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Introduction. Recently, one of the authors introduced a Krull order R
in a simple artinian ring Q[6], that is, R is called Krullif the following conditions
hold:

(K1) R=N;e/R;NS(R), where R; and S(R) are essential overrings of R(see
[6] for the definition), and S(R) is the Asano overring of R;

(K2) each R; is a noetherian, local, Asano order in O, and S(R) is a noe-
therian, simple ring;

(K3) if ¢ is any regular element of R, then ¢R;=R; for only finitely many
¢in I and R,c=R, for only finitely many % in I.

The fundamental properties of Krull orders were studied in [6]. Let P
be the set of all prime v-ideals of R and P, any subset of P. Then, in §1, we
shall show that an order T'= N pep,Rp N S(R) is also Krull and, in particular, T
is an Rl-order in the sense of Cozzens and Sandomierski [1], if we take P, to
be the set of all invertible prime ideals of R. In §2 we apply the results of
§1 to the case where R is a D-order in a central simple algebra, where D is a
unique factorization domain. §3 is devoted to state an example of a maximal
order which has the noninvertible prime v-ideals.

1. Overrings of Krull orders. Let R be an order in a simple artinian
ring Q. A right R-submodule X of Q is called a right R-ideal, if aRDX DbR
for units a,b in Q. A left R-ideal and a two-sided R-ideal are defined by the
similar way. An R-ideal in R is simply called an ideal. For a one-sided R-
ideal X of R, put O0,(X)={xeQ; XxC X}, O(X)={xeQ; xXCX}, X '=
{x€0; XxXCX}={x€Q; XxCO(X)}={x€0; *xXCO,(X)}, and X*=
X1 X is called a v-ideal (invertible ideal), if X=X*R=XX"'=X"X).

We state some results in [6] concerning Krull orders. Let R be a Krull
order in a simple artinian ring Q. R is a maximal order [6, Proposition 2.1].
Let P! be a unique maximal ideal of R;. Then P,=P/NR is a prime v-ideal of
R(cf. [4, Lemma 1.5]), P{=R,P; [3, Proposition 1.1], and R,=R;,, where Rp,
is the localization of R at P,, that is, Rp,={xy'€Q; xR, yeC(P;)} with
C(P;)={yER;y-+P;is a regular element of R/P}.

Let P={P,;1<1I} be the se: of all prime v-ideals of R(cf. [4, Proposition



844 H. MaruBavasHr AND K. NIsHIDA

1.7]), P, any subset of P, and T'= N pcp Rp N S(R). In order to show that T is
Krull, we prepare some definitions and lemmas. We sometimes drop the index
t of P, P for abbreviation.

Throughout this section, R is a Krull order in a simple artiman ring Q.

Let M be a subset of Q. Then M is called a right R-set, if M is a right
R-module and contains a regular element of Q. We put M,= U I*, where [
ranges over the set of all right R-ideals which are contained in M. M is called
closed if M,=M. By the similar way we define a left R-set and a closed left
R-set. Let A be a right v-ideal and B a left v-ideal. Then we define 4oB=
(AB)*(ct. [5]).

Lemma 1.1. Tke following statements hold for right R-sets M,N.
(i) M, is a right R-set which contains M.
(i) If NCM, then N,C M,.
(lll) (Mf)r=Mr'
(iv) If Iis a right R-ideal, then I,=I*.
(v) (M,NN,),=M,NN,.
(vi) If M is closed, then M= N pepMRp N MIS(R).
In the following, we assume M,N to be closed and A,B v-ideals. Let MoA=
U XoA, where X ranges over the set of all right v-ideals which are contained in M.
(vii) MoA=(MA),.
(viii) (MoA)oB=Mo(AoB).
(ix) Mo(ANB)=MoANMoB.

