o (w(x, E))wy(x, o (x, 2), 0) ,

where w(x,t) is defined by (6.2) with o(x) replaced by v(x,#). Hence, it follows
from (6.7) and (6.8) that U, is strongly continuous on [0, o). Thus, noting
(3.9), we complete the proof. [q.e.d.]

Proof of Theorem 2. If U is a strong solution of (Pr.III), then y defined by
(3.14) gives a solution of (Pr.I). Therefore, in view of Theorem 1 and Propo-
sition 3.3, we obtain all the conclusions of Theorem 2 from Proposition 6.2.

[g.e.d.]
7. Proof of Theorem 3

Suppose that y,, $,=C’0, 1], y;, $C[0,1] and f, fec([o, 11x [0, =))
satisfy (A.2), (A.3) and (A.4), respectively. Let y, § be the corresponding
solutions of (Pr.I). (By Theorems 1 and 2, y and § satisfy (3.4).) Let T be
any fixed positive number. Then, by Lemma 3.4,

(7.1) ly=@I=N, and [P.(OI=N,  t€[0,T],

where N, is a positive number depending continuously on 7, | ¥q zx| e, | $o,x | s
[Y1] s [$h]w, sup | f(£)].. and sup | f(t)[w. In this section, we denote by N;
0st=T ost<T

positive numbers depending continuously on the above quantities. Define U and
U by (3.13), i.e.

U = t(u)v) = t(yh Ay) and ﬁ = '(ﬁ:ﬁ) = t(.obA.p) ¢
Then U and U, respectively, satisfy the following integral equations:

U = TOUyt | T(t—9)(CUE)+Fo)ds

and

00 = T+ |, 70— (CO6)+Bo)ds,
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where F(£)="(f(£), 0), F(t)="(f(£),0), Uy="(3,, Ayy) and U,=(y, 49,) (see (6.4)).

Consequently, we have

U0 —0() = T)(Us— T+, T—9)(CUE)—COs)ds

(7.2) X

+S., T(t—s)(F(s)— B (s))ds .
Note that, by (6.6),
(7.3) |U®N)[-<N, and |U@)|-<N,  te[0,T],

for some N,. Hence, Lemma 6.1 (iii), together with (7.1) and (7.3), gives

| C(UE)—CU@) |« < M) | 0(2)— () | o+ N My 2N) [o(t) — (D)l

(7.4) <N,|U@t)—-U(t)]., t€[0,T],

for some N,. Therefore, using Lemma 6,1 and (7.4) we get from (7.2)
A ' A
| U@~ 0(0)| =31 51—l =+ | Apy— Ay 43N | U(s)— D) o

+3 1A —fo) 1 ds

which yields by Gronwall’s inequality

| U~ 001 = G151 |-+ | A A% 43| f)—Fis)1 )
X exp (3N,t) ,
for 0¢t<T. Thus using Lemma 4.1 we obtain the conclusion of Theorem 3.
[q.e.d.]
8. Proof of Theorem 4

In this section, we assume, in addition to (A.1), (A.2), (A.3) and (A.4), that
o is positive on (—oo, o) and that both | f(f)|. and |fy(#)]. decay like e~
with v >0 as t—oo.

Let y be a solution of (Pr.I). Then Lemmas 4.2 and 4.3 imply that there
exists a positive constant IV such that

(8.1) ly@ll+1y®I<N,  forall 1=0.

First we shall prove the stronger result than (8.1):

(8.2) [y I+ 11yB)]] = O(e™P) as t—>oco0,
with some $>0. As in the proof of Lemma 4.2, multiplying (1.1) by ey,
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(where a is a positive number which will be specified later) and integrating
over [0,1]%[0,¢], we have

{2 Ol + | S 0uw t)dn) + [ liyutopas
(83) —af e Lyl [ Do)
— L llF+ [ D0n s+ { (9, y0)as,

where D)(r)= S'Sso-(f)d'rds. If we put
0Jo
m= 1Inf o(s)>0 and M = M(N)= sup a'(s)
sI<

then we get
64) S S D0 0)S L Myt

(note Lemma 4.1 and (8.1)). Making use of (8.4) we rearrange (8.3): then

2 Uy OIP+mly. 1+ | (1= ) llylo)ds

(8.5) —%‘-j e Iy AP+ MLy ()P} ds
< e+ alyo e+ L [0 ras)

for any >0 and t=0. Next, as in the proof of Lemma 4.3, multiplying (1.1)
by —Xe™y,, (where \ is another positive number which will be specified later)
and integrating the resulting expression over [0,1]x [0, T], we have

