Uchida, F. Osaka J. Math. 16 (1979), 561-579

CLASSIFICATION OF REAL ANALYTIC SL(n, R) ACTIONS ON n-SPHERE

Dedicated to Professor A. Komatu on his 70th birthday

FUICHI UCHIDA*)

(Received March 17, 1978)

0. Introduction

C.R. Schneider [5] classified real analytic *SL(2, K)* actions on closed surfaces. Except for the work, there seems to be no work on the classification problem about non-compact Lie group actions.

In this paper, we classify real analytic $SL(n, R)$ actions on the standard *n*-sphere for each $n \ge 3$. Here $SL(n, R)$ denotes the special linear group over the field of real numbers. The result can be stated roughly as follows: there is a one-to-one correspondence between real analytic $SL(n, R)$ actions on the α -sphere and real valued real analytic functions on an interval satisfying certain conditions (see Theorem 2.2 and Theorem 4.2). It is important to consider the restricted actions of $SL(n, R)$ to a maximal compact subgroup $SO(n)$.

It is still open to classify C^{∞} actions of $SL(n, R)$ on the standard *n*-sphere, by lack of *C°°* analogue of a local theory due to Guillemin and Sternberg (see Lemma 4.3).

1. Real analytic *SO(n)* **actions on certain n-manifolds**

First we prepare the following two lemmas of which proof is given in the last section.

Lemma 1.1. *Let G be a closed connected subgroup of O(n). Suppose that* $n \geq 3$ *and*

$$
\dim O(n) > \dim G \geqslant \dim O(n) - n.
$$

Suppose that G is not conjugate to $SO(n-1)$ *which is canonically imbedded in* $O(n)$. Then the pair $(O(n), G)$ is pairwise isomorphic to one of the following:

$$
(O(8), Spin(7)), (O(7), G2), (O(6), U(3)), (O(4), U(2)),
$$

 $(O(4), SU(2)), (O(4), SO(2) \times SO(2))$ and $(O(3), \{1\}),$

^{*}} Supported by Grant-in-Aid for Scientific Research

up to inner automorphisms of O(n). In these cases the subgroups are standardly imbedded in O(n).

Lemma 1.2. Suppose $n \geq 3$. Let $h: SO(n) \rightarrow O(n)$ be a continuous homo*morphism with a finite kernel. Then there is an element x of O(n) such that* $h(y)=xyx^{-1}$ for each y of $SO(n)$.

Now we shall prove the following result.

Theorem 1.3. Suppose $n \ge 3$. Let M be a closed connected n-dimensional *real analytic manifold. Suppose that*

$$
\pi_1(M) = \pi_2(M) = \{1\}.
$$

Suppose that $SO(n)$ *acts on M real analytically and almost effectively. Then the SO(ri)-manίfold M is real analytically diffeomorphic to the standard n-sphere S* as SO(n)-manifolls. Here the SO(n) action on S" is the restriction of the standard* $SO(n+1)$ *action on* $Sⁿ$.

Proof. (i) First we show that the $SO(n)$ -manifold *M* is C^{∞} diffeomorphic to the standard sphere $Sⁿ$ as $SO(n)$ -manifolds. Let G be the identity component of a principal isotropy group. Then

$$
\dim SO(n) > \dim G \geqslant \dim SO(n) - n,
$$

and $SO(n)$ acts almost effectively on the homogeneous space $SO(n)/G$ by the assumption that $SO(n)$ acts almost effectively on M, and hence Lemma 1.1 is applicable. The pair $(SO(n), G)$ is not pairwise isomorphic to $(SO(4), U(2))$ nor $(SO(4), SU(2))$, because $SU(2)$ is a normal subgroup of $SO(4)$. If

$$
\dim SO(n)/G = \dim M,
$$

then the $SO(n)$ action on M is transitive and the pair $(SO(n), G)$ is pairwise isomorphic to one of the following by Lemma 1.1:

$$
(\mathbf{SO}(7),\,\mathbf{G}_2),\,(\mathbf{SO}(6),\,\mathbf{U}(3)),\,(\mathbf{SO}(4),\,\mathbf{SO}(2)\times\mathbf{SO}(2))\quad\text{and}\quad(\mathbf{SO}(3),\,\{1\})\,.
$$

But

$$
\pi_1(\mathbf{SO}(7)/G_2)=\pi_1(\mathbf{SO}(3)/\{1\})=\boldsymbol{Z}_2\,,\\ \pi_2(\mathbf{SO}(6)/U(3))=\boldsymbol{Z}\quad\text{and}\quad\pi_2(\mathbf{SO}(4)/\mathbf{SO}(2)\times\mathbf{SO}(2))=\boldsymbol{Z}\times\boldsymbol{Z}\,.
$$

This is a contradiction to the assumption

$$
\pi_1(M)=\pi_2(M)=\{1\}.
$$

Consequently G is conjugate to $SO(n-1)$ or the pair $(SO(n), G)$ is pairwise isomorphic to $(SO(8), Spin(7))$ by Lemma 1.1 and hence the $SO(n)$ -manifold

M has codimension one principal orbits and just two singular orbits (cf. [6], Lemma 1.2.1). Since $SO(n-1)$ in $SO(n)$ (resp. $Spin(7)$ in $SO(8)$) is a maximal closed connected subgrou_r, the singular orbits are fixed points. It follows that the *SO(n)*-manifold *M* is C^{∞} diffeomorphic to $M' = D^{\prime\prime} \cup D^{\prime\prime}$ as *SO(n)*manifolds. Here the $SO(n)$ action on D^n is standard by Lemma 1.2, and $f: \partial D^n \rightarrow \partial D^n$ is an $SO(n)$ equivariant diffeomorphism. It follows that f is the identity map or the antipodal map, and hence M' is C^{∞} diffeomorphic to the standard *n*-sphere S^{*n*} as SO(n)-manifolds.

(ii) Here we assume that M_1 and M_2 are *n*-dimensional real analytic manifolds on which *SO(n)* acts real analytically. Assume that the *SO(ri)* manifolds M_1 and M_2 are $C^∞$ diffeomorphic to the standard *n*-sphere S^* as **SO(n)-manifolds.** According to a theorem of Grauert ([3], Theorem 3), M_i is real analytically imbedded in a euclidean spuce of sufficiently high dimension; hence *Mⁱ* posesses a real analytic Riemannian metric. By averaging the real analytic Riemannian metric on M_i with respect to the $\mathcal{SO}(n)$ action, we have an $SO(n)$ invariant real analytic Riemannian metric g_i on M_i . Denote by $\{N_i, S_i\}$ the fixed point set of the **SO**(n)-manifold M_i . We can assume that

$$
d_1(N_1, S_1) = d_2(N_2, S_2),
$$

where d_i is a distance function on M_i defined by the Riemannian metric g_i . Denote by F_i the fixed point set of the restricted $SO(n-1)$ action on M_i . It follows that F_i is a real analytic submanifold of M_i which is $NSO(n-1)$ invariant and C^* diffeomorphic to S^1 by the assumption. Here $NSO(n-1)$ denotes the normalizer of $SO(n-1)$ in $SO(n)$. Then there exsists an isometry *φ*: $F_1 \rightarrow F_2$ such that $\varphi(N_1) = N_2$ and $\varphi(S_1) = S_2$. The isometry φ is a real analytic diffeomorphism and φ is compatible with the action of $NSO(n-1)$ on *F_i*. It is easy to see that the $SO(n)$ -manifold $M_i - \{N_i, S_i\}$ is real analytically diffeomorphic to

$$
SO(n) \times \left\{F_i - \{N_i, S_i\}\right\}
$$

as $SO(n)$ -manifolds; hence φ extends uniquely to an $SO(n)$ equivariant homeo- $\mathbf{p}_1 \rightarrow \mathbf{M}_1 \rightarrow \mathbf{M}_2$. By the construction, the restriction of Φ to $M_1 - \{N_1, S_1\}$ is a real analytic diffeomorphism of M_1 —{ N_1 , S_1 } onto M_2 —{ N_2 , S_2 }.