Proof. (i) and (ii) are easily proved. (iii); It holds that x&(M,), if and
only if there is a right R-ideal I CM, such that x&I*. Since we can take I to
be finitely generated by [6, proposition 2.1], I=a,R+-+-+a,R with a,EM,.
Thus, there are right R-ideals I;CM such that q,€I¥(i=1,::-,k). We have
4+ L)*=TF+ -+ IF)*cI* by [5, Lemma 2] and I,++--+1,C M. Hence
xEM,, thatis, (M,),=M,. (iv)is easily proved. (v); I. holds that (M,NN,),Dx
if and only if there is a righc R-ideal I such that ICM,NN, and xI*. We
have I*=1I,C(M,),=M, and, similarly, I¥*CN,. Hence x€I*CM,NN,. (vi);
Let x& NpepMRp NMS(R) be a regular element, Then we have xc,&M for
¢,€C(P) and xBCM for a nonzero ideal B. If we put X=3¢,R-+B, then
R=NXR,NXS(R)CX* by [6, Proposition 2.1 and 3, Corollary 4.2]. Thus
R=X* and x€xX*=(xX)*=xX,CM,=M. Hence NMR,NMS(R)=M by
[3, Lemma 2.2]. (vii); Let X be a right v-ideal in M. Then XoAd=(XA)*=
(X4),c(MA),. Conversely, if x€(MA),, then x&I* for a finitely generated
right R-ideal ICMA. By the same way as (iii) we have /*C Xo4 for a right
v-ideal X in M. Hence x&MoA. (viii); It holds that (XoA4)oB=((XA4)B)*
=(X(4B))*=Xo(AB)*=Xo(AoB) for a right v-ideal X. Hence (MoA)oB
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=Mo(AoB). (ix); By [5, Lemma 3] the lattice anti-isomorphism between the
set of right v-ideals and one of left v-ideals yields the proof of (ix).

Let P, be an arbitrary subset of P, T= N pepRp N S(R), F={XCR; X is a
tight R-ideal such that XR,=R, for every PEP, and XS(R)=S(R)}, and
F,={YCR; Y is a left R-ideal such that R,Y=R, for every PE P, and S(R)Y
=S(R)}. In the following, the notation provided above will be preserved.

Lemma 1.2. F is a right additive topology on R and R,=T. Similarly,
F, is a left additive topology on R and T=R;,.

Proof. To show that F is a right additive topology, we shall prove the
followings [10]:

(i) If XeF and rER, thenr 'X={xeR; rxcX}<F.

(if) If Y is a right ideal and X € F such that x™'Y €F for all x€ X, then
YeF.

(i); Considering the fact XR,=R,=C(P)NX=+¢ and XS(R)=S(R)=X
contains a nonzero ideal we can show r’X&F by the right Ore condition of
C(P). (it); We have RpDYR,DZ,cxx(x 'Y)Rp=3,cx¥Rp=XRp=Rp, and
then R,=YR,p. Similarly, S(R)=YS(R) which implies YEF. If X&F, then
XX 'TCcNX 'R, NXIS(R)=NR,NS(R)=T. Thus R,CT. Conversely,
if t&T, then there are c,€C(P) and a nonzero ideal B such that #,=R and
tBCR. Putting X=3¢,R+B we have that X F and tXCR. Hence tER;.
This ccompletes the proof.

Lemma 1.3. We have T,=T=T, S(R),=S(R)=S(R),, and (R;),=R,
=(Rp):.

Proof. In general, if G is a right additive topology which consists of a
family of essential right ideals, then (R;),=R;. For, it holds that xE(R;),
if and only if x&I* for a finitely generated left R-ideal ICR;. Then we
can take X €G such that /C X! by the same way as the proof of Lemma 1.1
(iii). Hence xeI*C (X )*=X"'. This completes the proof.

Lemmal4. I[fX&Fand YEF, then Y ' X 'CT.

Proof. We can assume X to be a right v-ideal and Y a left v-ideal. Then
Y X '=(XoY)'=(XY) ! by [5 Lemmaz 3]. If c&(XY)™, thencXCY™'C
T=R;. Thus c€Homg(X,Ry) which implies c€ R by [10, Proposition 7.8].

Let I,= U Io X", where X ranges over F, for a right v-ideal I.

Lemma 1.5. The following statements hold for a right v-ideal 1.
(1) Iy is a right T-ideal and a v-ideal as a right T-ideal.
(i) IfICR, then I;=T if and only if IEF.
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(i) If XEF, then (X7 =T.

