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Following Handelman [8] we call a ring R is a right strongly semiprime
ring provided if I is a two-sided ideal of R and is essential as a right ideal, then
it contains a finite subset whose right annihilator is zero.

In this paper, we first show that a ring R is a right strongly semiprime
ring if and only if

(1) O(R) is a direct sum of simple rings, and

(2) eQ(R)eR=eQ(R) for all idempotents e in Q(R) where Q(R) denotes
the maximal ring of right quotients of R.

Using these conditions (1) and (2), we shall investigate the following con-
ditions:

(a) Every nonsingular quasi-injective right R-module is injective.

(b) Any finite direct sum of nonsingular quasi-injective right R-modules
is quasi-injective.

(c) Any direct sum of nonsingular quasi-injective right R-modules is
quasi-injective.

(d) Any direct product of nonsingular quasi-injective right R-modules
is quasi-injective.

It is shown that the conditions (a), (b) and (d) are equivalent; indeed, the
rings satisfying one of these conditions are determined as rings R such that
R/G(R) is a right strongly semiprime ring, where G(R) denotes the right Goldie
torsion submodule of R. A ring R satisfying the condition (c) is also charac-
terized as a ring R such that R/G(R) is a semiprime right Goldie ring.

1. Preliminaries and notations

Throughout this paper all rings considered have identity and all modules
are unitary.

Let R be a ring. OQ(R) denotes its maximal ring of right quotients. Let
M be a right R-module. By Ex(M), nM, Z(M) and G(M) we denotes its in-
jective hull, the direct product of n-copies, its singular submodule and its Goldie
torsion submodule, respectively. (Note that Z(M/Z(M))=G(M)|Z(M).) For
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a given two right R-modules IV and M, we adopt the symbol N C M to denote the
fact that N is isomorphic to a submodule of M, and use the symbol NC,M to
indicate N to be an essential submodule of M.

Now, for a nonsingular right R-module M, the following statements hold:

(1) MG(R)=0; so M become a right R/G(R)-module by usual way,

(2) M is also nonsingular as a right R/G(R)-module, and

(3) M is R-injective (R-quasi-injective) if and only if M is R/G(R)-injective
(R/G(R)-quasi-injective).

Noting that R/G(R) is a right nonsingular ring, we conclude from [4, The-
orem 2.2] that any nonsingular injective right R-module has a unique right
O(R/G(R))-module structure compatible with the R-module structure. So, for
a nonsingular right R-module M, we have M < MQO(R|G(R))< En(M).

It is well known (e.g. [4, Theorem 3.2]) that every finitely generated non-
singular right module over a right self-injective regular ring is both projective
and injective. Therefore, if M is a finitely generated nonsingular injective
right R-module, then M is both Q(R/G(R))-projective and Q(R/G(R))-injective.

For a subset .S of a ring R, (0:.5)%((0:.S)%) denotes the right (left) annihi-
lator of S'in R.~

Lemma 1.1. Let R be a ring and set R=R|G(R) and Q=Q(R). If M is
a nonsingular right Q-module, then the following statements hold:

(a) M is nonsingular as a right R-module. (Of course, M becomes a right R-
module by a natural way.)

(b) M is Q-quasi-injective if and only if M is R-quasi-injective.

Proof. (a) Let x be an element in M such that (0:x);<,R. Inasmuch
as G(R)<(0:x)% S R, we see from [4, Proposition 1.28] that (0:x)7< ,R. Hence
it follows (0:x)5 <,0, whence x=0.

(b) Clearly MC Ez(M) as a right O-module. It is also easily seen that
MC,Eo(M) as a right R-module. As a reuslt we get Ez(M)=Eq(M), whence
Ex(M)=EyM). On the other hand we se€ that Endy(Ey(M))=Endz(Ez(M))
=Endo(Ex(M)) and Endy(Eo(M))=Endz(Eo(M))=Endy(Eo(M)); consequently
Endy(Er(M))=Endo(E¢(M)), where Endy(#) denotes the endomorphism ring of
a right *-module #. The proof is now easily done by applying the well known
fact that a module is quasi-injective if and only if it is a fully invariant submodule
of its injective hull.

