OVERRINGS OF KRULL ORDERS

HIDETOSHI MARUBAYASHI AND KENJI NISHIDA

(Received September 13, 1978)

Introduction. Recently, one of the authors introduced a Krull order R in a simple artinian ring Q[6], that is, R is called Krull if the following conditions hold:

- (K1) $R = \bigcap_{i \in I} R_i \cap S(R)$, where R_i and S(R) are essential overrings of R(see [6] for the definition), and S(R) is the Asano overring of R;
- (K2) each R_i is a noetherian, local, Asano order in Q, and S(R) is a noetherian, simple ring;
- (K3) if c is any regular element of R, then $cR_i \neq R_i$ for only finitely many i in I and $R_k c \neq R_k$ for only finitely many k in I.

The fundamental properties of Krull orders were studied in [6]. Let P be the set of all prime v-ideals of R and P_0 any subset of P. Then, in §1, we shall show that an order $T = \bigcap_{P \in P_0} R_P \cap S(R)$ is also Krull and, in particular, T is an RI-order in the sense of Cozzens and Sandomierski [1], if we take P_0 to be the set of all invertible prime ideals of R. In §2 we apply the results of §1 to the case where R is a D-order in a central simple algebra, where D is a unique factorization domain. §3 is devoted to state an example of a maximal order which has the noninvertible prime v-ideals.

1. Overrings of Krull orders. Let R be an order in a simple artinian ring Q. A right R-submodule X of Q is called a right R-ideal, if $aR \supset X \supset bR$ for units a,b in Q. A left R-ideal and a two-sided R-ideal are defined by the similar way. An R-ideal in R is simply called an ideal. For a one-sided R-ideal X of R, put $O_r(X) = \{x \in Q; Xx \subset X\}, O_l(X) = \{x \in Q; xX \subset X\}, X^{-1} = \{x \in Q; XxX \subset X\} = \{x \in Q; Xx \subset O_l(X)\} = \{x \in Q; xX \subset O_r(X)\}, \text{ and } X^* = X^{-1}$. X is called a x-ideal (invertible ideal), if $X = X^*(R = XX^{-1} = X^{-1}X)$.

We state some results in [6] concerning Krull orders. Let R be a Krull order in a simple artinian ring Q. R is a maximal order [6, Proposition 2.1]. Let P'_i be a unique maximal ideal of R_i . Then $P_i = P'_i \cap R$ is a prime v-ideal of R(cf. [4, Lemma 1.5]), $P'_i = R_i P_i$ [3, Proposition 1.1], and $R_i = R_{P_i}$, where R_{P_i} is the localization of R at P_i , that is, $R_{P_i} = \{xy^{-1} \in Q; x \in R, y \in C(P_i)\}$ with $C(P_i) = \{y \in R; y + P_i \text{ is a regular element of } R/P_i\}$.

Let $P = \{P_i; i \in I\}$ be the set of all prime v-ideals of R(cf. [4, Proposition])

1.7]), P_0 any subset of P, and $T = \bigcap_{P \in P_0} R_P \cap S(R)$. In order to show that T is Krull, we prepare some definitions and lemmas. We sometimes drop the index i of $P_i \in P$ for abbreviation.

Throughout this section, R is a Krull order in a simple artinian ring Q. Let M be a subset of Q. Then M is called a right R-set, if M is a right R-module and contains a regular element of Q. We put $\overline{M}_r = \bigcup I^*$, where I ranges over the set of all right R-ideals which are contained in M. M is called closed if $\overline{M}_r = M$. By the similar way we define a left R-set and a closed left R-set. Let R be a right R-ideal and R a left R-ideal. Then we define $R \circ R = (AB)^*(cf. [5])$.

Lemma 1.1. The following statements hold for right R-sets M,N.

- (i) \overline{M} , is a right R-set which contains M.
- (ii) If $N \subset M$, then $\overline{N}_r \subset \overline{M}_r$.
- (iii) $(\overline{M}_r)_r = \overline{M}_r$.
- (iv) If I is a right R-ideal, then $\tilde{I}_r = I^*$.
- (v) $(\overline{M}_r \cap \overline{N}_r)_r = \overline{M}_r \cap \overline{N}_r$.
- (vi) If M is closed, then $M = \bigcap_{P \in P} MR_P \cap MS(R)$.

In the following, we assume M,N to be closed and A,B v-ideals. Let $M \circ A = \bigcup X \circ A$, where X ranges over the set of all right v-ideals which are contained in M.

- (vii) $M \circ A = (\overline{MA})_r$.
- (viii) $(M \circ A) \circ B = M \circ (A \circ B)$.
 - (ix) $M \circ (A \cap B) = M \circ A \cap M \circ B$.