Proof. (i); If X, YE&F, then [o X '+ Io Y 'C(JoX '+ Io Y ) *=Io(X '+
Y )*=Io(XNY)™! by [5, Lemma 3|. Thus JoX '4+IoY 'Cl;. LettET,
YeFsuchthatte Y, x€loX for XEF,and Z={rER; treX} F. Then
we have xX CI and xtZ CxX CI, which implies (x¢S+1cZ ")ZCI and xtS-+
IoZ™ to be a right S-ideal with S=0,(Z). Since we can take X to be a right
v-ideal, Z is also a right v-ideal by [5, Lemma 3]. Thus xte(xtS+IZ™")C
(etS+ToZ NS C(xtSHIoZ Yoo Zo Z ' =((xtS+10 Z ) 2)* o Z7'CIo Z7'CI}.
Hence Iy is a right T-ideal. To prove that I is a v-ideal as a right T-ideal, it
suffices to show (I;)™'=(I"")p,. Then we have (/) "'=(IF,)'= ") =1
Now, let x be a regular element in (/7)™ and I=(a;R+++-+a,R)*. Then there
exists YEF, with xa,€Y ™, since xICT. We have xI=x(a,R+-+*+a,R)*=
(xa,R+++++xa,R)*C (Y )*=Y"!, and then xEx(lol )=(xI)ol'C Y Tl 'C
(I ")p, Hence (Ip)'C(I7")f, by [3, Lemma 2.2]. Conversely, let y be a
regular element in (/™!)z,. Then there exists Y €F, with yE Y 'I™". For any
XeF, wehave y(Io X )=yloX'C Y 1o X 'CTbyLemma 1.4. Thus yI,CT,
that is, yE(Ir)™". Hence again by [3, Lemma 2.2] (I"');,C(If)™*. This com-
pletes the proof. (1i); If ICR, then JoX 'CRoX '=X"'CT for any X€EF,
that is, I is an integral right T-ideal. It holds that I,=Tele€l,elcl. X!
for some XeFeXCI=IeF. (ii); We have (X™)p=(X")F, '=( X))z
=T by (i), (ii), and X '"'€F.

Lemma 1.6. If PEP and A is a nonzero ideal of R, then ARp=(ARp),=
(RPA),_——RPA.

Proof. If ARp,=R,, then ANC(P)+¢ which implies RpA=Rp=AR,.
Thus we assume RpA=Rp, thatis, ACP. If AP "Rp=R, for every integer
m>1, then AP™"CP. For AP™*CP implies, AP~ **"CPP'CR. If AP~**)
& P, then AP~ **Y N C(P)= ¢, that is, AP~ **DR,=R, which is a contradiction.
Thus AP~**VC P and the assertion holds by induction. There is an increasing
chain of proper right ideals of Rp;

ARPCAP_IRPCAP_ZRPC"'CAP—"’RPC"'

which must stabilize since R, is noetherian. Therefore there is an integer 7
such that AR,P"=AR,P~**Y, We have RpARp=RpAR,P™* and R,P'C
O,(RpARp)=R; which is a contradiction. Thus AP ™R,=R, for some integer
m>1. Let m be the smallest such integer. We conclude that AP~™"VCP and
then AP~"C R which implies AP™*NC(P)#¢. Thus AP "R,=Rp=R,AP™™,
and then RpADR,AP "P"=AP "R,P"=AR,. By the similar way we have
ARp,DORpA. Hence AR,=R,A. Now, it suffices to show AR,=(AR;),. Let
a be a regular element in 4 such that AR,—=aR,=Rpa and x&(AR;),. Then
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there exists J=Ra;++-4Ra,C AR, with x€ J* Put a;=r,c'a for ce€C(P)
(t=1,--+,m). Wehave x€ J*=(Z]_,Rr,c"'a)*=(ZRr;)*c 'aCRc*aCRpa=AR,.
Hence (ARp);CARp. This completes the proof.

Lemma 1.7. Let A be an R-ideal in R. Then A*= N pcpAR, N S(R).