(iii) Finally we show that Φ is real analytic on neighborhoods of N_i and S_i . Notice that the tangent space of M_i at N_i with the induced $SO(n)$ action is naturally isomorphic to \mathbb{R}^n with the standard $SO(n)$ action by the assumption. Denote by D_e an ϵ -neighborhood of the origin 0 in R^n . Denote by $e_i: D_e \rightarrow M_i$ the exponential map with respect to the Riemannian metric g_i such that $e_i(0)$ *N{ .* Then *e{* is an *SO(n)* equivariant real analytic diffeomorphism onto an open neighborhood of Λ/", for sufficiently small *8.* Denote by *D(* the fixed point set of the restricted *SO(n—* 1) action on *D^z .* Define

$$
\Phi' = e_2^{-1} \Phi e_1 \colon \boldsymbol{D}_t \to \boldsymbol{D}_t \, .
$$

Then Φ' is an $SO(n)$ equivariant homeomorphism. Since Φ is an extension of the isometry φ , the restriction of Φ' to \mathbf{D}'_i onto itself is the identity map or the antipodal map. It follows that *Φ'* is the identity map or the antipodal map of *D^s* onto itself, because *Φ'* is *SO(ri)* equivariant. Therefore Φ is real analytic on a neighborhood of N_1 . Similarly Φ is real analytic on a neighborhood of *S*₁. Consequently Φ is a real analytic diffeomorphism of M_1 onto M_2 .

This completes the proof of Theorem 1.3.

REMARK. The real analytic diffeomorphism $\Phi \colon M_1 \rightarrow M_2$ in the proof of Theorem 1.3 is not necessary an isometry with respect to the Riemannian metrics g_1 and g_2 .

2. Construction of real analytic *SL(n, R)* **actions**

Consider the following conditions for a real valued real analytic function $f(t)$:

(A) $f(t)$ is defined on an open interval $(-1-\varepsilon, 1+\varepsilon)$ and $f(-1) =$ $f(1)=0$,

(B) $t \cdot f(t) < 0$ for $1-\epsilon < |t| < 1$, where ε is a sufficiently small positive real number. If $f(t)$ is a real analytic function satisfying the condition (A), then the corresponding vector field $f(t)\frac{d}{dt}$ on $(-1, 1)$ is complete; hence the vector field induces a real analytic **R** action

$$
\psi = \psi_f \colon \mathbf{R} \times (-1, 1) \to (-1, 1)
$$

such that

$$
f(t) = \lim_{s \to 0} \frac{\psi(s, t) - t}{s} \quad \text{for } -1 < t < 1.
$$

Denote by \boldsymbol{F} the set of all real analytic functions satisfying the conditions (A) and (B). Define an equivalence relation in \mathbf{F} as follows: we say that $f(t)$ is equivalent to $g(t)$ if there is a real analytic diffeomorphism h of the open interval $(-1,1)$ onto itself such that

$$
h_*\left(f(t)\frac{d}{dt}\right) = g(t)\frac{d}{dt}.
$$

The relation means that the corresponding **R** actions ψ_f and ψ_g are compatible under the real analytic diffeomorphism h . Denote by F_* the set of all equivalence classes of *F.*

EXAMPLE. The polynomial

 $SL(n, R)$ Actions on n -Sphere 565

$$
f_{m,a}(t)=at\cdot \prod_{k=1}^m (kt+1)(kt-1)
$$

satisfies the conditions (A), (B) for each positive integer *m* and each positive real number *a.*

Proposition 2.1. If $(m, a) \neq (m', a')$, then the functions $f_{m,a}(t)$ and $f_{m',a'}(t)$ *are not equivalent.*

Proof. Suppose that there is a real analytic diffeomorphism *h* of the interval $(-1, 1)$ onto itself such that

$$
h_*\left(f_{m,a}(t)\frac{d}{dt}\right)=f_{m',a'}(t)\frac{d}{dt}.
$$

Then it follows that

$$
m=m', h(0)=0
$$

and

$$
f_{m',a'}(t) = f_{m,a}(h^{-1}(t)) \frac{dh}{dt}(h^{-1}(t)) \ .
$$

Therefore we have

$$
(-1)^{m'}a'=\frac{df_{m',a'}}{dt}(0)=\frac{df_{m,a}}{dt}(0)=(-1)^{m}a.
$$

It follows that $a = a'$. $q.e.d.$

Put

$$
L(n) = \{(a_{ij})\in SL(n, R): a_{11} = 1, a_{21} = a_{31} = \cdots = a_{n1} = 0\},
$$

$$
N(n) = \{(a_{ij})\in SL(n, R): a_{11} > 0, a_{21} = a_{31} = \cdots = a_{n1} = 0\}.
$$

Then $L(n)$ and $N(n)$ are closed connected subgroups of $SL(n, R)$, and $L(n)$ is a normal subgroup of $N(n)$. Consider the standard action of $SL(n, R)$ on *R*^{*n*}. Then the action is transitive on $R^n - \{0\}$, and $L(n)$ is the isotropy group at $e_1 = (1, 0, \dots, 0)$.

Let $f(t)$ be a real analytic function satisfying the conditions (A) and (B). Here we shall construct a real analytic $SL(n, R)$ action on a closed connected *n*-dimensional real analytic manifold M_f associated with the function $f(t)$. Let ψ_f be the real analytic **R** action on $(-1, 1)$ corresponding to $f(t)$. Since the factor group $N(n)/L(n)$ is naturally isomorphic to **R** as Lie groups by a correspondence

 $(a_{ij}) \cdot L(n) \rightarrow \log a_{11}$, for $(a_{ij}) \in N(n)$,

we consider ψ_f as a real analytic $N(n)/L(n)$ action on $(-1, 1)$. Define X_f the quotient manifold of the product

$$
SL(n, R)/L(n)\times (-1, 1)
$$

by the relation

$$
(xL(n), t) = (xy^{-1}L(n), \psi_f(yL(n), t));
$$

 $x \in SL(n, R), y \in N(n), |t| < 1.$

Then X_f is an *n*-dimensional real analytic manifold with a natural $SL(n,R)$ action. Denote by $[xL(n), t]$ the element of X_f represented by $(xL(n), t)$.