Proof. (i) and (ii) are easily proved. (iii); It holds that $x \in (\overline{M}_r)_r$ if and only if there is a right R-ideal $I \subset \overline{M}$, such that $x \in I^*$. Since we can take I to be finitely generated by [6, proposition 2.1], $I=a_1R+\cdots+a_kR$ with $a_i\in \overline{M}_r$. Thus, there are right R-ideals $I_i \subset M$ such that $a_i \in I_i^* (i=1,\dots,k)$. We have $(I_1+\cdots+I_k)^*=(I_1^*+\cdots+I_k^*)^*\subset I^*$ by [5, Lemma 2] and $I_1+\cdots+I_k\subset M$. Hence $x \in \overline{M}_r$, that is, $(\overline{M}_r)_r = \overline{M}_r$. (iv) is easily proved. (v); I holds that $(\overline{M}_r \cap \overline{N}_r)_r \ni x$ if and only if there is a right R-ideal I such that $I \subset \overline{M}_r \cap \overline{N}_r$ and $x \in I^*$. We have $I^* = \hat{I}_r \subset (\overline{M}_r)_r = \overline{M}_r$ and, similarly, $I^* \subset \overline{N}_r$. Hence $x \in I^* \subset \overline{M}_r \cap \overline{N}_r$. (vi); Let $x \in \bigcap_{P \in P} MR_P \cap MS(R)$ be a regular element, Then we have $xc_P \in M$ for $c_n \in C(P)$ and $xB \subset M$ for a nonzero ideal B. If we put $X = \sum c_P R + B$, then $R = \bigcap XR_P \cap XS(R) \subset X^*$ by [6, Proposition 2.1 and 3, Corollary 4.2]. Thus $R=X^*$ and $x\in xX^*=(xX)^*=\overline{xX_r}\subset \overline{M_r}=M$. Hence $\cap MR_P\cap MS(R)=M$ by [3, Lemma 2.2]. (vii); Let X be a right v-ideal in M. Then $X \circ A = (XA)^* =$ $(\overline{XA})_r \subset (\overline{MA})_r$. Conversely, if $x \in (\overline{MA})_r$, then $x \in I^*$ for a finitely generated right R-ideal $I \subset MA$. By the same way as (iii) we have $I^* \subset X \circ A$ for a right v-ideal X in M. Hence $x \in M \circ A$. (viii); It holds that $(X \circ A) \circ B = ((XA)B)*$ $=(X(AB))^*=X\circ(AB)^*=X\circ(A\circ B)$ for a right v-ideal X. Hence $(M\circ A)\circ B$ $=M \circ (A \circ B)$. (ix); By [5, Lemma 3] the lattice anti-isomorphism between the set of right v-ideals and one of left v-ideals yields the proof of (ix).

Let P_0 be an arbitrary subset of P, $T = \bigcap_{P \in P_0} R_P \cap S(R)$, $F = \{X \subset R; X \text{ is a right } R\text{-ideal such that } XR_P = R_P \text{ for every } P \in P_0 \text{ and } XS(R) = S(R)\}$, and $F_l = \{Y \subset R; Y \text{ is a left } R\text{-ideal such that } R_P Y = R_P \text{ for every } P \in P_0 \text{ and } S(R)Y = S(R)\}$. In the following, the notation provided above will be preserved.

Lemma 1.2. F is a right additive topology on R and $R_F = T$. Similarly, F_I is a left additive topology on R and $T = R_{F_I}$.

Proof. To show that F is a right additive topology, we shall prove the followings [10]:

- (i) If $X \in F$ and $r \in R$, then $r^{-1}X = \{x \in R; rx \in X\} \in F$.
- (ii) If Y is a right ideal and $X \in F$ such that $x^{-1}Y \in F$ for all $x \in X$, then $Y \in F$.
- (i); Considering the fact $XR_P=R_P\Leftrightarrow C(P)\cap X\neq \phi$ and $XS(R)=S(R)\Leftrightarrow X$ contains a nonzero ideal we can show $r^{-1}X\in F$ by the right Ore condition of C(P). (ii); We have $R_P\supset YR_P\supset \Sigma_{x\in X}x(x^{-1}Y)R_P=\Sigma_{x\in X}xR_P=XR_P=R_P$, and then $R_P=YR_P$. Similarly, S(R)=YS(R) which implies $Y\in F$. If $X\in F$, then $X^{-1}\subset X^{-1}T\subset \cap X^{-1}R_P\cap X^{-1}S(R)=\cap R_P\cap S(R)=T$. Thus $R_F\subset T$. Conversely, if $t\in T$, then there are $c_P\in C(P)$ and a nonzero ideal B such that $tc_P\in R$ and $tB\subset R$. Putting $X=\Sigma c_PR+B$ we have that $X\in F$ and $tX\subset R$. Hence $t\in R_F$. This completes the proof.