Proof. Since (47'4)*=R, we have A*47'¢ P and A'AE P, that is, Rp=
RpA*A*=A7'AR, for all PEP. Thus A*Rp,=A*(A'A)Rp=R(A*A A=
RyA=AR;, by Lemma 1.6 and A*S(R)=AS(R)=S(R). Hence we have A*=
N pepA*Rp N A*S(R)= N pepARpr N AS(R) by [3, Corollary 4.2].

Let PeP,, P’ the corresponding unique maximal ideal of Ry, and P”=
P'AT the minimal prime v-ideal of 7. Then P”Rp,=P'=PR,, since T is
Krull in the sense of [4]. It is noted that the same proof as Lemma 1.7 yields
B*= N pep,BRp N S(R) for every ideal B of T. We shall write I,=IoRp=IoT
for a right v-ideal 1.

Lemma 1.8. We have (P")*oT=To(P")*=(P"")*=P"R,NT for every
P& P, and every natural number n.

Proof. Since (P*)*oT is a right v-ideal by Lemma 1.5, we have (P")*oT=
N pep,(P")* e T)Rp,N S(R) D N pep,P"Rp,N S(R)=P"R,N T=P""R, N T=
(P""*. On the other hand, (P")*oT=((P")*T),C(P*)*R,NT=P"R,NT by
Lemmas 1.1(ii), 1.6, and 1.7. Hence (P")*oT=P"R,NT=(P"")*. By the
similar way T N P"Rp=To(P")*. 'This completes the proof.

Lemma 1.9. (i) If 4 is a v-ideal of R, then AcT=ToA is a v-ideal of T.
(i) If A” is a v-ideal of T, then A=A" NR is a v-ideal of R and A"=A0T.

Proof. (i); Let A=(Pf---Pir)* with P,€Py(i=1, ---,]) and P,e P—P,
(j=U+1, ---, k). Since AoT is a right v-ideal, AoT= N p,ep (Ao T)Rp, N S(R)D
Np,erARp,NS(R)= N PliRp, N T = (P/™)*N --- N(P/™)*. On the other
hand, AeT=(AT),C N pep, ARy N S(R)= N1 PHRp, N T=(P™)* N N--o(P}™)*,
Thus Ao T=(P{")* N -+ N(P{")*=ToA by the similar way. (ii); It holds that
{P”; PEP,} is the set of all prime v-ideals of T(cf. [4, Proposition 1.7]). Thus
we have A”=(P{™)* N N(Py")*=PhR, NT N---NPiRp, N T by Lemmal.8.
Hence A=(P1:Rp NR)N - N(PieRp, NR)=(P1)*N+-- N(P#)* is a v-ideal of
R. Moreover, we have AoT=((P1)* N+ N(Pie)*)o T=(Pi)*oT N +-- N (Pir)*o
T=(P/™)*N -« N(Py*)*=A" by Lemmas 1.1 (ix) and 1.8. This completes
the proof.

Theorem 1.10. T is a Krull order in Q.

Proof. In order to prove T to be Krull, it suffices to show S(R)=S(T),
because T is Krull in the sense of [4] (cf. [4, Proposition 1.2]). Let 4 be a
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v-ideal of R. Then A”=AoTisalso av-idealof T'and A" 'C ToAd'=(4-T)'C
S(T) by the proof of Lemma 1.5 (i). Thus S(R)CS(T). Conversely, let A” be
a v-ideal of T'and A=A” N R a v-ideal of R. Then (4”)'=ToA'=(TA™),C
(S(R)),=S(R). Hence S(R)=S(T) and thus T is Krull.

Corollary 1.11. If we choose P, such that P— P, is a finite set, then R—
TNT', where T=NpepRpNS(R) is a Krull order and T'= N pep_pRp s a
bounded Dedekind prime ring, and is a right and left principal ideal ring.

Proof. This follows from Theorem 1.10 and [3, Lemma 3.3].

Now, we specially choose P, to be the set of all invertible prime ideals.
Then T is an Rl-order in the sense of Cozzens and Sandomierski [1], here
an order in a simple artinian ring is said to be an RI-order, its two-sided v-ideals
form a group under the ordinary multiplication.