The following lemma is frequently used in this paper.

Lemma 1.2. If M is a quasi-injective right R-module such that RCnM
for some positive integer n, then M is injective.

Proof. By virtue of Harada [9, Proposition 2.4], M is also quasi-injective.
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Hence we can easily see from RCnM that nM is injective, whence so is M.

2. Strongly semiprime rings

We recall some definitions introduced by Handelman and Lawrence [7]
and Handelman [8]. An right ideal I of a ring R is insulated if there exists a
finite set ©J whose right annihilator in R is zero. For a non-zero element a
in R, a finite set {r,++,7,} SR is a right insulator of a if the right annihilator of
{ary,++-,ar,} is zero. A ring R is said to be a right strongly prime ring pro-
vided every non-zero ideal of R is insulated as a right ideal, and said to be a
right strongly semiprime ring if every ideal I of R with I C,R as a right ideal is
insulated as a right ideal. As is easily seen, a ring R is right strongly prime if
and only if every non-zero element in R has a right insulator.

The notion ‘insulated’ coincides with ‘cofaithful’ in Beachy-Blair [1] and
is connected with ‘finite intersection property on annihilator right ideals’ in
Zermanowitz [14]. The class of right strongly prime rings is just that of right
absolutely torsion-free rings in the sense of Rubin [11]. For details of strongly

prime rings and strongly semiprime rings, the reader is refered to [1], [6], [7], [8]
and [11].

DerFINITION.  For an element a in a ring R, we call a finite set {r,--,7,;b}
CR is a right semi-insulator of @ when RaR N\ RbR=0 and the right annihilator
of {ar,,-++,ar,} UbR is zero.

Proposition 2.1. If R is a ring such that every element in R has a right
semi-insulator, then R is a semiprime right nonsingular ring.

Proof. Let a=R. Then there exists a finite set {r;,-**,7,; b} SR satisfy-
ing RaRNRbR=0 and [r:] (0: ar))&]N(0: bR):=0. If acZ(R) and a=0, then
ar,Z(R) for each 7 and OFare (:1 (0: ar;)% for some r&R. But it follows from
bRar=0 that ar=0, a contradiction. If aRa=0, then a=0 because a€ [E]
(0: ar,)2] N (0: bR):=0. Thus R is a semiprime right nonsingular ring.

Lemma 2.2. Let R be a semiprime ring.

(a) If Iis an ideal of R and ] is a right ideal of R such that I (\ J=0, then
INRJ=0 and moreover Q(R)IQ(R) N QO(R)JO(R)=0.

(b) Forideals I and J of R, 1<,] as aright ideal if and only if IC,] as a
left ideal.

() If {I.\\n€A} is an independent family of ideals of R, then so is
{ORLOR) IME A}

Proof. (b) and (c) easily follow from (a).
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(a). Set O=Q(R). Since I N J=0, wesee JI=0 and it follows (IQ] N R)*
=0. Hence IQJ=0, from which we have (QIQ NQJO N R)*=0 and therefore
Q10 NQJO=0.

Note. Let I and J be ideals of a semiprime ring R. When we use ‘7<, )’
instead of ‘I, ] as a right ideal’ or ‘I, as a left ideal’, no confusion arisies
by Lemma 2.2(b).

Proposition 2.3. The following conditions are equivalent for a semiprime
right nonsingular ring R:

(a) O(R) is a direct sum of prime rings.

(b) The set of all central idempotents of Q(R) is a finite set.

(c) R contains no infinite direct sums of ideals.

(d) Ewvery ideal of R is essentially cyclic generated, i.e., if I is an ideal of R,
then there exists a in I such that RaRC 1.

Proof. Set O=Q(R). (a)=(b) is clear.