Let a' (resp. a'') be the largest (resp. the smallest) zero of $f(t)$ on $(-1, 1)$. Let a_+ , a_- : \mathbb{R}^n -{0} $\rightarrow X_f$ be the equivariant $SL(n, R)$ maps determined by

$$
a_{+}(e_1)=\left[L(n),\frac{1+a'}{2}\right], a_{-}(e_1)=\left[L(n),\frac{a''-1}{2}\right]
$$

respectively, where $e_1=(1, 0, \cdots, 0)$. Let \mathbb{R}^n_+ and \mathbb{R}^n_- be copies of \mathbb{R}^n , and consider a_+ , a_- as the maps

$$
a_{+}: \mathbb{R}_{+}^{n} \setminus \{0\} \to X_{f}, \quad a_{-}: \mathbb{R}_{-}^{n} \setminus \{0\} \to X_{f}
$$

respectively. Define *M^f* the quotient space of a disjoint union

$$
{\bm R}_+^* \cup X_f \cup {\bm R}_-^*
$$

given by the attaching maps $a_+, a_-,$ Since $f(t)$ satisfies the conditions (A) and (B), the space M_f posesses naturally a real analytic structure as a compact connected *n*-dimensional manifold with a natural $SL(n, R)$ action. Notice that M_f is a two points compactification of X_f .

For each $k \le n-2$, $\pi_k(M_f) = \pi_k(X_f)$ by a general position theorem. The natural projection of X_f onto $SL(n, R)/N(n) = S^{n-1}$ is a fibre bundle with a contractible fibre. It follows that M_f is $(n-2)$ -connected. In particular, $\pi_1(M_f) = \pi_2(M_f) = \{1\}$ for each $n \geq 3$. Since the restricted *SO(n)* action on M_f is effective, M_f is real analytically diffeomorphic to the standard n-sphere *S** by Theorem 1.3.

Denote by *A(n)* the set of all real analytic non-trivial *SL(n, R)* actions on Denote by $A(n)$ the set of all real analytic non-trivial $SL(n, R)$ actions on the standard *n*-sphere $Sⁿ$. Two such actions ψ and ψ' are said to be equivalent if there is a real analytic diffeomorphism *h* of $Sⁿ$ onto itself such that the following diagram is commutative:

$$
\begin{array}{c}\nSL(n, R) \times S^n \xrightarrow{\psi} S^n \\
1 \times h \\
SL(n, R) \times S^n \xrightarrow{\psi'} S^n.\n\end{array}
$$

Denote by $A_*(n)$ the set of all equivalence classes of $A(n)$. By the above construction of M_f , the real analytic function $f(t)$ defines an equivalence class

 $A_f = \{a_f\}$ of real analytic $SL(n, R)$ actions on $Sⁿ$ such that the *n*-sphere $Sⁿ$ with a real analytic $SL(n, R)$ action a_f is real analytically diffeomorphic to M_f as *SL(n, R)*-manifolds. If $f(t)$ and $g(t)$ are equivalent, then it is easy to see that M_f and M_g are real analytically diffeomorphic as $\bm{SL}(n,\bm{R})$ -manifolds. It follows that the correspondence $f(t) \rightarrow A_f$ induces a map $c_n : F_* \rightarrow A_*(n)$ for each $n \ge 3$.

Theorem 2.2. The map $c_n: F_* \to A_*(n)$ is injective for each $n \geq 3$.

Proof. Let $f(t)$, $g(t)$ be real analytic functions satisfying the conditions (A), (B). Suppose that the induced real analytic $SL(n, R)$ -manifolds M_f and M_g are real analytically diffeomorphic as $SL(n, R)$ -manifolds. Then the open manifolds X_f and X_g are real analytically diffeomorphic as $SL(n, R)$ -manifolds. Compare the fixed point sets of the restricted $L(n)$ action. Then the fixed point sets $F(L(n), X_f)$ and $F(L(n), X_g)$ are one dimensional real analytic submanifolds of X_f and X_g respectively and real analytically diffeomorphic as $NL(n)$ -manifolds. Here $NL(n)$ denotes the normalizer of $L(n)$ in $SL(n, R)$. Since $NL(n)/L(n)$ is naturally isomorphic to $\mathbf{Z}_2\times N(n)/L(n)$ as Lie groups, it is easy to see that $f(t)$ and $g(t)$ are equivalent. $q.e.d.$

3. Certain closed subgroups of $SL(n, R)$

Put

$$
L(n) = \{(a_{ij})\in SL(n, R): a_{11} = 1, a_{21} = a_{31} = \cdots = a_{n1} = 0\},
$$

\n
$$
N(n) = \{(a_{ij})\in SL(n, R): a_{11} > 0, a_{21} = a_{31} = \cdots = a_{n1} = 0\},
$$

\n
$$
L^*(n) = \{(a_{ij})\in SL(n, R): a_{11} = 1, a_{12} = a_{13} = \cdots = a_{1n} = 0\},
$$

\n
$$
N^*(n) = \{(a_{ij})\in SL(n, R): a_{11} > 0, a_{12} = a_{13} = \cdots = a_{1n} = 0\}.
$$

Consider $SL(n-1, R)$ and $SO(n-1)$ as subgroups of $SL(n, R)$ as follows:

$$
SL(n-1, R) = L(n) \cap L^*(n), \ SO(n-1) = SO(n) \cap SL(n-1, R).
$$

Lemma 3.1. Suppose $n \ge 3$. Let G be a connected Lie subgroup of $SL(n, R)$. *Suppose that G contains SO(n—l) and*

dim $SL(n, R) - n \leq \dim G < \dim SL(n, R)$.

Then G is one of the following : $L(n)$ *,* $N(n)$ *,* $L^*(n)$ *and* $N^*(n)$ *.*

Proof. Denote by $M_n(R)$ the set of all $n \times n$ matrices in the field of real numbers *R.* As usual we consider *Mⁿ (R)* as the Lie algebra of the general linear group $GL(n, R)$. Denote by $\mathfrak{sl}(n, R)$ and $\mathfrak{so}(n)$ the Lie subalgebras of $M_{n}(R)$ corresponding to the Lie subgroups $SL(n, R)$ and $SO(n)$ of $GL(n, R)$ respectively. Then

$$
\mathfrak{sl}(n, R) = \{X \in M_n(R): \text{trace } X = 0\},
$$

$$
\mathfrak{so}(n) = \{X \in M_n(R): X \text{ is skew-symmetric}\}.
$$

Denote by $\mathfrak{gl}(n-1, R)$ the Lie subalgebra of $\mathfrak{gl}(n, R)$ corresponding to the Lie subgroup $SL(n-1, R)$ of $SL(n, R)$. Put

$$
\begin{aligned}\n\mathfrak{so}(n-1) &= \mathfrak{so}(n) \cap \mathfrak{sl}(n-1, R), \\
\mathfrak{spm}(n-1) &= \{X \in \mathfrak{sl}(n-1, R): X \text{ is symmetric}\}, \\
\mathfrak{a} &= \{(a_{ij}) \in \mathfrak{sl}(n, R): a_{ij} = 0 \text{ for } i \neq 1\}, \\
\mathfrak{a}^* &= \{(a_{ij}) \in \mathfrak{sl}(n, R): a_{ij} = 0 \text{ for } j \neq 1\}, \\
\mathfrak{b} &= \{(a_{ij}) \in \mathfrak{sl}(n, R): a_{ij} = 0 \text{ for } i \neq j, a_{22} = a_{33} = \cdots = a_{nn}\}.\n\end{aligned}
$$