Lemma 1.3. We have $\overline{T}_r = T = \overline{T}_l$, $\overline{S(R)}_r = S(R) = \overline{S(R)}_l$, and $(\overline{R}_P)_r = R_P = (\overline{R}_P)_l$.

Proof. In general, if G is a right additive topology which consists of a family of essential right ideals, then $(\bar{R}_G)_l = R_G$. For, it holds that $x \in (\bar{R}_G)_l$ if and only if $x \in I^*$ for a finitely generated left R-ideal $I \subset R_G$. Then we can take $X \in G$ such that $I \subset X^{-1}$ by the same way as the proof of Lemma 1.1 (iii). Hence $x \in I^* \subset (X^{-1})^* = X^{-1}$. This completes the proof.

Lemma 1.4. If $X \in F$ and $Y \in F_l$, then $Y^{-1} \circ X^{-1} \subset T$.

Proof. We can assume X to be a right v-ideal and Y a left v-ideal. Then $Y^{-1} \circ X^{-1} = (X \circ Y)^{-1} = (XY)^{-1}$ by [5, Lemma 3]. If $c \in (XY)^{-1}$, then $cX \subset Y^{-1} \subset T = R_F$. Thus $c \in \operatorname{Hom}_R(X, R_F)$ which implies $c \in R_F$ by [10, Proposition 7.8].

Let $I_F = \bigcup I \circ X^{-1}$, where X ranges over F, for a right v-ideal I.

Lemma 1.5. The following statements hold for a right v-ideal I.

- (i) I_F is a right T-ideal and a v-ideal as a right T-ideal.
- (ii) If $I \subset R$, then $I_F = T$ if and only if $I \in F$.

(iii) If $X \in F$, then $(X^{-1})_{F_i} = T$.

Proof. (i); If $X, Y \in F$, then $I \circ X^{-1} + I \circ Y^{-1} \subset (I \circ X^{-1} + I \circ Y^{-1})^* = I \circ (X^{-1} + I \circ Y^{-1})^* = I \circ (X$ Y^{-1})*= $I \circ (X \cap Y)^{-1}$ by [5, Lemma 3]. Thus $I \circ X^{-1} + I \circ Y^{-1} \subset I_F$. Let $t \in T$, $Y \in F$ such that $t \in Y^{-1}$, $x \in I \circ X^{-1}$ for $X \in F$, and $Z = \{r \in R; tr \in X\} \in F$. Then we have $xX \subset I$ and $xtZ \subset xX \subset I$, which implies $(xtS+I \circ Z^{-1})Z \subset I$ and $xtS+I \circ Z^{-1}$ $I \circ Z^{-1}$ to be a right S-ideal with $S = O_i(Z)$. Since we can take X to be a right v-ideal, Z is also a right v-ideal by [5, Lemma 3]. Thus $xt \in (xtS + I \circ Z^{-1}) \subset$ $(xtS + I \circ Z^{-1})S \subset (xtS + I \circ Z^{-1})^* \circ Z \circ Z^{-1} = ((xtS + I \circ Z^{-1})Z)^* \circ Z^{-1} \subset I \circ Z^{-1} \subset I_F.$ Hence I_F is a right T-ideal. To prove that I_F is a v-ideal as a right T-ideal, it suffices to show $(I_F)^{-1} = (I^{-1})_F$. Then we have $(I_F)^{-1-1} = (I_F^{-1})^{-1} = (I^{-1-1})_F = I_F$. Now, let x be a regular element in $(I_F)^{-1}$ and $I=(a_1R+\cdots+a_nR)^*$. Then there exists $Y \in F_1$ with $xa_i \in Y^{-1}$, since $xI \subset T$. We have $xI = x(a_1R + \cdots + a_nR)^* = x(a_1R + \cdots + a_nR)^*$ $(xa_1R + \cdots + xa_nR)^* \subset (Y^{-1})^* = Y^{-1}$, and then $x \in x(I \circ I^{-1}) = (xI) \circ I^{-1} \subset Y^{-1} \circ I^{-1} \subset Y^{-1} \circ I^{-1}$ $(I^{-1})_F$. Hence $(I_F)^{-1} \subset (I^{-1})_F$, by [3, Lemma 2.2]. Conversely, let y be a regular element in $(I^{-1})_{F_i}$. Then there exists $Y \in F_i$ with $y \in Y^{-1} \circ I^{-1}$. For any $X \in F$, we have $y(I \circ X^{-1}) = yI \circ X^{-1} \subset Y^{-1} \circ X^{-1} \subset T$ by Lemma 1.4. Thus $yI_F \subset T$, that is, $y \in (I_F)^{-1}$. Hence again by [3, Lemma 2.2] $(I^{-1})_{F_I} \subset (I_F)^{-1}$. This completes the proof. (ii); If $I \subset R$, then $I \circ X^{-1} \subset R \circ X^{-1} = X^{-1} \subset T$ for any $X \in F$, that is, I_F is an integral right T-ideal. It holds that $I_F = T \Leftrightarrow 1 \in I_F \Leftrightarrow 1 \in I \circ X^{-1}$ for some $X \in F \Leftrightarrow X \subset I \Leftrightarrow I \in F$. (iii); We have $(X^{-1})_{F,i} = (X^{-1})_{F,i}^{-1-1} = (X^{-1-1})_{F}^{-1}$ =T by (i), (ii), and $X^{-1-1} \in F$.