(b)=>(c). Suppose that R contains an infinite independent set {I,|AE A}
of non-zero ideals. Lemma 2.2 (c) says that {QI,Q|x&A} is independent
and so is {Eo(QI,0)|x=A}. However, inasmuch as each Eo(QI,Q) is an
ideal of Q, each Eqo(QI,Q) is generated by a central idempotent in Q by [5,
Corollary 1.10]. This contradicts (b).

(c)=(d). Let I be a non-zero ideal of R. For 0%a,&1, if Ra,R is not
essential in I, we can take O=a, in I such that {Ra,R, Ra,R} is independent by
Lemma 2.2(a). Similarly when Ra,RPRa,R is not essential in I, then there
exists a; in I such that {RqR, Ra,R, Ra,R} is independent. Continuing
this manner, by (c), we must reach to n such that {RaR, -+, Ra,R} is inde-
pendentand Ra,RP---PDRa,R<,I. Here we claim R(a;++--+a,) RS 1. From
Lemma 2.2(c), {0a,Q, ‘-, Qa,0} is independent. This implies @,0P---
®a,0=(a+-+a,)Q since O is a regular ring. Hence we see (Ra,RPD---
@ Ra,R)Q=R(a,+ ++++a,)Q, which shows R(a,+ :+-+a,) RS Ra;RP--- DRa,R.
Therefore surely R(a,+-+-+a,)R< 1.

(d)=(a). Itis easily seen from (d) that Q is a direct sum of indecomposable
rings, say OQ=0,P---PQ,. To show that each Q; is prime, let X be an ideal
of Q;. Then Eo(X) is generated by a central idempotent in Q; by again [5,
Corollary 1.10]. So, X<,0; as a right Q;-module from which we see that
0, is a prime ring.

RemMARK. The equivalence of (a) and (b) is due to J. Kado (see [10, Proof
of Proposition 3.2]).

Lemma 2.4 ([8]). If R is a right strongly semiprime ring, then
(a) R is a semiprime right nonsingular ring, and
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(b) O(R) is a direct sum of simple rings.

Proof. (a). Let I be an ideal of R such that I’=0. Clearly I*=0
implies (0: I); <R as a right ideal. So (0: I)% is insulated as a right ideal.
Inasmuch as (0: 1)z =0, it follows I=0. Hence R is a semiprime ring. Since
R is semiprime, using Lemma 2.2(a), there exists an ideal KCR such that
Z(RY®K < ,R. Since Z(R)PK is insulated as a right ideal, there exists a

finite set {z, -+, 2,} CZ(R) and {k, -k} CK such that (1(0:z+k)s—
(N(0:2)%) N(N(0:k)%). Let a€ Z(R) and suppose a=0. Then 0=are N (0:2,)

for some r in R. But, since each & ;ar=0, we infer ar=0, a contradiction. Thus
Z(R)=0.

(b). Inasumuch as every non-zero essential ideal of R is insulated, clearly,
R contains no infinite direct sums of non-zero ideals. Hence, by Proposition 2.3,
O(R) is a direct sum of prime rings, say O(R)=0Q,®--PQ,. In order to
show that each Q; is simple, let X; be a non-zero ideal of Q;, =1, -+-,n. Since
O; is a prime right self-injective regular ring, we see X;Z,0; by [5, Proposition
1.10]. Asaresult, (X,®---BX,)NRS,R. So (X,®---BX,)NR is insulated
as a right ideal, whence RCA((X,P---PX,)NR)Ck(X,P--PX,) for some
positive integer k. Since X,;P P X, is an ideal of Q, it is Q-quasi-injective
and so is by Lemma 1.1, R-quasi-injective. Therefore we see that X,P---PX,
is R-injective, whence Q(R)=X,P---PX,. Therefore Q,=X,, i=1,-,n.