These are linear subspaces of *%l(n, R)* and

$$
\mathfrak{sl}(n,\,R)=\mathfrak{sl}(n-1,\,R)\oplus\mathfrak{a}\oplus\mathfrak{a}^*\oplus\mathfrak{b}\,,
$$

$$
\mathfrak{sl}(n-1,\,R)=\mathfrak{so}(n-1)\oplus\mathfrak{sym}(n-1)
$$

as direct sums of vector spaces. Moreover we have

$$
[\alpha, \alpha] = \{0\}, [\alpha^*, \alpha^*] = \{0\}, [b, b] = \{0\},
$$

(1)
$$
[\alpha, b] = \alpha, [\alpha^*, b] = \alpha^*, [\alpha, \alpha^*] = \mathfrak{sl}(n-1, R) \oplus b,
$$

$$
[\alpha, \mathfrak{sl}(n-1, R)] = \alpha, [\alpha^*, \mathfrak{sl}(n-1, R)] = \alpha^*.
$$

Denote by Ad : $SL(n, R) \rightarrow GL(Al(n, R))$ the adjoint representation. Then the linear subspaces $\mathfrak{sl}(n-1,\,R)$, $\mathfrak{a},\ \mathfrak{a}^*$ and b are $Ad(SL(n-1,\,R))$ invariant, and the linear subspaces $\mathfrak{so}(n-1)$ and $\mathfrak{Sym}(n-1)$ are $Ad(SO(n-1))$ invariant. Moreover the linear subspaces $\mathfrak{Bym}(n-1)$, α , α^* and b are irreducible $Ad(SO)$ $(n-1)$) spaces respectively for each $n \ge 3$. The Lie subalgebras

(2)
$$
\mathfrak{sl}(n-1,\mathbf{R})\oplus\mathfrak{a},\mathfrak{sl}(n-1,\mathbf{R})\oplus\mathfrak{a}\oplus\mathfrak{b},\mathfrak{sl}(n-1,\mathbf{R})\oplus\mathfrak{a}^*,\mathfrak{sl}(n-1,\mathbf{R})\oplus\mathfrak{a}^*\oplus\mathfrak{b}
$$

of $\mathfrak{sl}(n,\mathbf{R})$ corresponds to the connected Lie subgroups $L(n)$, $N(n)$, $L^*(n)$ and $N^*(n)$ of $SL(n, R)$ respectively.

Let *G* be a connected Lie subgroup of $SL(n, R)$. Denote by g the corresponding Lie subalgebra of $\mathfrak{gl}(n, R)$. Suppose that

 $(G \cap G)$ *G* contains $SO(n-1)$, and

(4)
$$
\dim SL(n, R) - n \leqslant \dim G < \dim SL(n, R).
$$

By (3), g is an $Ad(SO(n-1))$ invariant linear subspace of $\mathfrak{sl}(n, \mathbb{R})$ which contains $\sin(n-1)$. Hence we derive that

$$
\mathfrak{g}=\mathfrak{so}(n-1)\oplus (\mathfrak{g}\cap\mathfrak{Sym}(n-1))\oplus (\mathfrak{g}\cap(\mathfrak{a}\oplus\mathfrak{a}^*))\oplus (\mathfrak{g}\cap\mathfrak{b})
$$

as a direct sum of $Ad(SO(n-1))$ invariant linear subspaces. The inequality (4) implies that g contains $\sin(n-1)$ or $a \oplus a^*$, because $\sin(n-1)$, a and a^* are irreducible *Ad(SO(n—* 1)) spaces respectively and

$$
\dim \mathfrak{a} = \dim \mathfrak{a}^* = n-1, \, \dim \, \mathrm{Sym}(n-1) \geq n-1
$$

for any $n \ge 3$. If $\alpha \oplus \alpha^*$ is contained in g, then $g = \mathfrak{sl}(n, R)$ by (1). This is a contradiction to (4). It follows that

(5)
$$
\qquad \qquad \mathfrak{sym}(n-1)\subset g, \ \mathfrak{a}\oplus\mathfrak{a}^*\oplus g.
$$

In particular, g contains $\mathfrak{sl}(n-1, R)$, and hence G contains $SL(n-1, R)$. Then we derive that

(6)
$$
g = \mathfrak{A}(n-1, R) \oplus (g \cap (\mathfrak{a} \oplus \mathfrak{a}^*)) \oplus (g \cap \mathfrak{b})
$$

as a direct sum of $Ad(SL(n-1, R))$ invariant linear subspaces.

Suppose first $n \geq 4$. Then a and a^* are mutually non-equivalent irreducible $Ad(SL(n-1, R))$ spaces; hence $Ad(SL(n-1, R))$ invariant subspaces of $\alpha \oplus \alpha^*$ are one of the following : $\{0\}$, α , α^* and $\alpha \oplus \alpha^*$. It follows that α is one of the Lie algebras in (2) , by (1) , (4) , (5) and (6) .

Suppose next $n = 3$. Then a and a^* are equivalent irreducible $Ad(SL(2, R))$ spaces. Put

$$
h(p, q) = \left\{ \begin{pmatrix} 0 & qy & -qx \\ px & 0 & 0 \\ py & 0 & 0 \end{pmatrix}: x, y \in \mathbb{R} \right\}
$$

for each real numbers p, q. Then $h(p, q)$ is an $Ad(SL(2, R))$ invariant linear subspace of $a \oplus a^*$ for each p, q. It is easy to see that any $Ad(SL(2, R))$ invariant proper linear subspace of $\alpha \oplus \alpha^*$ is one of $h(p, q)$ for certain p, q. It follows that

$$
\mathfrak{g}\cap(\mathfrak{a}\oplus\mathfrak{a}^*)=h(p,\,q)
$$

for certain real numbers p , q . Suppose $pq \neq 0$. Then we derive

$$
[h(p, q), h(p, q)] = b,
$$

\n
$$
[h(p, q), b] = h(-p, q),
$$

\n
$$
h(p, q) + h(-p, q) = a \bigoplus a^*.
$$

It follows that g contains $\alpha \oplus \alpha^*$; this is a contradiction to (5). Hence we obtain *pq=0,* namely

$$
\mathfrak{g}\cap(\mathfrak{a}\oplus\mathfrak{a}^*)=\{0\},\ \mathfrak{a}\ \text{or}\ \mathfrak{a}^*.
$$

It follows that g is one of the Lie algebras in (2) , by (1) , (4) and (6) .