Lemma 1.6. If $P \in P$ and A is a nonzero ideal of R, then $AR_P = (\overline{AR_P})_l = (\overline{R_P A})_r = R_P A$.

Proof. If $AR_P=R_P$, then $A\cap C(P)\neq \phi$ which implies $R_PA=R_P=AR_P$. Thus we assume $R_PA\neq R_P$, that is, $A\subset P$. If $AP^{-m}R_P\neq R_P$ for every integer $m\geq 1$, then $AP^{-m}\subset P$. For $AP^{-k}\subset P$ implies, $AP^{-(k+1)}\subset PP^{-1}\subset R$. If $AP^{-(k+1)}\subset P$, then $AP^{-(k+1)}\cap C(P)\neq \phi$, that is, $AP^{-(k+1)}R_P=R_P$ which is a contradiction. Thus $AP^{-(k+1)}\subset P$ and the assertion holds by induction. There is an increasing chain of proper right ideals of R_P ;

$$AR_{P} \subset AP^{-1}R_{P} \subset AP^{-2}R_{P} \subset \cdots \subset AP^{-m}R_{P} \subset \cdots$$

which must stabilize since R_P is noetherian. Therefore there is an integer n such that $AR_PP^{-n}=AR_PP^{-(n+1)}$. We have $R_PAR_P=R_PAR_PP^{-1}$ and $R_PP^{-1}\subset O_r(R_PAR_P)=R_P$ which is a contradiction. Thus $AP^{-m}R_P=R_P$ for some integer $m\geq 1$. Let m be the smallest such integer. We conclude that $AP^{-(m-1)}\subset P$ and then $AP^{-m}\subset R$ which implies $AP^{-m}\cap C(P)\neq \phi$. Thus $AP^{-m}R_P=R_P=R_PAP^{-m}$, and then $R_PA\supset R_PAP^{-m}P^m=AP^{-m}R_PP^m=AR_P$. By the similar way we have $AR_P\supset R_PA$. Hence $AR_P=R_PA$. Now, it suffices to show $AR_P=(\overline{AR_P})_l$. Let a be a regular element in A such that $AR_P=aR_P=R_PA$ and $x\in (\overline{AR_P})_l$. Then

there exists $J=Ra_1+\cdots+Ra_n\subset AR_P$ with $x\in J^*$, Put $a_i=r_ic^{-1}a$ for $c\in C(P)$ $(i=1,\cdots,n)$. We have $x\in J^*=(\sum_{i=1}^nRr_ic^{-1}a)^*=(\sum Rr_i)^*c^{-1}a\subset Rc^{-1}a\subset R_Pa=AR_P$. Hence $(\overline{AR}_P)_I\subset AR_P$. This completes the proof.

Lemma 1.7. Let A be an R-ideal in R. Then $A^* = \bigcap_{P \in P} AR_P \cap S(R)$.

Proof. Since $(A^{-1}A)^*=R$, we have $A^*A^{-1} \subset P$ and $A^{-1}A \subset P$, that is, $R_P=R_PA^*A^{-1}=A^{-1}AR_P$ for all $P \subset P$. Thus $A^*R_P=A^*(A^{-1}A)R_P=R_P(A^*A^{-1})A=R_PA=AR_P$ by Lemma 1.6 and $A^*S(R)=AS(R)=S(R)$. Hence we have $A^*=\bigcap_{P \in P}A^*R_P\cap A^*S(R)=\bigcap_{P \in P}AR_P\cap AS(R)$ by [3, Corollary 4.2].

Let $P \in P_0$, P' the corresponding unique maximal ideal of R_P , and $P'' = P' \cap T$ the minimal prime v-ideal of T. Then $P''R_P = P' = PR_P$, since T is Krull in the sense of [4]. It is noted that the same proof as Lemma 1.7 yields $B^* = \bigcap_{P \in P_0} BR_P \cap S(R)$ for every ideal B of T. We shall write $I_F = I \circ R_F = I \circ T$ for a right v-ideal I.

Lemma 1.8. We have $(P^n)^* \circ T = T \circ (P^n)^* = (P''^n)^* = P^n R_P \cap T$ for every $P \in P_0$ and every natural number n.