Theorem 2.5. For a given ring, R, the following conditions are equivalent:
(a) R is a right strongly semiprime ring.
(b) (1) O(R) is a direct sum of simple rings, and
(2) O(R)eR=Q(R)eQ(R), or equivalently, eQ(R)eR=eQ(R) for all
idempotents e in Q(R).
(c) (1) R contains no infinite direct sums of ideals,
(2) every element of R has a right semi-insulator.
(d) O(R)I=Q(R) for any essential right ideal I of R.
(e) There exists a ring extension S of R with the same identity satisfying
SI=S for any essential right ideal I of R.

Proof. Set OQ=Q(R). (a)=(b). According to Lemma 2.4, O is a direct
sum of simple rings. So every ideal of Q is a direct summand. Let e=ef€Q
and take an ideal T of Q such that QeQPT=0. Since (QeRNR)B(T NR) is
essential in R, it is insulated as a right ideal, hence there exists a positive integer
k such that RCk((QeRNR)P(T NR)) as a right R-module. Since QeRPT is
a left ideal of Q, QeRPT is Q-quasi-injective and so is R-quasi-injective
(Lemma 1.1). Hence Lemma 1.2 says that QeRPT is R-injective, whence we

have QeR=QeQ.
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(b)=>(c). In order to show R to be semiprime, let a€R such that aRa=0.
Since Q is a direct sum of simple rings, clearly it is a right nonsingular ring;
whence it is a regular ring. Thus Qa=Qe for some e=¢? in Q. Since QaR=
QeR=0Qe0Q=0aQ, we see 0=0aRa=QaQa, from which we have a=0. (1)
now follows from Proposition 2.3. Let us write 0=0,H---P0,, where each
Q; is simple, and let 1=e,+-:++e¢, in this decomposition. {e, ---,¢,} is a
set of non-zero central orthogonal idempotents. Now, to show (2), let aER.
Then QaR=QaQ=§EBQ,~ for some I<{l, -+,n}. Without loss of genera-

lity, we can assume I={1, -+, s}. Let us express e;+--++e¢, in QeR as e;+ -
—I—eszi} g;ar;, where ¢;€0Q and r,€R. We can take r in R satisfying O==e,r
€R, 1;z_l=s—|—1,---,n. Put b=r(e,;,++++e,). Here we claim that {r,--,7,; b}
is right semi-insulator for . RaR N RbR=0 is obvious. If x is in [iél(O: ar)k]

N(0: bR)%, then (e,+-:-+e,)x=0. Further, inasmuch as Qe,rQ=0,, for m=
s+1, -+, n, we infer QbR=0Q,,,P+--PQ,; whence (e,;;+-++e,)x=0. There-
fore x=0 as required.

(c)=(a). Proposition 2.1 says that R is a semiprime right nonsingular
ring. If I is an essential ideal of R, then there exists @ in I such that RaR<
(<S.R) by Proposition 2.3. Let {r, -, 7,;b} be a right semi-insulator of a.

Since RaRC R and RaR N RbR=0, we see b=0. Consequently é (0: ar;)=0.

Therefore [ is insulated as a right ideal.

(b)=>(d). If Iis an essential right ideal of R, then QI < 0 as a right R-
module. As is seen in the proof of (b)=>(c), it follows from (1) that Q is regular.
Therefore (2) easily implies QI=QIQ. As a result QI=0I0<<@Q and hence
01=0.

(d)=>(e)=>(a) is obvious.

Corollary 2.6. A ring R is a right strongly prime ring if and only if Q(R)
is simple and Q(R)eR=Q(R)eQ(R) for all idempotents e in Q(R).

Corollary 2.7. The following conditions are equivalent for a given ring R.
(a) R is a semiprime right Goldie ring.

(b) R is a right finite dimensional right strongly semiprime ring.

(c) IOR)=Q(R)I=0(R) for every essential right ideal I of R.

Proof. (a)=>(b). Since every essential ideal of R contains a regular el-
ement, clearly R is a right strongly semiprime ring.

(b)=(a) follows from Lemma 2.4, and (b)«=(c) follows from Theorem 2.5
and [12, Theorem 1.6].

