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1. Introduction

In [8] Snaith proved the Adams conjecture for suspension spaces. In
this paper we shall prove an analogous result to Snaith’s theorem ([8|, Corollary
5.2) for the Real Adams operation ¢? and a Real J-map [, (see §2). This is
proved by using the results of Seymour [7]. And as an application we shall
determine an undecided order in the theorem of [6].

Here we shall inherit the notations and terminologies in [2], §1 and [6].

2. Homomorphism J

In [6] we defined the homomorphisms ., and Jp for doubly indexed
suspension spaces 279X, p=0 and g=1. Clearly, these definitions are also
valid for any finite pointed 7-complex. But the natural map obtained in
this manner

Jz: KRY(X) - n2°(X)

is not a homomorphism in general. As in the usual case we see that this
map satisfies the following formula:

Jela+B)=J (@) +Jx(B)+Jx()]x(B)  a, BEKRX)
where ab (a,b=72°(X)) denotes the product of a and b induced by the loop
composition in Q™"2™" (cf. [9],p. 314).
3. Adams operation ¢® in KR-theory

In this section we recall the construction of the Real Adams operation
J% described in [7], §4.
Let S; be the symmetric group with two generators a, b satisfying

@=0=1,bab=a’

and let Z, be the cyclic subgroup of S; generated by a. From the above re-
lations we see that T(a)=a? 7(b)=> induces an automorphic involution 7 on
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S;. Zj is closed under the involution 7. Therefore S; (resp. Z;) is regarded
as a Real group with the involution 7 (resp. its restriction to Z;) in the sense
of Atiyah-Segal [4].

We know that all simple S,- and Z,-modules over C are as follows:

(3.1) Sp:1=1{Cla=1,b=1}, M= {Cla=1,b= —1},
M, = {C?| av = Av, bv = Bv, veC?%
Zy: 1= {Cla=1}, M,= {C|av = {v, vEC},
M, = {C|av = {%, veC}
where A=[g 22], B=|:(1) (l)]eGL(Z, C) and t=exp(2nif3) (see, e.g., [5], §32).
Let G denote either S, or Z,. Clearly each G-module listed above is a
Real G-module with the conjugate linear involution induced by complex con-
jugation. This fact shows that the forgetful map R4(G)—R(G), which is in-
jective in general, is surjective where Ry(G) is the Grothendieck group of Real
G-modules and R(G) is the complex representation ring of G.
Let X be a Real space with trivial G-action and F—X be a Real G-vector
bundle in the sense of [4], §6. Then we see easily that the decomposition of
F as a complex G-vector bundle ([4], §8)

(3.2) SHom (M, F)@M = F

becomes an isomorphism of Real G-vector bundles. Here M runs through
the simple G-modules over C and M denotes the product bundle M X X ove:
X. And so we see that (3.2) induces a natural isomorphism KR;(X)=KR(X)
®R(G).

Let E—X be a Real vector bundle over X with the involution 75: E—E.
We define a Real structure #; on E®* by #,=(1Q1)7§® where t: E®*—>E® jg
the switching map. Then E®* becomes a Real S;-vector bundle with the S,-
action permuting the factors. '

Applying (3.2) to E®* we have an isomorphism of Real S;-vector bundles

(3.3) E®=Hom%(1, E®*)®1@HomS(I, E*)QM

@Homss(]ﬂb E®3)®M1
with the notations of (3.1). And by (3.3), as a Real Z;-vector bundle we obtain
(34) E®3g(Homsa(i, E®)HomS(M, E®*)Q®1

@Homsa(ﬂl, E®¥Q(M,DM,) .
Put
V, = HomS(1, E®)@HomS(M, E®),
Vl - HOmss(Ml, E®3)
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and

N = 1®&M,DM,, the regular representation of Z;,
then by (3.4)

(3.5) E®=V Q1DV,Q(M,DM,)
as a Real Z;-vector bundle and so
[£%) = (V] [V ®1+[V]®N

in KR, (X)=KR(X)®R(Z;) where [A] denotes the isomorphism class of 4.
Here we define ¢} by

(3.6) $(E]) = [V]-[V] .
Then we can easily check that ¢} satisfies the properties of Adams operation.
And moreover by [3], Proposition 2.5 we see that forgetting the Real structure,
¢% is reduced to the complex Adams operation ¢j.

4. Real Adams conjecture for ¢}

The purpose of this section is to prove the following theorem.

Theorem 4.1. Let X be a finite pointed T-complex. Then

Je@h() = Jal@) for any x=KRX)

aevoe[3].

Let Y be a 7-space with trivial Z;-action. As in §3 we assume here

that £®3 has the twisted Real structure for a Real vector bundle E over Y. We
have the following lemmas as in [7], §1.