Theorem 1.12. If P, is the set cf all invertible prime ideals of R, then T—=
N per,Rp N S(R) is an RI-ordes .

Proof. It holds that {P”; P”=P'NT and P’ is a unique maximal ideal of
Rp, PEP}} is the set of all minimal prime ideals of T. Thus by [1, Proposition
2.4] we only show that each P” is invertible. Let x&P” and X € F with x& X ™.
Then xXCRNP'=Pand xRp=xXR,CPR,. WehavexE PR, p,ep,Rp, N S(R)
= N p,ep,PRp, N S(R)=PT by the invertibility of P and [6, Proposition 2.1].
Thus P”CPT. The converse inclusion is clear, so that P”=PT. By the same
way we have P”=TP. Hence P” is invertible.

We shall give the structure of the integral v-ideals of R.

Theorem 1.13. Let R be a Krull order in Q and A a v-ideal of R. Then
A=P?1.- PixB=BP}1+- Pix, where each P; is invertible (i=1,+--,k) and B is a v-
ideal such that B& P for every invertible prime ideal P.

Proof. Let A= (P} PpPiiit+-- PY)*, where each P; is an invertible
prime ideal (=1, ---,k) and each P, is a noninvertible prime v-ideal (j=k+-1, -+,
). Then by [1, Lemma 2.1] we have that (Pf1---Pp) 'A=((Pir---Pi) ' A)*=
((Piree-Pp) Y (Piree- Pi))* = (Pkyt--- PH)*=B is a v-ideal. It is clear that B
satisfies the condition of the theorem. Hence A=P71---PpB. Starting with
A= (Pptitee PP Pi)* we get A= BPp..-Pj. This completes the
proof.

2. Maximal orders over unique factorization domains

Throughout this section, let R be a unique factorization domain and A
a maximal R-order in the sense of Fossum [2], that is, A satisfies the following
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conditions;
(i) RcCA.

(i) KA=ZX, where K is the quotient field of R and X is a central simple
K-algebra.

(iif) Each element of A is integral over R.
Let 2 be the set of all minimal prime ideals of R, P,={p=P; the minimal
prime ideal P of A with P N R=p isinvertiblein A}, P,=P—P,, A;= Npe PA,,
and A= Nge @A, Itiswell-known that there is a unique minimal prime ideal
P of A with p=PNR for every pP. Let § be the different of A, that is, §=
C(A)™!, where C(A) is the complementary ideal, C(A)={x€X; tr(xA)C R}, in
which #r denotes the usual trace function in a simple algebra [8]. Let Py,---, P,
be all minimal primes of A which contain §. We shall classify the minimal
primes of A with respect to the invertibility.

Lemma 2.1. If P is a minimal prime of A with PE=P(i=1,-,n), then
=pA(p=P N R) is invertible. If P is one of P;’s, then;

(i) There is an integer t>1 such that P'=pA(p=P N R) < P is invertible.

(i) P's=pA(p=PNR) for any integer t=P is not invertible.

Proof. By [9, §5] we only prove the second statement. (i); =: Since
pA is invertible by hypothesis, P is, too. <: There is an integer ¢>1 such that
Pi=pA,. If g€ P with g p then P;=pA,=A, Thus P'= NqePP;NgePpA,
=pA, since P* and pA are v-ideals. Now, (ii) holds a: once.

Theorem 2.2. Let A, Ay, and A, are the same as in the first paragraph of
this section. Then A=A,NA,, where A, is an Rl-order and A, is a bounded
Dedekind prime ring, and is a right and left principal ideal ring.

Proof. This follows from Lemma 2.1, Corollary 1.11, and Theorem 1.12.
Applying Theorem 1.13 to a v-ideal of A we get the following.

Proposition 2.3. If A is a v-dieal of A, then AA, is also a v-ideal of A,.

Proof. Let A=Pj..-P}B, where P;’s are minimal primes with P;N\RE P,
and B is a v-ideal of A such that Bd P for every minimal prime P with PNR€E
%,. Let Q be aminimal prime ideal of A with g=Q NRE P, and R;= Npe PR,
Then g=2R for =R, since R is a unique factorization domain. We have ¢R,=
2R,= Npe #2R,=R,, and then gA;=A, which implies QA;=A,. Therefore,
BA,=A,. Hence AA,=Pj1-+-P}tA, is a v-ideai of A, (in fact, an invertible ideal).