Proof. Since $(P^n)^* \circ T$ is a right v-ideal by Lemma 1.5, we have $(P^n)^* \circ T = \bigcap_{P_i \in P_0} ((P^n)^* \circ T) R_{P_i} \cap S(R) \supset \bigcap_{P_i \in P_0} P^n R_{P_i} \cap S(R) = P^n R_P \cap T = P''^n R_P \cap T = (P''^n)^*$. On the other hand, $(P^n)^* \circ T = (\overline{(P^n)^*T})_i \subset (P^n)^* R_P \cap T = P^n R_P \cap T$ by Lemmas 1.1(ii), 1.6, and 1.7. Hence $(P^n)^* \circ T = P^n R_P \cap T = (P''^n)^*$. By the similar way $T \cap P^n R_P = T \circ (P^n)^*$. This completes the proof.

Lemma 1.9. (i) If A is a v-ideal of R, then $A \circ T = T \circ A$ is a v-ideal of T. (ii) If A'' is a v-ideal of T, then $A = A'' \cap R$ is a v-ideal of R and $A'' = A \circ T$.

Proof. (i); Let $A=(P_1^{n_1}\cdots P_k^{n_k})^*$ with $P_i\in P_0(i=1,\cdots,l)$ and $P_j\in P-P_0(j=l+1,\cdots,k)$. Since $A\circ T$ is a right v-ideal, $A\circ T=\bigcap_{P_j\in P_0}(A\circ T)R_{P_j}\cap S(R)\supset\bigcap_{P_j\in P_0}AR_{P_j}\cap S(R)=\bigcap_{i=1}^l P_i^{n_i}R_{P_i}\cap T=(P_1''^{n_1})^*\cap\cdots\cap(P_i''^{n_i})^*$. On the other hand, $A\circ T=(\overline{AT})_l\subset\bigcap_{P\in P_0}AR_P\cap S(R)=\bigcap_{i=1}^l P_i^{n_i}R_{P_i}\cap T=(P_1''^{n_1})^*\cap\bigcap\cap(P_i''^{n_i})^*$. Thus $A\circ T=(P_1''^{n_1})^*\cap\cdots\cap(P_i'^{n_i})^*=T\circ A$ by the similar way. (ii); It holds that $\{P'';P\in P_0\}$ is the set of all prime v-ideals of T(cf. [4, Proposition 1.7]). Thus we have $A''=(P_1''^{n_1})^*\cap\cdots\cap(P_k''^{n_k})^*=P_1^{n_1}R_{P_1}\cap T\cap\cdots\cap P_k^{n_k}R_{P_k}\cap T$ by Lemma 1.8. Hence $A=(P_1^{n_1}R_{P_1}\cap R)\cap\cdots\cap(P_k^{n_k}R_{P_k}\cap R)=(P_1^{n_1})^*\cap\cdots\cap(P_k^{n_k})^*$ is a v-ideal of R. Moreover, we have $A\circ T=((P_1^{n_1})^*\cap\cdots\cap(P_k^{n_k})^*)\circ T=(P_1^{n_1})^*\circ T\cap\cdots\cap(P_k^{n_k})^*\circ T=(P_1''^{n_1})^*\cap\cdots\cap(P_k^{n_k})^*=A''$ by Lemmas 1.1 (ix) and 1.8. This completes the proof.

Theorem 1.10. T is a Krull order in Q.

Proof. In order to prove T to be Krull, it suffices to show S(R)=S(T), because T is Krull in the sense of [4] (cf. [4, Proposition 1.2]). Let A be a

v-ideal of R. Then $A''=A\circ T$ is also a v-ideal of T and $A^{-1}\subset T\circ A^{-1}=(A\circ T)^{-1}\subset S(T)$ by the proof of Lemma 1.5 (i). Thus $S(R)\subset S(T)$. Conversely, let A'' be a v-ideal of T and $A=A''\cap R$ a v-ideal of R. Then $(A'')^{-1}=T\circ A^{-1}=(\overline{TA^{-1}})_r\subset (\overline{S(R)})_r=S(R)$. Hence S(R)=S(T) and thus T is Krull.

Corollary 1.11. If we choose P_0 such that $P-P_0$ is a finite set, then $R=T\cap T'$, where $T=\bigcap_{P\in P_0}R_P\cap S(R)$ is a Krull order and $T'=\bigcap_{P\in P-P_0}R_P$ is a bounded Dedekind prime ring, and is a right and left principal ideal ring.

Proof. This follows from Theorem 1.10 and [3, Lemma 3.3].

Now, we specially choose P_0 to be the set of all invertible prime ideals. Then T is an RI-order in the sense of Cozzens and Sandomierski [1], here an order in a simple artinian ring is said to be an RI-order, its two-sided v-ideals form a group under the ordinary multiplication.