Consequently the assumptions (3) and (4) implies that the Lie algebra α is one of the Lie algebras in (2) for each $n \ge 3$, and hence the connected Lie subgroup *G* is one of the following: $L(n)$, $N(n)$, $L^*(n)$ and $N^*(n)$.

This completes the proof of Lemma 3.1.

4. Real analytic *SL(n^y K)* **actions on the n-sphere**

Let ψ : $SL(n, R) \times S^n \rightarrow S^n$ be a real analytic non-trivial action of $SL(n, R)$ on the standard *n*-sphere $Sⁿ$. For each subgroup *H* of $SL(n, R)$, we put

$$
F(H) = \{x \in S^n : \psi(h, x) = x \text{ for all } h \in H\},\,
$$

namely, $F(H)$ is the fixed point set of the restricted action of ψ to H. Then *F(H)* is a closed subset of *S",* but it is not necessary a submanifold of *S".*

Lemma 4.1. *Suppose* $n \geq 3$ *. Then*

$$
F(SO(n)) = F(SL(n, R)) = F(L(n)) \cap F(L^*(n)),
$$

$$
F(SO(n-1)) = F(L(n))
$$
 or
$$
F(L^*(n))
$$

for any real analytic non-trivial SL(n, R) action on the n-sphere.

Proof. From Lemma 3.1, we derive

$$
F(SO(n)) = F(SL(n, R)) = F(L(n)) \cap F(L^*(n)),
$$

$$
F(SO(n-1)) = F(L(n)) \cup F(L^*(n)).
$$

According to Theorem 1.3, we see that the set $F(SO(n-1)) - F(SO(n))$ has just two connected components. Each connected component is contained in $F(L(n))$ or $F(L^*(n))$. Put

$$
g = \begin{pmatrix} -1 & & & \\ & -1 & & \\ & & 1 & \\ & & & \ddots \\ & & & & 1 \end{pmatrix}
$$

Then it follows easily from Theorem 1.3 that *x* and *gx* belong distinct connected components respectively for each element x of $F(SO(n-1)) - F(SO(n))$. Then we conclude that

$$
F(SO(n-1)) = F(L(n))
$$
 or $F(L^*(n))$. q.e.d.

Denote by $\sigma(g)$ the transpose of g^{-1} for each $g \in SL(n, R)$. Then the correspondence $g \rightarrow \sigma(g)$ defines an automorphism σ of $SL(n, R)$. The automorphism *σ* is an involution and

$$
\sigma(L(n))=L^*(n).
$$

Let ψ be a real analytic non-trivial $SL(n, R)$ action on $Sⁿ$. Define a new action $\sigma_{\epsilon\psi}$ of $SL(n, R)$ on S^n as follows:

$$
(\sigma_i\psi)(g, x) = \psi(\sigma(g), x) \quad \text{for } g \in SL(n, R), x \in S^n.
$$

Then it is seen that if $F(SO(n-1))=F(L(n))$ (resp. $F(L^*(n))$) for the action ψ , then $F(SO(n-1))=F(L^*(n))$ (resp. $F(L(n))$) for the action $\sigma_s \psi$.

As in the section 2, let $A(n)$ denote the set of all real analytic non-trivial $SL(n, R)$ actions on $Sⁿ$, and let $A_*(n)$ denote the set of all equivalence classes of $A(n)$. Then the mapping $\sigma_{\sharp}: A(n) \to A(n)$ is an involution, and σ_{\sharp} induces naturally an involution σ_* : $A_*(n) \rightarrow A_*(n)$.

Denote by $A^+(n)$ (resp. $A^-(n)$) the set of all real analytic non-trivial *SL(n, R)* actions on $Sⁿ$ such that

$$
F(\mathbf{SO}(n-1))=F(L(n))\left(\text{resp. }F(L^*(n))\right).
$$

Denote by $A^*_{\ast}(n)$ (resp. $A^-(n)$) the set of all equivalence classes represented by an element of $A^+(n)$ (resp. $A^-(n)$). Then we derive

$$
\sigma_* A^+(n) = A^-(n), \quad \sigma_* A^-(n) = A^+(n),
$$

$$
\sigma_* A^+_*(n) = A^-_*(n), \quad \sigma_* A^-_*(n) = A^*_*(n).
$$

Moreover $A_*(n)$ is a disjoint union of $A^*(n)$ and $A^-(n)$ by Lemma 4.1. Let c_n : $F_* \rightarrow A_*(n)$ be the mapping defined in the section 2. Then it is seen that the image $c_n(F_*)$ is contained in $A_*^+(n)$.

We shall show the following result.

Theorem 4.2. $c_n(F_*) = A_*^+(n)$ for each $n \ge 3$.

In order to prove this theorem, we require the following result due to Guillemin and Sternberg [4] :

Lemma 4.3. Let α be a real semi-simple Lie algebra and let $\rho: \alpha \rightarrow L(M)$ *be a homomorphism of* g *into the Lie algebra of real analytic vector fields on a real analytic n-manifold M. Let p be a point at which the vector fields in the image P(Q) have a common zero. Then there exists an analytic system of coordinates* $(U; x_1, \dots, x_n)$, with origin at p, in which all of the vector fields in $\rho(g)$ are linear. *Namely, there exists*

$$
a_{ij} \in \mathfrak{g}^* = \text{Hom}_R(\mathfrak{g}, R)
$$

such that

$$
\rho(X)_q = \sum_{i,j} a_{ij}(X)x_i(q) \frac{\partial}{\partial x_j} \quad \text{for } X \in \mathfrak{g}, \ q \in U.
$$

REMARK. The correspondence $X \rightarrow (a_{ij}(X))$ defines a Lie algebra homomorphism of α into $\mathfrak{sl}(n, \mathbb{R})$.

Lemma 4.4. *Suppose* $n \geq 3$ *. Let* ψ *be a real analytic non-trivial SL(n, R) action on* $Sⁿ$ such that $F(SO(n-1)) = F(L(n))$. Let $p \in Sⁿ$ be a fixed point of *the* $SL(n, R)$ *action* ψ . *Then there is an equivariant real analytic diffeomorphism h* of \mathbb{R}^n onto an invariant open set of S^n such that $h(0) = p$. Here $SL(n, R)$ acts *standardly on Rⁿ .*

Proof. Notice that, for each $n \ge 3$, any non-trivial endomorphism of $\mathfrak{gl}(n, R)$ is of the form $Ad(g)$ or $Ad(g) \cdot d\sigma$, where $g \in GL(n, R)$ and $d\sigma$ is the differential of the automorphism *σ.* Define a Lie algebra homomorphism

$$
\rho\colon \mathfrak{sl}(n,\,R)\to L(S^n)
$$

as follows:

(1)
$$
\rho(X)_q(f) = \lim_{t \to 0} \frac{f(\psi(\exp(-tX), q)) - f(q)}{t}
$$

for $X \in \mathfrak{sl}(n, R)$, $q \in S^n$. Here f is a real valued real analytic function on S^n . Then $\rho(X)_p = 0$ for each $X \in \mathfrak{gl}(n, R)$. According to Lemma 4.3, there exists an analytic system of coordinates $(U; x_{\mathrm{l}},$ $\cdots,$ $x_{\mathrm{s}}),$ with origin at $p,$ and there exists a_{ij} ∈\$l(n, **R**)* such that

(2)
$$
\rho(X)_q = \sum_{i,j} a_{ij}(X)x_i(q) \frac{\partial}{\partial x_j} \quad \text{for } X \in \mathfrak{gl}(n, R), q \in U.
$$

By the above notice, it can be assumed that

(3)
$$
X = (a_{ij}(X))
$$
 for each $X \in \mathfrak{gl}(n, R)$, or
(3') $d\sigma(X) = (a_{ij}(X))$ for each $X \in \mathfrak{gl}(n, R)$.