Corollary 2.8 ([8, Corollary 16]). A regular right strongly semiprime ring R
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is a direct sum of simple rings. Therefore R is also a left strongly semiprime ring.

Proof. Inasmuch as R contains no infinite direct sums of ideals, it is suffi-
cient to show that R contains no proper essential ideals. Let I be an essential
ideal of R. Then QI=Q by Theorem 2.5, whence it follows from regularity
of R that 1=ge for some ¢g€Q and e=e’cI. Then, clearly, 1=e. So I=R.

3. Nonsingular quasi-injective modules

Lemma 3.1 ([1]). If R is a right strongly prime ring, then every nonsingular
quasi-injective right R-module is injective.

Proof. Let M (%0) be a nonsingular quasi-injective right R-module
and let 0x&M. Since xQ(R) is Q(R)-projective there exists e in Q(R) and
an isomorphism +r: xQ(R)~eQ(R) with yr(x)=e. We can take » in R such
that 0f=er&R. Then RCn(erR) for some positive integer 7, since er has a right

insulator. Inasmuch as RCmn(erR)~n(xrR)CnM, M is injective by Lemma
1.2.

Lemma 3.2. Let R be a right self-injective regular ring such that every
nonsingular quasi-injective right R-module is injective. Then R is a direct sum
of simple rings.

Proof. According as every ideal of R is a nonsingular quasi-injective
right R-module, every ideal of R is a direct summand. Hence R contains no
infinite direct sums of ideals. Hence by Proposition 2.3, R is written as a
direct sum of prime rings, say R=R;P---PR,. Since R; is prime and every
ideal of R; is a direct summand, R; must be simple, =1, -+, 7.

Proposition 3.3. If R is a right nonsingular ring, then the following condi-
tions are equivalent:

(a) O(R) is a direct sum of simple rings.

(b) Ex(M)=MOQ(R) for all nonsingular quasi-injective right R-module M.

Proof. Set Q=OQ(R). (a)=>(b). If M is a nonsingular quasi-injective right
R-module, then MQ is nonsingular Q-quasi-injective. Hence, by Lemma
3.1, MQ is Q-injective; whence MQ is R-injective.

(b)=>(a). If M is a nonsingular quasi-injective right Q-module, then M
is nonsingular R-quasi-injective (Lemma 1.1). Hence M=MQ=E(M)=E,
(M), which shows that M is Q-injective. Thus, by Lemma 3.2, we conclude
that Q is a direct sum of simple rings.

We are now in a proposition to show our main theorem.

Theorem 3.4. For a given ring R, the following conditions are equivalent:
(a) R|G(R) is a right strongly semiprime ring.
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(b) Every nonsingular quasi-injective right R-module is injective.

(c) Any finite direct sum of nomsingular quasi-injective right R-module is
also quasi-injective.

(d) Any direct product of nonsingular quasi-injective right R-module is quasi-
injective.

Proof. Set R=R/G(R) and Q=0Q(R/G(R)). (b)=>(d)=>(c): Obvious.

(2)=>(b). Since R is a right strongly semiprime ring, Theorem 2.5 says
that Q is a direct sum of simple rings and eQeR=¢Q for all idempotents e in Q.
Now, let M (=0) be a nonsingular quasi-injective right R-module. In order
to show M is injective, we may show M=MQ by Proposition 3.3. Let 0F+x€E
M. Since xQ is Q-projective, there exists an idempotent e in Q and an isomor-
phism +r: xQ=~eQ with +r(x)=e. Inasmuch as xQ is Q-injective, E(M)=
#Q@Y for some submodule Y. Since M is quasi-injective, this yields M=
(O NM)B(Y NM). Asaresult, *Q N M is quasi-injective. Put Z=+(xQ N M).
Inasumuch as xRS xQNMC xQ, we infer that Ej(xQ NM)=xQ; whence
Ex(Z)=eQ. Observing eQ=eQeR=Endy(eQ)eR=Endy(eQ)eR< Endy(eQ)Z=2Z,
we see eQ=Z=+(xQ N M). Consequently xQ=x0Q N M and it follows xQ <M.
Therefore MQ=M as desired. :

(c)=(a). In view of Theorem 2.5, it is enough to show that eQeR=eQ
for all idempotents e in Q and Q is a direct sum of simple rings.