Theorem 1.12. If P_0 is the set of all invertible prime ideals of R, then $T = \bigcap_{P \in P_0} R_P \cap S(R)$ is an RI-order.

Proof. It holds that $\{P''; P''=P'\cap T \text{ and } P' \text{ is a unique maximal ideal of } R_P, P\in P_0\}$ is the set of all minimal prime ideals of T. Thus by [1, Proposition 2.4] we only show that each P'' is invertible. Let $x\in P''$ and $X\in F$ with $x\in X^{-1}$. Then $xX\subset R\cap P'=P$ and $xR_P=xXR_P\subset PR_P$. We have $x\in PR_P\cap_{P_i\in P_0}R_{P_i}\cap S(R)=\bigcap_{P_i\in P_0}PR_{P_i}\cap S(R)=PT$ by the invertibility of P and [6, Proposition 2.1]. Thus $P''\subset PT$. The converse inclusion is clear, so that P''=PT. By the same way we have P''=TP. Hence P'' is invertible.

We shall give the structure of the integral v-ideals of R.

Theorem 1.13. Let R be a Krull order in Q and A a v-ideal of R. Then $A=P_1^{n_1}\cdots P_k^{n_k}B=BP_1^{n_1}\cdots P_k^{n_k}$, where each P_i is invertible $(i=1,\cdots,k)$ and B is a v-ideal such that $B \oplus P$ for every invertible prime ideal P.

Proof. Let $A = (P_1^{n_1} \cdots P_k^{n_k} P_{k+1}^{n_{k+1}} \cdots P_l^{n_l})^*$, where each P_i is an invertible prime ideal $(i=1,\cdots,k)$ and each P_j is a noninvertible prime v-ideal $(j=k+1,\cdots,l)$. Then by [1, Lemma 2.1] we have that $(P_1^{n_1} \cdots P_k^{n_k})^{-1} A = ((P_1^{n_1} \cdots P_k^{n_k})^{-1} A)^* = ((P_1^{n_1} \cdots P_k^{n_k})^{-1} (P_1^{n_1} \cdots P_l^{n_l}))^* = (P_{k+1}^{n_{k+1}} \cdots P_l^{n_l})^* = B$ is a v-ideal. It is clear that B satisfies the condition of the theorem. Hence $A = P_1^{n_1} \cdots P_k^{n_k} B$. Starting with $A = (P_{k+1}^{n_{k+1}} \cdots P_l^{n_l} P_1^{n_1} \cdots P_k^{n_k})^*$ we get $A = BP_1^{n_1} \cdots P_k^{n_k}$. This completes the proof.

2. Maximal orders over unique factorization domains

Throughout this section, let R be a unique factorization domain and Λ a maximal R-order in the sense of Fossum [2], that is, Λ satisfies the following

conditions;

- (i) $R \subset \Lambda$.
- (ii) $K\Lambda = \Sigma$, where K is the quotient field of R and Σ is a central simple K-algebra.
 - (iii) Each element of Λ is integral over R. t \mathcal{L} be the set of all minimal prime ideals of R

Let \mathcal{P} be the set of all minimal prime ideals of R, $\mathcal{P}_1 = \{p \in \mathcal{P}; \text{ the minimal prime ideal } P \text{ of } \Lambda \text{ with } P \cap R = p \text{ is invertible in } \Lambda\}, \mathcal{P}_2 = \mathcal{P} - \mathcal{P}_1, \Lambda_1 = \cap_{p \in \mathcal{P}_1} \Lambda_p,$ and $\Lambda_2 = \cap_{q \in \mathcal{P}_2} \Lambda_q$. It is well-known that there is a unique minimal prime ideal P of Λ with $p = P \cap R$ for every $p \in \mathcal{P}$. Let δ be the different of Λ , that is, $\delta = C(\Lambda)^{-1}$, where $C(\Lambda)$ is the complementary ideal, $C(\Lambda) = \{x \in \Sigma; tr(x\Lambda) \subset R\}$, in which tr denotes the usual trace function in a simple algebra [8]. Let P_1, \dots, P_n be all minimal primes of Λ which contain δ . We shall classify the minimal primes of Λ with respect to the invertibility.

Lemma 2.1. If P is a minimal prime of Λ with $P \neq P_i(i=1,\dots,n)$, then $P = p\Lambda(p=P \cap R)$ is invertible. If P is one of P_i 's, then;

- (i) There is an integer t>1 such that $P^t=p\Lambda(p=P\cap R)\Leftrightarrow P$ is invertible.
- (ii) $P^t \neq p\Lambda(p=P \cap R)$ for any integer $t \Leftrightarrow P$ is not invertible.