From the assumption $F(SO(n-1)) = F(L(n))$, it follows that the case (3) does not happen.

Let $k: U \rightarrow R^n$ be a real analytic diffeomorphism of U onto an open set of *R*^{*n*} defined by $k(q) = (x_1(q), ..., x_n(q))$ for $q \in U$. Then $k(p) = 0$. There is a positive real number ε such that the ε -neighborhood $\boldsymbol{D}_{\varepsilon}$ of the origin is contained in *k(U).* Put

$$
x=\left(\frac{\varepsilon}{2},0,\,\cdots\!,0\right).
$$

Then the group $L(n)$ is the isotropy group at x. Moreover $L(n)$ agrees with the identity component of the isotropy group at $k^{-1}(x)$ by (1), (2) and (3'). Define a map $h: \mathbb{R}^n \rightarrow S^n$ as follows:

$$
h(0) = p; h(gx) = \psi(g, k^{-1}(x)) \quad \text{for } g \in SL(n, R).
$$

The map *h* is a well-defined equivariant *SL(n, R)* map. It follows that

$k \cdot h = identity$ on on D_{ε}

by the uniqueness of the solution of an ordinary differential equation defined by (1), (2) and (3'). Hence the map $h: \mathbb{R}^n \rightarrow S^n$ is a real analytic submersion of \mathbb{R}^n onto an invariant open set of S^n . Since h is injective on D_{ε} , it can be seen that the isotropy group at $h(x)=k^{-1}(x)$ agrees with $L(n)$. Then the map $h: \mathbb{R}^n \rightarrow S^n$ is injective.

This completes the proof of Lemma 4.4.

Proof of Theorem 4.2. Let ψ be an element of $A^+(n)$. According to Theorem 1.3 and Lemma 4.1, $F(L(n))$ is a real analytic submanifold of $Sⁿ$ on which $N(n)$ acts naturally, and $F(L(n))$ is real analytically diffeomorphic to $S¹$. Moreover $F = F(SL(n, R))$ consists of two points N, S. Let $h: (-1-\varepsilon, 1+\varepsilon)$ $\rightarrow F(L(n))$ be a real analytic imbedding such that $h(1) = N$ and $h(-1) = S$, where ϵ is a sufficiently small positive real number. Since $N(n)/L(n) \approx \mathbf{R}$ acts real analytically on $F(L(n))$, the action defines a real analytic vector field v on $F(L(n))$ naturally. Then there exists a real analytic function $f(t)$ on the interval $(-1-\varepsilon, 1+\varepsilon)$ such that $v=h_*\left(f(t)\frac{d}{dt}\right)$ on the image of h. We shall first show that the function $f(t)$ satisfies the conditions (A) , (B) stated in the

section 2. The condition (A) follows from $F = \{N, S\}$. Considering the standard action of $SL(n, R)$ on R^n , we can see that the condition (B) follows from Lemma 4.4.

We shall next show that the *n*-sphere $Sⁿ$ with the $SL(n, R)$ action ψ is equivariantly real analytically diffeomorphic to M_f , where M_f is a real analytic $SL(n, R)$ -manifold constructed from $f(t)$ as before. For this purpose, we consider the following commutative diagram:

$$
\mathbf{SO}(n) \underset{NS\mathbf{O}(n-1)}{\times} (F(\mathbf{SO}(n-1))-F) \xrightarrow{\alpha} S^{n}-F
$$

\n
$$
\downarrow \beta
$$

\n
$$
\mathbf{SL}(n,\mathbf{R}) \underset{N\mathcal{L}(n)}{\times} (F(L(n))-F) \xrightarrow{\gamma} S^{n}-F.
$$

Here $NSO(n-1)$ and $NL(n)$ are the normalizers of $SO(n-1)$ and $L(n)$ respectively. According to Theorem 1.3, Lemma 3.1 and Lemma 4.1, we can show that α , β and γ are real analytic one-to-one onto mappings. Moreover α is a diffeomorphism by the differentiable slice theorem; hence *β* and γ are also real analytic diffeomorphisms. It follows that *Sⁿ—F* is equivariantly real analytically diffeomorphic to a real analytic $SL(n, R)$ -manifold X_f constructed from *f(t)* as before. Consequently the *n*-sphere $Sⁿ$ with the action ψ is equivariantly real analytically diffeomorphic to M_f , by making use of Lemma 4.4. Hence

we conclude that $c_n(F_*)=A_*^+(n)$.

This completes the proof of Theorem 4.2.

5. Certain closed subgroups of *O(n)*

In this section, we shall prove Lemma 1.1 and Lemma 1.2. Put
 $D(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ \cos \theta & \sin \theta \end{pmatrix}, \quad \theta \in \mathbb{R}.$

$$
D(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \qquad \theta \in \mathbb{R}.
$$

Denote by $D(a_1, \dots, a_r)$ the one-dimensional closed subgroup of $O(n)$ consists of the following matrices:

$$
\binom{D(a_1\theta)}{0} \cdot \qquad \qquad 0 \\ \qquad \vdots \\ \qquad \qquad D(a_{\tau}\theta)\bigg), \qquad \theta \in \mathbb{R}
$$

for *n=2r,* and

$$
\begin{pmatrix}D(a_1\theta) & 0 \\ 0 & D(a_r\theta) \\ 0 & 1\end{pmatrix}, \qquad \theta \in \mathbb{R}
$$

for $n=2r+1$, respectively. Here a_1, \dots, a_r are integers. Consider $U(k)$ as the centralizer of

$$
\binom{D(\pi/2)}{0} \cdot \left.\begin{matrix} 0 \\ D(\pi/2) \end{matrix}\right)
$$

in *O(2k).* Then we can derive easily the following result.

