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1. Introduction

In [8] Snaith proved the Adams conjecture for suspension spaces. In
this paper we shall prove an analogous result to Snaith's theorem ([8 1, Corollary
5.2) for the Real Adams operation ψ3 and a Real /-map JR (see §2). This is
proved by using the results of Seymour [7]. And as an application we shall
determine an undecided order in the theorem of [6].

Here we shall inherit the notations and terminologies in [2], §1 and [6].

2. Homomorphism JR

In [6] we defined the homomorphisms ] Rn and JR for doubly indexed
suspension spaces Σp'qX, p^O and q^l. Clearly, these definitions are also
valid for any finite pointed τ-complex. But the natural map obtained in
this manner

is not a homomorphism in general. As in the usual case we see that this
map satisfies the following formula:

Jκ(a+β)=JR(a)+JB(β)+JR(a)JR(β) a, β<ΞKR~\X)

where ab (aίb^π°s'
0(X)) denotes the product of a and b induced by the loop

composition in nn'n2w'" (cf. [9],p. 314).

3. Adams operation φ3 in KR-theory

In this section we recall the construction of the Real Adams operation
φ\ described in [7], §4.

Let S3 be the symmetric group with two generators 0, b satisfying

a3 = b2= 1, bab = a2

and let Z3 be the cyclic subgroup of S3 generated by a. From the above re-
lations we see that τ(α)=fl2, τ(b)=b induces an automorphic involution T on
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S3. Z3 is closed under the involution T. Therefore S3 (resp. Z3) is regarded
as a Real group with the involution T (resp. its restriction to Z3) in the sense

of Atiyah-Segal [4].
We know that all simple S3- and Z3-modules over C are as follows:

(3.1) S3: 1= {C\a= 1,4=1}, M= {C|β=l,4= -1},

M! = {C2\ av = Aυ, bv = Bv, v<=C2}

Z3: 1 = {C\a = 1}, M, = {C\av = ζv, v(ΞC} ,

M2 = {C\av = ζ2v, v<ΞC}

where A=]^ °J, 5=[J J]eGL(2,C) and r=exp(2«/3) (see, e.g., [5], §32).

Let G denote either S3 or Z3. Clearly each G-module listed above is a
Real G-module with the conjugate linear involution induced by complex con-
jugation. This fact shows that the forgetful map RR(G)-*R(G)y which is in-

jective in general, is surjective where RR(G) is the Grothendieck group of Real
G-modules and R(G) is the complex representation ring of G.

Let X be a Real space with trivial G-action and F-^X be a Real G-vector
bundle in the sense of [4], §6. Then we see easily that the decomposition of
F as a complex G-vector bundle ([4], §8)

(3.2) ΘHomG(M, F)®M - - > F

becomes an isomorphism of Real G-vector bundles. Here M runs through
the simple G-modules over C and M denotes the product bundle MX X over
X. And so we see that (3.2) induces a natural isomorphism KRG(X)^KR(X)

Let E-*X be a Real vector bundle over X with the involution TE: E-+E.
We define a Real structure TE on £®3 by τ£=(l(g)f)τf3 where t: £®2->£®2 is
the switching map. Then E®z becomes a Real ιS3-vector bundle with the S3-
action permuting the factors.

Applying (3.2) to E®3 we have an isomorphism of Real ^-vector bundles

(3.3)

with the notations of (3.1). And by (3.3), as a Real Z3-vector bundle we obtain

(3.4)

Put

! == Homs»(ΛL
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and

N = 1ΦM10M2, the regular representation of Z3,
then by (3.4)

(3.5) £Θ3^

as a Real Z3-vector bundle and so

in KRZΛ(X)=KR(X)®R(Z3) where [A] denotes the isomorphism class of A.
Here we define ψ\ by

(3-6) #([*]) =FJ-[Fι].

Then we can easily check that φ\ satisfies the properties of Adams operation.
And moreover by [3], Proposition 2.5 we see that forgetting the Real structure,
φ\ is reduced to the complex Adams operation φu.

4. Real Adams conjecture for φ*R

The purpose of this section is to prove the following theorem.

Theorem 4.1. Let X be a finite pointed τ-complex. Then

/*(#(*)) = Λ(*) for any

Let Y be a τ-space with trivial Z3-action. As in §3 we assume here
that E®3 has the twisted Real structure for a Real vector bundle E over Y. We
have the following lemmas as in [7], §1.

Lemma 4.2 (cf. [7], Proposition 1.2). There is a natural isomorphism of
Real Zz-vector bundles

for Real vector bundles E and F over Y.