%e“”{Hy“(t)llz—Z(y:(t),yn(t))—a“yx(‘)”z}

[ o0t Nyt i ] eyl
(8.6)

2y (¢t !
+a—2§$ e“‘lly,(s)||2ds—>~§ €|l y1:(s)ll%ds
0 0

= 2 150l P—20 Yo =l P} =2 (9, 75N

Rearranging (8.6) we obtain
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(3.4), so that we introduce

U(2) = "(u(t), ©(2)) = ‘(y(2), Ay(®))
and
Us = "(y1, 4yo) -
Rewrite (3.9) in the following from:
(8.11) Ui(t) = A U@+ C(U@))+F@),
where

A= (j o-((()))) and C(U) = (B(A"v)o—o-(O)'v) .

Since 4 is an infinitesimal generator of the analytic semigroup 7'() on X,
A, also generates an analytic semigroup of bounded linear operators T(t),
t=0, on X XX, (see e.g. Krein [5]). We have the following lemma whose
proof will be found at the end of this section.

Lemma 8.1. Let T\(t) be an analytic semigroup gemerated by A,. Then
there exist some positive constants K and p(<o(0)) such that

I () U|.=<Ke™|U|.
Sfor t=0 and U='(u,v)e X x X,.

We shall continue the proof of Theorem 4. It follows from (8.11) that
U satisfies

(8.12) U = T Ut || Tt—) {CUE)+Fo)hds, 120.

For the first conmponent of C,(U), we have:

| B(4™'0) (%) —o(0)o(%)| = | {o(w(*))—a(0)}v(x)]
= My(lwlw) ()] |o(x)],

where w is defined by (6.2) and M, is defined as in Lemma 6.1. Hence, recall-
ing v(x,t)=y,.(x,1), w(x,t)=y,(x,t) and (8.10), we get

(8.13) | CUU) | S M(N)Ne™ | U(1)] .
Therefore, (8.12), combined with Lemma 8.1 and (8.13), gives

B14) U@ SKe™ Uy ot K| e MNNe ™| UGs) | k- Nie™")ds
0

where we have used the assumption that |F(f)|.<N,™ with some N,>0.



EQUATION ¥4t —0(Y:)¥ss—Yats=f 319
% e {1y (D)1= 21y Ol y (D) — ey ()|}

2 (m— &)y,
(8.7)
+ M el Fds [ ey (o)rds

2
< 2 Ul 213l ol eSS}
for any €>0 and #=0. Addition of (8.5) and (8.7) leads to the following:
1 &
5 DI 1My P+ m— ) 1y.(0) P}
t _ﬂ_ s 2 ¢ e @S 2
| (m— & —e)emly.u@lFds-+{ (1—e—N)ely.)Pds

+2{ (=1l ds— [ ey ) IPds
(8.8)
‘{IlyxlI2+Mllyo,,,l|2+7\(llyo,nll2+2llylll 170,511}

+EEM e foiras
<N,(1+L{ e foras), 120,

where N, is a positive number independent of ¢. In what follows, we denote
by N; a positive number independent of z. In (8.8), put A=1/2 and choose
a such that
0<a<min{2'y, -—Zm—} .
2M+1

Then by taking a sufficiently small €>0 we can show with the aid of Lemma
4.1

(8.9) e (ly DI+ lyD)IH=N,, t20,
which implies (8.2) with 8=a/2. In particular, we have
(8.10) 19:8) o= 1y Ny, 120,

for some N,.
Next we shall prove that (8.2), or (8.9), holds with the L?*-norm |[|-]|
replaced by the maximum norm |«|.. Asa map from [0, o) to X, y satisfies
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Now choose >0 such that 8<p and 8§<v. Then it follows from (8.14) that
e U(t)]| .= Ke® | U,| m—l—KNJ:e(“"’)(‘"’e(a'”‘ds
+KM1(N3)Nas;e(5“’)“ e~ | U(s) | ds ,

which yields with the aid of Gronwall’s inequality
8.15) | U@)|-=K{|Us|=+Ny(v—08)""} exp(KM (N3N
for every ¢=0.
Next we shall estimate U,(t). Since U(t)eD(A,)=D(A)xX, for t>0,

we have
U(t) = Ty(t—1){A,U(1)+C(U1))+F(1)}

(8.16) +{ me—o{ L cwertrila, =1,

(cf. (6.7)). The first component of Ed{Cl(U(t)) is estimated by

| ol 0) = o(O} o(x, ]