Proof. By [9, §5] we only prove the second statement. (i); \Rightarrow : Since $p\Lambda$ is invertible by hypothesis, P is, too. \Leftarrow : There is an integer t>1 such that $P_p^t=p\Lambda_p$. If $q\in \mathcal{P}$ with $q\neq p$ then $P_q^t=p\Lambda_q=\Lambda_q$. Thus $P^t=\bigcap_{q\in \mathcal{P}}P_q^t\bigcap_{q\in \mathcal{P}}p\Lambda_q=p\Lambda$, since P^t and $p\Lambda$ are v-ideals. Now, (ii) holds at once.

Theorem 2.2. Let Λ , Λ_1 , and Λ_2 are the same as in the first paragraph of this section. Then $\Lambda = \Lambda_1 \cap \Lambda_2$, where Λ_1 is an RI-order and Λ_2 is a bounded Dedekind prime ring, and is a right and left principal ideal ring.

Proof. This follows from Lemma 2.1, Corollary 1.11, and Theorem 1.12. Applying Theorem 1.13 to a v-ideal of Λ we get the following.

Proposition 2.3. If A is a v-dieal of Λ , then $A\Lambda_1$ is also a v-ideal of Λ_1 .

Proof. Let $A=P_1^{n_1}\cdots P_i^{n_l}B$, where P_i 's are minimal primes with $P_i\cap R\in\mathcal{P}_1$ and B is a v-ideal of Λ such that $B\subset P$ for every minimal prime P with $P\cap R\in\mathcal{P}_1$. Let Q be a minimal prime ideal of Λ with $q=Q\cap R\in\mathcal{P}_2$ and $R_1=\bigcap_{p\in\mathcal{P}_1}R_p$. Then q=zR for $z\in R$, since R is a unique factorization domain. We have $qR_1=zR_1=\bigcap_{p\in\mathcal{P}_1}zR_p=R_1$, and then $q\Lambda_1=\Lambda_1$ which implies $Q\Lambda_1=\Lambda_1$. Therefore, $B\Lambda_1=\Lambda_1$. Hence $A\Lambda_1=P_1^{n_1}\cdots P_i^{n_l}\Lambda_1$ is a v-ideal of Λ_1 (in fact, an invertible ideal).

3. Example. In this section, we study an example of a maximal R-order which has a noninvertible prime v-ideal.

REMARK. It was shown in [1, §2] that an arbitrary maximal R-order,

where R is a noetherian integrally closed domain, is an RI-order. However, the following example turns out to be the counter example of this statement.

Now, our example is originated by Ramras [7]. Let k be a perfect field of characteristic ± 2 , R = k[[X, Y]] with X and Y transcendental over k, and K = k((X, Y)). Let Σ be the quaternion algebra $K[1, \alpha, \beta, \alpha\beta]$ with $\alpha^2 = X$, $\beta^2 = Y(Y - X)(Y + X)$, and $\beta\alpha = -\alpha\beta$. Then the R-free order $R[1, \alpha, \beta, \alpha\beta] = \Lambda$ is a maximal R-order in Σ by [7]. We shall compute the different δ of Λ , and for the reader's convernence we state the process of it. Let $L = K(\beta)$ be the cyclic extension of K and $\Sigma = L \oplus L\alpha$. We put $a = k - \beta l$ for any $a = k + \beta l \in L(k, l \in K)$. L is the splitting field of Σ and the ring isomorphism $L \otimes_K \Sigma = M_2(L)$ is given by $1 \otimes a \rightarrow \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ and $1 \oplus \alpha b \rightarrow \begin{pmatrix} 0 & X\bar{b} \\ b & 0 \end{pmatrix}$ for $a, b \in L$ (cf. [8, Example 9.4]). Thus $tr(x) = a + \bar{a}$ for $x = a + \alpha b \in \Sigma$. Let $x, y \in \Sigma$ and $x = k_1 + \beta l_1 + \alpha (k_2 + \beta l_2)$, $y = m_1 + \beta n_1 + \alpha (m_2 + \beta n_2)$ ($k_i, l_i, m_i, n_i \in K$). Then:

$$xy = k_1 m_1 + X k_2 m_2 + \psi l_1 n_1 - X \psi l_2 n_2 + \beta (k_1 n_1 + X k_2 n_2 + l_1 m_1 - X l_2 m_2) + \alpha (k_1 m_2 + k_2 m_1 - \psi l_1 n_2 + \psi l_2 n_1 + \beta (k_1 n_2 - l_1 m_3 + k_2 n_1 + l_2 m_1)),$$