Lemma 4.2 (cf. [7], Proposition 1.2). There is a natural isomorphism of
Real Z~vector bundles

(EDF)®*=ER*PFeP(U'(E,F)QN)
for Real vector bundles E and F over Y.

Lemma 4.3 (cf. [7], p.399). For the trivial Real vector bundle n of dimension
n over Y there is a canonical isomorphism of Real Zg-vector bundles

6,: n® — nB(n'QN)
such that
7 0.((31-12:6)%, x) = (Stizle;, ) (3,€C, x€X)

where let m, denote the projection of nP(n'@N) onto n and let e, -, e, denote
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the standard basis of C".
Let f,: n®*—»>n®(n'QN) (k=1,2) be isomorphisms of Real Z;-vector bun-
dles. Consider the direct sum

fi®fe: 2n%° = 2nD(2n'®N) .

By Lemma 4.2, adding U’(n,n)@N to the above isomorphism we have an iso-
morphism of Real Z;-vector bundles

(2n)®* — 2nD((2n)' QN)

for which we write f,-+f,.
By modifying the proof of [7], Proposition 2.5 we get the following

Lemma 4.4 (cf. [7], Proposition 2.5). Given an isomorphism of Real Z,-
vector bundles f: n®*—>n®(n' QN), there is an isomorphism of Real Zy-vector bundles
g: n®3—>nP(n'QN) such that f+g is homotopic to 0,, through Real Z ~isomorphism.

Define a map §: C"—>C" by &(zy, **, 2,)=(2}, -+, 23) (,€C). Then §
induces a base-point-preserving 7-map of ™" into itself which we denote
by the same letter 8. Now, according to [2], Theorem 12.5

7, (Z"") = Z[p]/(1—p?)
forn=1. We observe [8]'Ex, ,(=""), the T-homotopy class of &.

Lemma 4.5. With the above notations, we have

P 143" 1-3" o1
[8] ot (nz1)

in m, (E"").
Proof. We have
g1)=1,¢(1) = 1, §(p) = —1 and ¢(p) = 1
where ¢ and ¢ are the forgetful and fixed-point homomorphisms respectively.
So putting [8]"=x+yp (x,yEZ) we have
143"

1_3

since ¢([8]")=3" and ¢([8]")=1 by the definition. q.e.d.

For a 7-map o of Z"! into itself we define a T-map ¢,: Q™ "™ "—Qltmi+m
ZHmitm by t(n)=c An (n€Q™"Z™") where ‘A’ denotes the smash product
upon one point compactification. Let & be a 7-map of =™" into itself such that

. 143" 1-3"
e = —
[€] 5 5 P
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in 7, (2™"). Then [€8]"=3" for § as in Lemma 4.5. Hence we have
8/\8:788/\ 1’“—".,.3": S2m2n s S2m2n

where 1 is the identity map of Z™".
For a 7-map &: X—GL(n, C) we define a T-map j;: X—Q3"¥533 tg be the
composition

h i :
X— GL(n, C)CQ,”v”z":” 3 Q22 2n.2n

t t
2 Q33333 . ()3n.3n53n3n

Here 7 is the canonical inclusion map and # is the map given by adding a fixed
map of degree (—3") to the elements of Q¥3"=%%" with respect to the loop
addition along fixed coordinates of =%3". By adk we denote the adjoint of .
Then, by the definition of ] ,, we have

Lemma 4.6. With the above notations
[ad A" = 3" [z a([iA])
where j is a canonical inclusion map of GL(n, C) into GL(3n, C).

As we note in [6] we have

KR(X)=KR(Z*'X)=[X, GL(c, C)[ .

So we see that any Real vector bundle over =X is obtained from the clutching
of the trivial bundles E,=C"XZ%'X and E,=C"XxZ%'X by a base-point-
preserving 7-map from X to GL(m,C). Here,

SUX = {tAxeSX|t=0}, 34X = {tAxESX|[t<0},
X =3yXN3%X

and we consider that C” has the natural Real structure, i.e., C"=R™",

Proof of Theorem 4.1. Denote by E, the associated vector bundle with
a base-point-preserving T-map «: X—GL(m,C). From (3.5) we have a de-
composition

EP=V,dV,Q(M,DM,)

as a Real Z,-vector bundle over Z*'X where ‘@1’ is omitted for the simpli-
city. Also we have a vector bundle V¥ over =X such that V,®V¥=2s
where let dim V,=s. Adding V,@V¥ to the above isomorphism we obtain
an isomorphism
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ES®2=(V,VHDV,®N).
By Lemmas 4.2 and 4.3, adding ((2s)’ @ U'(E,, 25))@.N we obtain an isomorphism

@1) B (E,02)% —> (V,@VHB((2) DU'(E,, 29)DV)@N .
And by (3.6) we have

(#.2) [Vo@VT]1=gr([Ea])+2s .