Lemma 5.1. Suppose that $b_1 > b_2 > \cdots > b_s > 0$ and

$$
(a_1, \dots, a_r) = (\underbrace{b_1, \dots, b_1}_{n_1}, \dots, \underbrace{b_s, \dots, b_s}_{n_s}, 0, \dots, 0).
$$

 $\emph{centralizer of } D(a_1, \, \cdots, \, a_r) \emph{ in } \; \mathbf{O}(n) \emph{ agrees with }$

$$
U(n_1)\times\cdots\times U(n_s)\times O(m)\ ,
$$

 $where m = n - 2(n_1 + \cdots + n_s).$

Here we shall prove Lemma 1.2. Let $h: SO(n) \rightarrow O(n)$ be a continuous homomorphism with a finite kernel. Suppose $n \geq 3$. Then it is easy to see that *h* is an isomorphism onto $SO(n)$. Denote by *T* a maximal torus of $SO(n)$ defined by the direct product of the subgroups

$$
T_k = D(0, \dots, 0, 1, 0, \dots, 0)
$$

for $0 < k \le n/2$. Then there is an element x_1 of $SO(n)$ such that $h(T) = x_1 Tx_1^{-1}$. Then the subgroup $x_i^{-1}h(T_k)x_i$ is of the form $D(a_{k1}, \dots, a_{kr})$ for each k. Compare the centralizer of T_k and that of $x_1^{-1}h(T_k)x_1$ in $O(n)$. We can derive

$$
x_1^{-1}h(T_k)x_1 = T,
$$

for some j, by Lemma 5.1. Hence there is an element x_2 of $O(n)$ such that

$$
h(t) = x_1 x_2 t x_2^{-1} x_1^{-1}, \quad \text{for } t \in T.
$$

It follows that the representations $y \rightarrow y$ and $y \rightarrow x_2^{-1} x_1^{-1} h(y) x_1 x_2$ of $SO(n)$ are equivalent. Since the representation $y \rightarrow y$ is absolutely irreducible, there is an element x_3 of $\bm{O}(n)$ such that

$$
x_3 y x_3^{-1} = x_2^{-1} x_1^{-1} h(y) x_1 x_2
$$

for each $y \in SO(n)$ (cf. [6],Lemma 5.5.1). Put $x = x_1x_2x_3$. Then we derive that $x \in O(n)$ and $h(y) = xyx^{-1}$ for each $y \in SO(n)$.

This completes the proof of Lemma 1.2.

We shall next prove Lemma 1.1. Let G be a connected closed subgroup of $O(n)$. Suppose that $n \geq 3$ and

(1)
$$
\dim O(n) > \dim G \geqslant \dim O(n) - n.
$$

The inclusion map *i*: $G \rightarrow O(n)$ gives an orthogonal faithful representation of G. Suppose first that the representation *i* is reducible. Then, by an inner automorphism of $O(n)$, G is isomorphic to a closed subgroup G' of $O(k) \times O(n-k)$ for some k such that $0 < k \le n/2$. By (1), we derive that $k=1$, or $k=2$ and $G' =$ $SO(2)\times SO(2)$. The codimension of $O(1)\times O(n-1)$ in $O(n)$ is $n-1$. If $n \geq 4$, then $SO(n-1)$ is semi-simple; hence there is no closed subgroup of codimension one in $SO(n-1)$. We can conclude that

$$
G' = SO(1) \times SO(n-1) \approx SO(n-1),
$$

\n
$$
G' = SO(2) \times SO(2) \qquad \text{for } n = 4, \text{ or}
$$

\n
$$
G' = \{1\} \qquad \text{for } n = 3.
$$

Suppose next that the representation *i* is irreducible and G has a onedimensional central subgroup. By Lemma 5.1, it can be seen that *n* is even and G is isomorphic to a closed subgroup G' of $U(n/2)$ by an inner automorphism of $O(n)$. It follows from (1) that

$$
G' = U(3) \qquad \text{for } n = 6 \text{, or}
$$

$$
G' = U(2) \qquad \text{for } n = 4 \text{ .}
$$

It remains to consider the case that G is semi-simple and the representa-

tion i is irreducible. In the following, we assume that G is semi-simple and the representation i is irreducible. Suppose that the complexification i^c of i is reducible. Then the representation *i* posesses a complex structure and *n* is even. Hence *G* is isomorphic to a closed subgroup of $U(n/2)$. We can derive that $n=4$ by (1). Moreover, by an inner automorphism of $O(4)$, G is isomorphic to $SU(2)$ which is standardly imbedded in $O(4)$.

Suppose that the complexification i^c of i is irreducible. Then i^c is a complex irreducible representation of G of degree *n.*

(i) Moreover suppose first that G is not simple. Let G^* be the universal covering group of G, and let $p: G^* \to G$ be the covering projection. Since G is not simple, there are closed semi-simple normal subgroups H_1 and H_2 of G^* such that

$$
G^* = H_1 \times H_2.
$$

Consider the representation $i^c p$: $G^* \rightarrow U(n)$. Then there are irreducible complex representations r_1 and r_2 of H_1 and H_2 respectively, such that the tensor product $r_1 \otimes r_2$ is equivalent to $i^c p$. Since $i^c p$ has a real form ip , the representations r_1 and r_2 are self-conjugate; hence r_1 (resp. r_2) has a real form or a quaternionic structure, but not both (cf.[l], Proposition 3.56). Moreover, if *r¹* has a real form (resp. quaternionic structure), then *r²* has also a real form (resp. quaternionic structure). Put $n_s = \deg r_s$ for $s = 1, 2$. Then

(2)
$$
\dim O(n)-n=\frac{n(n-3)}{2}=\frac{n_1n_2(n_1n_2-3)}{2}.
$$

Suppose first that r_1 has a quaternionic structure. Then it follows that n_1 and $n₂$ are even, and

$$
\dim H_s \leqslant \dim \mathbf{Sp}\left(\frac{n_s}{2}\right) \quad \text{for } s = 1, 2.
$$

Hence

$$
\dim G = \dim H_1 + \dim H_2 \leqslant \frac{n_1(n_1+1)}{2} + \frac{n_2(n_2+1)}{2}
$$

.

Compare the above inequality with (2). We can derive easily that

$$
\dim G \!<\!\dim O(n)\!-\!n
$$

except the case $n_1 = n_2 = 2$. If $n_1 = n_2 = 2$, then $n = 4$ and dim $G = \dim O(n)$. We can conclude from (1) that r_1 has no quaternionic structure. Suppose next that r_1 has a real form. Then, since H_s is semi-simple, it follows that

$$
n_s\geqslant 3 \qquad \text{for } s=1, 2\,.
$$

Moreover it follows that

 $SL(n, R)$ ACTIONS ON n -Sphere 577

 $\dim H_s \leqslant \dim \mathcal{O}(n_s)$ for $s = 1, 2$.

Hence

$$
\dim G = \dim H_1 + \dim H_2 \leqslant \frac{n_1(n_1-1)}{2} + \frac{n_2(n_2-1)}{2}.
$$

Compare the above inequality with (2). We can derive that

dim G dim $O(n)-n$.

This is a contradiction to (1), and hence we can conclude that r_1 has no real form. Consequently we can conclude that G must be simple.