where $\psi = Y(Y-X)(Y+X)$. Now, we get $tr(xy) = 2(k_1m_1 + Xk_2m_2 + \psi l_1n_1 - y l_2n_2 + y l_2n_2$ $X\psi l_2 n_2$, $C(\Lambda) = \{x = k_1 + \beta l_1 + \alpha (k_2 + \beta l_2) \in \Sigma; k_1 \in R, k_2 \in (1/X)R, l_1 \in (1/\psi)R, \}$ $l_2 \in (1/X\psi)R$, and then $\delta = C(\Lambda)^{-1} = \{y = m_1 + \beta n_1 + \alpha(m_2 + \beta n_2) \in \Lambda; m_1 \in (\psi X), \}$ $m_2 \in (\psi), n_1 \in (X), n_2 \in R$. Let $P_0 = \{y = m_1 + \beta n_1 + \alpha (m_2 + \beta n_2) \in \Lambda; m_1, n_1 \in (X), m_2 \in A\}$. $m_2, n_2 \in R$ = $\alpha \Lambda$, $P_i = \{y = m_1 + \beta n_1 + \alpha (m_2 + \beta n_2) \in \Lambda; m_1, m_2 \in (\psi_i), n_1, n_2 \in R\}$, where $\psi_1 = Y$, $\psi_2 = Y - X$, $\psi_3 = Y + X(i=1,2,3)$. Thus $P_i \supset \delta(i=0,1,2,3)$, P_0 is invertible, each P_i is a v-ideal, since $P_i^{-1} = \{x = k_1 + \beta l_1 + \alpha(k_2 + \beta l_2) \in \Sigma; l_1, l_2 \in \Sigma\}$ $(1/\psi_i)R$, $k_1, k_2 \in R$ } (i=1,2,3). Since $\alpha \Lambda_{(x)} = \operatorname{Rad} \Lambda_{(x)}$ and $\beta \Lambda_{(\psi_i)} = \operatorname{Rad} \Lambda_{(\psi_i)}$, each $P_i(i=0,1,2,3)$ is a prime ideal by the equations $\alpha\Lambda_{(x)}\cap\Lambda=P_0$, $\beta\Lambda_{(\psi_i)}\cap\Lambda=$ $P_i(i=1,2,3)$. If $P_i(i=1,2,3)$ is invertible, then there exist $k_{si}, l_{si}, m_{si}, n_{si} \in$ $R(s=1,2;j=1,\cdots,t)$ such that $\psi_i \Sigma_j k_{1j} m_{1j} + X \psi_i \Sigma_j k_{2j} n_{2j} + (\psi/\psi_i) \Sigma_j l_{1j} n_{1j} - X(\psi/\psi_i)$ $\sum_{i} l_{2i} n_{2i} = 1$. However, the left hand side of this equation is contained in (X, Y)which is a contradiction. Thus each P_i is not invertible (i=1,2,3). It holds that $P_0^2 = X\Lambda$, $P_i = \beta\Lambda + \psi_i\Lambda$, and no power of P_i equals $\psi_i\Lambda(i=1,2,3)$. If P is a minimal prime ideal which contains δ , then $P \cap R \supset (X\psi)$. Thus $P \cap R = (X)$ or (ψ_i) which implies that P equals one of P_i 's (i=0,1,2,3).

Summarizing the above results we get the followings. Λ is a maximal R-order which has the prime v-ideals $P_i(i=0,1,2,3)$. P_0 is invertible, $P_0 \not\equiv X\Lambda$, and $P_0^2 = X\Lambda$ and P_i is noninvertible, $P_i^t \not\models \psi_i \Lambda$ for any positive integer t, and $P_i = \beta \Lambda + \psi_i \Lambda(i=1,2,3)$. Every prime v-ideal $P \not\models P_i(i=0,1,2,3)$ is invertible and $P \not\models P \Lambda(p \not\models P \cap R)$.

Osaka University Hokkaido University

References

- [1] J.H. Cozzens and F.L. Sandomierski: Maximal orders and localization. I, J. Algebra 44 (1977), 319-338.
- [2] R.M. Fossum: Maximal orders over Krull domains, J. Algebra 10, (1968), 321-332.
- [3] H. Marubayashi: Non commutative Krull rings, Osaka J. Math. 12 (1975), 703-714.
- [4] H. Marubayashi: On bounded Krull prime rings, Osaka J. Math. 13 (1976), 491–501.
- [5] H. Marubayashi: A characterization of bounded Krull prime rings, Osaka J. Math. 15 (1978), 13-20.
- [6] H. Marubayashi: Polynomial rings over Krull orders in simple artinian rings, to appear.
- [7] M. Ramras: Maximal orders over regular local rings of dimension 2, Trans. Amer. Math. Soc. 142 (1969), 457-479.
- [8] I. Reiner: Maximal orders, Academic Press, London, 1975.
- [9] J.A. Riley: Reflexive ideals in maximal orders, J. Algebra 2 (1965), 451-465.
- [10] Bo. Stenström: Rings and modules of quotients, Lecture Notes in Math. 237, Springer-Verlag, Berlin 1971.