Lemma 4.3 (cf. [7], p.399). For the trivial Real vector bundle n of dimension
n over Y there is a canonical isomorphism of Real Z3-vector bundles

such that

Tf f) ((^* & p \®^ x\ ' ίΣ^ z^e oc\ (z ζΞC

where let πn denote the projection of n®(n'®N) onto n and let ely •••, en denote
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the standard basis of Cn.
Let fk: n®3-*n(&(n'®N) (k=l,2) be isomorphisms of Real Z3-vector bun-

dles. Consider the direct sum

/ιθ/2:

By Lemma 4.2, adding U'(n,n)®N to the above isomorphism we have an iso-

morphism of Real Z3-vector bundles

for which we write /ι+/2

By modifying the proof of [7], Proposition 2.5 we get the following

Lemma 4.4 (cf. [7], Proposition 2.5). Given an isomorphism of Real Z3-

vector bundles f: n?^n®(n'®N), there is an isomorphism of Real Z3-vector bundles

g: n®3-*nξ&(n'®N) such thatf+g is homotopίc to Θ2n through Real Z ^-isomorphism.

Define a map δ: C*->Cn by δ(*ι, — , *„)=(*!» — , *2) (*f eC). Then δ
induces a base-point-preserving τ-map of Σn'w into itself which we denote

by the same letter δ. Now, according to [2], Theorem 12.5

for n^l. We observe [δ]τeτrΛ)n(ΣΛ'n), the τ-homotopy class of δ.

Lemma 4.5. With the above notations, we have

in .̂(Σ ").

Proof. We have

φ(\ ) = 1, φ(l) = 1, φ(P) = -1 and φ(p) = 1

where ψ and φ are the forgetful and fixed-point homomorphisms respectively.
So putting [δ]r=x-}-yp (x,y€ΞZ) we have

X~
ί+T and v-1-3"Λ — - aiiu — -

since ^([δ]τ)=3n and φ([δ]τ)=l by the definition, q.e.d.

For a τ-map σ of 2M into itself we define a τ-map tσ: Ω
m m?4

m'm-*£ll+m'l+m

^ι+m,ι+m by t^=σ^η (-η<=Ωm'mZm'm) where 4 A ' denotes the smash product

upon one point compactification. Let £ be a τ-maρ of Σn'n into itself such that
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in πUtU(Έ,* u). Then [£δ]τ=3n for δ as in Lemma 4.5. Hence we have

6 Λδ— τ£δΛ 1— T3n: Σ2"'2" -> Σ2"'2"

where 1 is the identity map of Σ"'*.

For a τ-map h: X->GL(n, C) we define a τ-map A: X-»Ωjξw 3ΛΣ3n 3n to be the
composition

X-» GL(n,

Here ί is the canonical inclusion map and t is the map given by adding a fixed
map of degree (— 3n) to the elements of ς^n^n^n^n

 with respect to the loop

addition along fixed coordinates of Σ3w'3n. By adλ we denote the adjoint of h.
Then, by the definition o(JR3n we have

Lemma 4.6. With the above notations

where j is a canonical inclusion map of GL(n, C) into GL(3n, C).

As we note in [6] we have

)̂̂ ,̂ GL(oo, C)JT .

So we see that any Real vector bundle over Σ0'1^ is obtained from the clutching
of the trivial bundles E^CTx^X and E2=CmxΊϊιlX by a base-point-
preserving τ-map from X to GL(my C). Here,

and we consider that Cm has the natural Real structure, i.e., Cm=Rm'm.

Proof of Theorem 4.1. Denote by EΛ the associated vector bundle with
a base-point-preserving τ-map α: X-*GL(m,C). From (3.5) we have a de-

composition

as a Real Z3-vector bundle over Σ0'1^ where €®Γ is omitted for the simpli-
city. Also we have a vector bundle Ff over Σ0'1^" such that FjφFί^φ
where let dim Vl=s. Adding V^Vf to the above isomorphism we obtain

an isomorphism
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By Lemmas 4.2 and 4.3, adding ((2$)'Θ U'(Ea, 2s))®N we obtain an isomorphism

(4.1) β: (EΛ®2s)®3- =

And by (3.6) we have

(4.2)

Observe the restrictions of (4.1) over Σ+ 1^ and ΣΪ^-XΓ, then β yields an

isomorphism of trivial bundles over each space since Σ+ 1^ are contractible.
Therefore we have a homotopy commutative diagram

l*^ ~τ~ -̂T N. / / s->. Λ T\

(4.3)

β-
m0"- * m^(m Q9/v j .