=< | o' (w(x,2))wy(x,8)v(x,t) | + | {o(w(x,t)—a(0)}v,(x,2) |
= M(lw(t)| <) {|wlx,2) |+ |o(x,2) |+ |w(x,8) | - |04(x,2)[} .

By Lemma 4.1 and (6.3)
lw(t)|-= (@)= o) and |w,(t)|-=[olD)].,
so that we see, by making use of (8.10) and (8.15),
(8.17) 14 ¢,(Ua) . <2MNINe ™ U D)
for some N;. Therefore, it follows from (8.16), together with Lemma 8.1
and (8.17), that
[ULt)| = Ke™*¢ (| 4,U(1) |+ | CUD)) |+ | F(1) ] )

(8.18) +KS:e“’<"”(2Ml(N3)N5e’5‘l U,(s) | ot Nee™™)ds, 121,

for some Ng>0 (cf. (8.14)). From (8.18) we can show, in the same way as
(8.15),

(8.19) |U(t)|.<Nge®  for t=1,
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with some N;. Thus, from (8.15) and (8.19) we get the assertion of Theorem
4 (use Lemma 4.1). [q.e.d.]

Finally we shall prove Lemma 8.1.
Proof of Lemma 8.1. For U,='(uyv)EX,XX,, put U(t)="(u(t), v(t))
=T\(#)U,. Define y,=Av,, y,=u, and

30 =yt [ u(ss.

Then we can show, as in §3, that 7y satisfies

—Ay,—a(0)Ay =0 t>0,
(8.20) {yu y,—a(0)Ay >

¥(0) = ¥o, ¥:(0) = ;.

Therefore, applying the preceding arguments in this section to (8.20), we see
that there exist some constants K, >0 and 0<p<¢(0) (which are independent
of Uy) such that

(8.21) ly(OIF+ 1 Ay@)|1P< Kie ' (|ly(DIP+- 1 Ap(1)IP), =1,
(see (8.8) and (8.9)). Recall that T(¢) is an analytic semigroup, so that
U, t)—AU(1)=0, >0,

and
Uult)—AU(t) =0, t>0,

which imply

(8.22) Yty Ay —o(O) Ay = 0, >0,
and
(8.23) Yurlt)— Ay (t)— (0) Ay (1) = 0, >0,

respectively. Hence, using (8.21) we can show from (8.22) and (8.23)
B8.24)  MyuOIP+1 Ay ()P = Kie *(|ly(DIP+ 1Ay (1)), 221,

and
(8.25)  [lyu®IF+11Ay@)IF = Kie ™ (ly(DIP+ 1Ay (DIF), t=1.
Noting Lemma 4.1 we have from (8.24)

lu(®)|% = |y(O) 2= 114y t)IP< Kie ™ (llyu(DIP+ 1Ay DIF)

8.26
(8.26) <Ke™|U)2, =1,

and also from (8.25)
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[yu(®) |2 = 1Ay u()IP < Kie ™ (1ly e DIP+ [ Ay (1IF)
=K.e ™| Uy(1)I%, t21.

On the other hand, since

4 frorty(o} = oy,

we get with the use of (8.27)

&0 | Ay(1) | S| Ay(1) |t [ €O ,6) s
1

<O | U(1) |+ K2 Un(1)] mﬁte“""""”ds :
1

which implies

(828)  [9(f)] = |4y <K (IUD) o+ | Un(D)]2), 121,

2
for some K,>0 (note o(0)>p). Since dit Ti(?) and % T,(¢) are bounded opera-

tors for £>0 (see e.g. Krein [5, chap. 1, §3] or Tanabe [7, chap. 3, §3]), we get

the conclusion from (8.26) and (8.28). [q.e.d.]
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