3. Example. In this section, we study an example of a maximal R-order
which has a noninvertible prime v-ideal.

RemARK. It was shown in [1, §2] that an arbitrary maximal R-order,
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where R is a noetherian integrally closed domain, is an RI-order. However,
the following example turns out to be the counter example of this statement.

Now, our example is originated by Ramras [7]. Let & be a perfect field of
characteristic#2, R=k[[X, Y]] with X and Y transcendental over &, and K=
k((X,Y)). Let X be the quaternion algebra K[1,a,B,aB] with o’=X, B°=
Y(Y—X)(Y+X), and Ba==—aB. Then the R-free order R[1,a,B,aB]=A
is a maximal R-order in = by [7]. We shall compute the different & of A, and for
the reader’s convernience we state the process of it. Let L=K(@) be the cyclic
extension of K and S=L@®La. We put a=k— Bl for any a=k+ Bl L(kIEK).
L is the splitting field of = and the ring isomorphism LQ xZ==M,(L) is given by
1Qa— (g 2) and 169ab—>(2 Xg) for a,be L (cf. [8, Example 9.4]). Thus
tr(x)=a+a for x=a+abe3=. Let x,ye3 and x=k,+ BL+a(k,+ BL,), y=m+
B+ a(my+ Bny) (kiyl;,m;,n;eK). Then:

Xy = k1m1+szmz+‘P‘l1"1-‘Xll’lz”z+B(k1"1+Xk2"z+llm1_Xlzm2)
+a(k1mz+kzm1'—\lfllnz‘i"\lflz”l‘f‘B(klnz_llma‘i'kz”rl’lzml)) )

where =Y(Y—X)(Y+X). Now, we get tr(xy)=2(kym,~+ Xkmy—jrlin,—
Xplmy), C(A) = {x=ki+BlL+a(k+BL)EZ; kER, ke(1/X)R, LE(1P)R,
Le(1/X+)R}, and then 6=C(A)"'= {y=m,+ Bn,+a(m,+ Bn)E A ; m,E (Y X),
mE (), me(X), n,=R}. Let Py={y=m+ Bn+a(m,+ Bn)E A; my,m € (X),
my,mERY=aA, P;={y=m+Bn+a(m+PBn)EN; m,meE (), m,mER},
where Y=Y, y,=Y—X, ¥,=Y+X(1=1,2,3). Thus P,D8(:=0,1,2,3),P,is
invertible, each P; is a v-ideal, since P;i'={x=~k,+BL+a(k+BL)EZ; ,,l,E
(1/’\]/’,)R, kl,kZER} (Z=1,2, 3) Since aA(X)=RadA(X) and ﬁA(.p‘.)-——‘RadA(q,'.),
each P,(:=0, 1,2, 3) 1s a prime ideal by the equations @A) N A=P,, BAyy NA=
P,(:=1,2,3). If P,(:=1,2,3) is invertible, then there exist k;l;m,,n;E
R(s: 1, 2;j=1,++,f)such that \l"izjkljmlj+X\biEfk2jn2j+(‘V/‘!’i)zjllinlj"‘X("l’/‘l"i)
Zl,mj=1. However, the left hand side of this equation is contained in (X, Y)
which is a contradiction. Thus each P; is not invertible (7=1,2,3). It holds
that P§=XA, P,=BA++;A, and no power of P, equals y;A(1=1,2,3). If Pis
a minimal prime ideal which contains §, then PN RD(X+). Thus PNR=(X)
or (y;) which implies that P equals one of P;’s(i=0, 1,2, 3).

Summarizing the above results we get the followings. A is a maximal
R-order which has the prime v-ideals P;(:=0,1,2,3). P, is invertible, Pyt XA,
and P§=XA and P, is noninvertible, P{=+,A for any positive integer #, and
P,=BA++;A(z=1,2,3). Every prime v-ideal P P;(7=0,1,2,3) is invertible
and P=pA(p=PNR).
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