(ii) Suppose next that G is simple. Moreover suppose first that G is an exceptional Lie group. Then we can derive the following result from a table of the degrees of the basic representations (cf. [2], p. 378, Table 30): the possibility remains only in the case that $n=7$ and G is locally isomorphic to the exceptional Lie group G_2 . Consider G_2 as a closed subgroup of $O(7)$ as usual. Then we can conclude that G is isomorphic to G_2 by an inner automorphism of $O(7)$. It remains to consider the case that G is locally isomorphic to *SU(k), Sp(k)* or *SO(k)*. Put $r = \text{rank } G$. Denote by G^* the universal covering group of G. Denote by L_1, \dots, L_r , the fundamental weights of G^* . Then there is a one-toone correspondence between complex irreducible representations of G^* and sequences (a_1, \dots, a_r) of non-negative integers such that $a_1L_1 + \dots + a_rL_r$ is the highest weight of a corresponding complex irreducible representation (cf. [2], Theorem 0.8, Theorem 0.9). Denote by

$$
d(a_1L_1+\cdots+a_rL_r)
$$

the degree of the complex irreducible representation of G^* with the highest weight $a_1L_1 + \cdots + a_rL_r$. The degree can be computed by the Weyl's formula (cf. [2], Theorem 0.24; (0.148), (0.149), (0.150)). Notice that if

 $a_1 \geq a'_1, \dots, a_r \geq a'_r$,

then

$$
d(a_1L_1 + \dots + a_rL_r) \geq d(a'_1L_1 + \dots + a'_rL_r)
$$

and the equality holds only if $a_1 = a'_1, \dots, a_r = a'_r$.

(a) Suppose first that G^* is isomorphic to $SU(r+1)$ for $r \ge 1$. Since rank $G \leqslant$ rank $SO(n)$, it follows that

(3) $2r \leqslant n$.

If $r \ge 6$, then we derive from (3) that

$$
\dim G = \dim SU(r+1) = r(r+2) < \frac{n(n-3)}{2} = \dim O(n) - n.
$$

This is a contradiction to (1). If the pair *(n, r)* satisfies the conditions (1) and (3) , then (n, r) is one of the following:

$$
(10,5)
$$
, $(8,4)$, $(7,3)$, $(5,2)$ and $(4,1)$.

Notice that

$$
d(L_i) = {}_{r+1}C_i, \quad d(2L_1) = d(2L_r) = \frac{(r+1)\cdot (r+2)}{2}.
$$

Thus there is no complex irreducible representation of $SU(r+1)$ of degree $2r$ for $r=4,5$. Hence (n, r) is not $(10,5)$ nor $(8,4)$. Since

$$
d(2L_1) = d(2L_2) = 6, \quad d(L_1 + L_2) = 8 \quad \text{for } r = 2; d(2L_1) = d(2L_3) = 10, \quad d(2L_2) = d(L_1 + L_2) = d(L_2 + L_3) = 20, \n\text{and } d(L_1 + L_3) = 15 \quad \text{for } r = 3,
$$

it follows that there is no complex irreducible representation of $SU(r+1)$ of degree $2r+1$ for $r=2,3$. Hence (n, r) is not $(7,3)$ nor $(5,2)$. It remains only the case $(n, r) = (4, 1)$. But it is seen that the complex irreducible representation of *SU(2)* of degree 4 has no real form. Therefore we can derive that G is not locally isomorphic to $SU(r+1)$.

(b) Suppose next that G^* is isomorphic to $Sp(r)$ for $r \ge 2$. Since rank $G \leqslant$ rank $SO(n)$, it follows that

$$
(4) \t 2r \leqslant n.
$$

On the other hand, since dim $Sp(r) = r(2r+1)$, the inequality (1) implies that

(5)
$$
n(n-3) \leq 2r(2r+1) < n(n-1)
$$
.

It follows from (4), (5) that

$$
1\leqslant \frac{n}{2r}\leqslant \frac{2r+1}{n-3}.
$$

Therefore, if the pair (n, r) satisfies the conditions (4) , (5) , then we derive $n=2r+2$. Notice that

$$
d(L_i) = {}_{2r+1}C_i - {}_{2r+1}C_{i-1}, d(2L_1) = r(2r+1).
$$

If $r \geq 3$, then we can derive that

$$
d(L_i) \geqslant 2r+3 \quad \text{for } i = 2, 3, \dots, r;
$$

$$
d(2L_1) \geqslant 2r+3.
$$

If $r = 2$, then

$$
d(L_1) = 4
$$
, $d(L_2) = 5$, $d(2L_1) = 10$,
 $d(2L_2) = 14$ and $d(L_1 + L_2) = 16$.

It follows that there is no complex irreducible representation of $Sp(r)$ of degree $2r+2$, for $r\geqslant 2$. Therefore we can derive that G is not locally isomorphic to *Sp(r).*

(c) Suppose finally that G^* is isomorphic to $Spin(k)$ for $k \ge 5$. It follows from (1) that

$$
n(n-3)\leqslant k(k-1)
$$

Hence we have $n=k+1$. Suppose $k=2r$. Then

$$
d(L_i) = {}_{2r}C_i \text{ for } 1 \le i \le r-2, \quad d(L_{r-1}) = d(L_r) = 2^{r-1},
$$

\n
$$
d(2L_1) = (r+1) \cdot (2r-1), \quad d(2L_{r-1}) = d(2L_r) = {}_{2r-1}C_r,
$$

\n
$$
d(L_1 + L_{r-1}) = d(L_1 + L_r) = (2r-1)2^{r-1}, \text{ and}
$$

\n
$$
d(L_{r-1} + L_r) = {}_{2r}C_{r-1}.
$$

It follows that there is no complex irreducible representation of *Spin(2r)* of degree $2r+1$. Suppose $k=2r+1$. Then

$$
d(L_i) = {}_{2r+1}C_i \text{ for } 1 \le i \le r-1, \quad d(L_r) = 2^r,
$$

\n
$$
d(2L_1) = r(2r+3), \quad d(L_1+L_r) = r \cdot 2^{r+1}, \text{ and}
$$

\n
$$
d(2L_r) = 2^{2r}.
$$

It follows that there is no complex irreducible representation of $Spin(2r+1)$ of degree $2r+2$ for $r \neq 3$, and there is a unique complex irreducible representation of *Spίn(7)* of degree 8. It is seen that the representation of *Spίn(7)* has a real form. Therefore we can derive that $n=8$ and G is isomorphic to Spin(7). Here $Spin(7)$ is considered as a closed subgroup of $O(8)$ by the real spin representation. Then the isomorphism of G onto *Spin(7)* is realized by an inner automorphism of $O(8)$.

This completes the proof of Lemma 1.1.

OSAKA UNIVERSITY

References

- [1] J.F. Adams: Lectures on Lie groups, Benjamin Inc., New York, 1969.
- [2] E.B. Dynkin: *The maximal subgroups of the classical groups,* Amer. Math. Soc. Transl. 6 (1957), 245-378.
- [3] H. Grauert: *On Levi's problem and the imbedding of real analytic manifolds,* Ann. of Math. 68 (1958), 460-472.
- [4] V.W. Guillemin and S. Sternberg: *Remarks on a paper of Hermann,* Trans. Amer. Math. Soc. 130 (1968), 110-116.
- [5] C.R. Schneider: *SL(2, R) actions on surfaces,* Amer. J. Math. 96 (1974), 511-528.
- [6] F. Uchida: *Classification of compact transformation groups on cohomology complex projective spaces with codimension one orbits,* Japan. J. Math. 3 (1977), 141-189.