Let e=e?<Q and set T=eQeRP(1—e)Q(1—e)R. Then T is a nonsin-
gular quasi-injective right R-module because both eQeR and (1—e)Q(1—e)R
are so. Since RCT, it follows that T is injective; whence so is eQeR. Thus
we get eQeR=eQeQ=eQ. Now, assume that Q can not be expressed as a
direct sum of prime rings. Then, by Proposition 2.3, we see that there exist
infinite orthogonal non-zero central idempotents {e;|7=1,2,--} in Q. Since

ge,-Q is nonsingular Q-quasi-injective, it is also nonsingular R-quasi-injective
ELemma 1.1). Putting T=(l—el)Q><(i‘, e,0), T is then a nonsingular quasi-
injective right R-module, since both (1l:e,)Q and ie,-Q are so. As a result,
it follows from RC T that T is injective and 2, e,~Q<€BE~), a contradiction. Hence

O must be written as a direct sum of prime rings, say Q=0,P---PQ,. Let
X be a non-zero ideal of Q,. Then X is a nonsingular quasi-injective right
O-module and hence it is nonsingular R-quasi-injective by Lemma 1.1. Take
a non-zero idempotent ¢ in X and consider X X (1—e)Q. Since both X and
(1—e)Q are nonsingular quasi-injective right R-module, so is X Xx(1—e)Q.
Inasmuch as RC XX (1—e)Q, it follows that XX (1—e)Q is injective; whence
X{PQ,. Since Q; is a prime ring, this shows X=0,. Accordingly each O,
is simple.
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Combining Theorem 3.4 with Corollary 2.8, we have

Corollary 3.5. If R is a regular ring, then the following conditions are equi-
valent:

(a) R s a direct sum of simple rings.
(b) Every nonsingular quasi-injective right R-module is injective.
(b") Every momsingular quasi-injective left R-module is injective.

Corollary 3.6. If R is a right strongly semiprime ring, then its right socle
is a direct summand of R as a ring.

Proof. By Theorem 3.4(b), we conclude that the right socle S of R is a
direct summand of R as a right R-module. Since R is a semiprime ring and
S is a two-sided ideal of R, it follows that S is a direct summand of R as a ring.

Boyle and Goodearl [3] showed that every nonsingular quasi-injective
right module over a semiprime right Goldie ring is injective. However, ac-
cording as every essential ideal of a semiprime right Goldie ring R has a regular
element, R is a right and left strongly semiprime ring. Hence Theorem 3.4
guarantees the following result.

Corollary 3.7. If R is a semiprime right Goldie ring, then every nonsingular
quasi-injective right R-module is injective and, at the same time, every nonsingular
quasi-injective left R-module is also injective.

Finally we show the following result.

Theorem 3.8. For a given ring R, the following conditions are equivalent:
(a) R/G(R)is a semiprime right Goldie ring.

(b) Amny direct sum of nonsingular quasi-injective right R-modules s quasi-
injective.

Proof. As is well known ([13]), the following conditions are equivalent:

(1) O(R/G(R)) is a semisimple artinian ring.

(2) R|G(R) is right finite dimensional.

(3) Any direct sum of nonsingular injective right R-modules is injective.

Convining this fact with Theorem 3.4 and Corollary 3.7, the proof is es-
tablished.

ReMARK. It seems to be also meaningful to study those rings whose nonsin-
gular quasi-injective right modules are written as direct sums of indecomposable
modules. Such rings were determined by Berry [2] as rings R such that R/G
(R) is right finite dimensional.
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