Here the dotted arrows denote isomorphisms which are defined only over X

and β± are given by β±(v, x)=(β(v, *), x) (x^Cm3, x^Σ^X) respectively where

* is the base-point of Σ0'1 .̂

Applying Lemma 4.4 to the horizontal isomorphisms in (4.3) we obtain
the following homotopy commutative diagram

(2m)®3—^» 2ro®((2ro)'®#)

(4.4) ί /®3

i Θ3 Θ2ί

where /, g and g' are isomorphisms over X which are naturally induced from
/', g' and g' respectively.

Put n=2m in (4.4). By Lemma 4.3 we see that the composition

n-^ n®3 —% n®(n'®N) -^+ n

induces a constant τ-map

given by rγ(x)=S (x^X) where Δn(u)=u®3 and δ is as in Lemma 4.5. Besides we
see that / and g induce τ-maps

f:X-* GL(n, C) and g: X -> GL(ny C)

in the natural way. By the commutativity of (4.4), we have
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where ί: GL(n,C)(Ξ.Ω,n'nΣn'n denotes the inclusion map and foh is given by

(foh)(x)(z)=f(x}(h(x)(z)) (x^X, z^T'n) for τ-maps /, h: X-*Ω" nT'n.
Therefore we obtain

(4.5) 7/\ig^rΎΛif: X -+ Ω2n 2ΛΣ2Λ 2Λ

where f /\h is given by (f /\h)(x)(z1^z2)=f(x)(zl)/\h(x)(z2)(x^Xy zly z2

<ΞΣ*'*) for τ-maps /,A: Jf^ίT'nΣw'*. Therefore, by (4.5) and Lemma 4.6
we obtain

This shows

n , Σ3" 3*]τ — . Consequently, passing the direct limit we have

JR({Ea})=JR(φ3

R({Ea}))

in π°s'
Q(X) — where {A} denotes the stable isomorphism class of A, be-

cause the vector bundles associated with / and a are stably equivariant and g

respresents ψκ({EΛ}) stably by (4.2). This completes the proof.

5. JR(*m,n(GL(oo,C))

In [6] we showed that if p is odd and k is even then the image J R(π2p_2k 2p+2k-ι
(GL(oo, C)) (p>k^0) is a cyclic group and its order is either m(2p) or 2m(2p).

Here we prove the following

Therein 5.1. The image jR(π2p-2k>2p+2k-ι(GL(oo, C)) is a cyclic group of order

m(2p)forp>k^Q, p odd and k even.

Proof. Consider the following diagram

where the isomorphisms are the complex and Real Thorn isomorphisms, and

£! and c2 are the natural complexification homomorphisms. Then we see

easily that this diagram is commutative and c2 is an isomorphism since k is

even. Therefore cλ becomes an isomorphism. Let£ be a generator of π2p_2kt2p+2k_l

(GL(oo , C))=Z. Then we have
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because c1ψ
3

R=φuCι and ψu(cι(g))=32pCι(g) Moreover we have v2(Z2p— 1)

=v2(m(2p)) by [1], Lemma 2.12 (ii). When we denote by G the quotient module

of ^p-wp+Ά-άG^00* C)) by W4-1) (7r2p-2k,2P+2k-ι(GL(oo9 C))) we obtain

by the above arguments where G(2) denotes the module obtained from G by

localizing at the prime ideal (2). Now Theorem 4.1 yields the following 2-

local factrization:

\

This result and the theorem of [6] show that the order of JR(π2p-2k)2p+2k_ι

(GL(oo, C))) is equal to m(2p).

OSAKA CITY UNIVERSITY

References

[1] J.F. Adams: On the groups J(X) II, Topology 3 (1965), 137-171.
[2] S. Araki and M. Murayama: τ-Cohomology theories, Japan. J. Math. 4 (1978),

363-416.
[3] M.F. Atiyah: Power operation in K-theory, Quart. J. Math., Oxford, 17 (1966),

165-193.
[4] M.F. Atiyah and G.B. Segal: Equivariant K-theory and completion, J. Differential

Geometry 3 (1969), 1-18.

[5] C.W. Curtis and I. Reiner: Representation theory of finite groups and associa-
tive algebras, Pure and Applied Mathematics vol. XI, J. Wiley and Sons, Inc.,

1962.
[6] H. Minami: On Real J-homomorphisms, Osaka J. Math. 16 (1979), 529-537.
[7] R.M. Seymour: Vector bundles invariant under the Adams operations, Quart. J.

Math., Oxford, 25 (1974), 395-414.
[8] V. Snaith: The complex J-homomorphism I, Proc. London Math. Soc. 34 (1977),

269-302.
[9] R.M.W. Wood: Framing the exceptional Lie group G2, Topology 15 (1976), 303-

320.