Observe the restrictions of (4.1) over =%'X and 2%'X, then B yields an
isomorphism of trivial bundles over each space since =%'X are contractible.
Therefore we have a homotopy commutative diagram

m® B, mP(m'QN)
(+3) L fes £ D(e®1)

v B v

m® — mP(m'QN) .
Here the dotted arrows denote isomorphisms which are defined only over X
and 8. are given by B.(v, x)=(B(v, *), ) (x€C™, x& =% X) respectively where
* is the base-point of 31X,

Applying Lemma 4.4 to the horizontal isomorphisms in (4.3) we obtain
the following homotopy commutative diagram

eme-22 e emy @)
(+:4) Fis | 2D ®)

v 02m v
(2m)® — 2mQ((2m)' @ N)

where f, § and § are isomorphisms over X which are naturally induced from
f', &' and g’ respectively.
Put n=2m in (4.4). By Lemma 4.3 we see that the composition
A, g, 7,
n— 1 — nPm'QN)—> n
induces a constant 7-may
(y: X_) Qn,nzn,n

given by v(x)=38 (x& X) where A,(u)=u®3 and § is as in Lemma 4.5. Besides we
see that f and # induce T-maps

fi X—-GL(n,C) and g: X — GL(n,C)

in the natural way. By the commutativity of (4.4), we have
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(ig)O')’:T'yo(;_'f); X — Qn,nzn,"

where i: GL(n,C)C Q™"Z"" denotes the inclusion map and fok is given by
(foh) (x) (2)=f(x) (h(x) (2)) (x€X, 2&3="") for T-maps f, h: X—>Q""S"".

Therefore we obtain
(4‘.5) ry/\ ig:Try/\ z:f: X — QZn,ZnZZn,zn

where fAR is given by (fAR) (%) (z::A2)=f(x) (2) Ah(x) () (*€X, 2, 2,
€3™") for T-maps f,h: X—>Q""Z"". Therefore, by (4.5) and Lemma 4.6
we obtain

3 Jraall5f1) = 3" Jrsu(lig]") -
This shows
]R,3n(Uf]T) = ]R,sn(Ug]T)

in [Z¥%3n X 5337 1 . Consequently, passing the direct limit we have
3 q y g

Jr(1Ea}) = Je(@r({Ea}))
in 79°(X) [%] where {4} denotes the stable isomorphism class of A4, be-

cause the vector bundles associated with f and « are stably equivariant and g
respresents ¢x({E,}) stably by (4.2). This completes the proof.

5. JR(”'m, n(GL( O, C))

In [6] we showed that if p is odd and & is even then the image [ (72— 2p+20-1
(GL(c0, C)) (p>k=0) is a cyclic group and its order is either m(2p) or 2m(2p).
Here we prove the following

Therem 5.1.  The image ] x(msy—4 2p+2e-1(GL(22,C)) 15 a cyclic group of order
m(2p) for p>k=0, p odd and k even.

Proof. Consider the following diagram

(41

752p—2k,2p+2k—1(GL(°°, C)) 74p-1(GL(0, C))
= 1=
ro,r(GL(00, €)) = 7y(GL(c0, R)) — 74(GL(ss, C))

where the isomorphisms are the complex and Real Thom isomorphisms, and
¢, and ¢, are the natural complexification homomorphisms. Then we see
easily that this diagram is commutative and ¢, is an isomorphism since k is
even. Therefore ¢; becomes an isomorphism. Let g be a generator of 75,_ 55121

(GL(0, C))=Z. Then we have
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Pr(g) = 3¢

because cpr=¢¥e; and ¢Pi(c(g))=3%ci(g). Moreover we have v,(3%—1)
=v,(m(2p)) by [1], Lemma 2.12 (ii). When we denote by G the quotient module
of 73y_g4 2p+2-1(GL(°, C)) by (7 —1) (-2t 2p+26-1(GL(o0, C))) we obtain

Go=2Z Vs(mep

by the above arguments where G(; denotes the module obtained from G by
localizing at the prime ideal (2). Now Theorem 4.1 yields the following 2-
local factrization:

J R |
7r2p-—2k,2p+2k-l(GL(°°) C))(z) T 2p—2k,2p+2k—1¢2)
N /
G(z)

This result and the theorem of [6] show that the order of Jg(mz)-2 2p+2¢-1
(GL(eo, C))) is equal to m(2p).
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