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1. Introduction

Let F, be the compact, simply connected, exceptional Lie group of rank 4.
In [6] we have described the Hopf algebra structure of H 4«(QF,;Z). Using
this thoroughly, we can compute the action of the mod p Steenrod algebra 1,
on H*(QF ,;Z,) for every prime p. But here we deal with the cases p=2 (Theo-
rem 4) and p=3 (Theorem 5) only, because in the other cases the result follows
immediately from a spectral sequence argument for the path fibration QF,—
PF,—F,.

Let C(=C,)=T"-Sp(3) in the notation of [3], which is a closed connected
subgroup of F,. Then in [6] the homogeneous space F,/C has been found to
be a generating variety for F,. 'That is, there exists a map f: F,/C—QF, such
that the image of fu: Hx(F,/C;Z)—>H«(QF,; Z) generates the Pontrjagin
ring H«(QF,; Z). In this situation Bott [1, §6] asserted that the Steenrod
operations in H*(QF,; Z,) can be deduced from their effect on H*(F,/C; Z,).
This is the motive of our work.

Throughout the paper X will always denote any connected space such
that H (X ; Z) is of finite type.

2. The generating variety

In this section we shall compute the 1,-module structure of H*(F,/C; Z,)
for p=2 and 3.
First since C contains a maximal torus T of F,, we have a commutative
diagram
FJT-LsF,C
(2.1) J ¢ lj

BT -2 BC.

We require the following notations and results (2.2)-(2.6), whose details can be
found in [3, §4]:
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(2.2) H¥BT;Z)=Z[t,y1, Y5 y;] where deg t=deg y,=2 (=1, 2, 3).

Put z,=y,(t—y,)€ HYBT; Z) and let g;=0(2), 2, 2;)€H*(BT; Z) for i=1,2,3
where o; denotes the i-th elementary symmetric function. Then we have
(2.3) H*BC; Z)=Z[t, q1, g2, 4;] where deg t=2 and deg ¢;=4%41 (1=1, 2, 3).
(24) pH(t)=t and p¥(g) =g, (i=1,2,3) .

On the other hand we have

(2.5) H*(F,C; Z)=Z[t, u, v, w]/(£*—2u, u*'— 3P0+ 2w, 30°— 1w, v —w’) where
deg t=2, deg u=6, deg v=_8 and deg w=12 .

(2.6) j*(O)=t,j*(9)="7,j*(g) =30 and j*(g;)=w .

We shall say that an 4,-action on H*(X; Z,) is non-trivial if it does not
follow directly from the axioms 1), 4) or 5) of [4, p.1 and p.76]. With these
preliminaries we have

Proposition 1. The non-trivial A,-action on
H*(F,|C; Z,)=2Z,[t, u, v, w][(£, i’ — v, v*—t*w, v®—u?)
is given by:
1) S¢@)=1+t.
(2) S¢(u) = v, S¢*(u) = tv and S¢®(u) = t*v .
3) S¢(v) = 0, S¢*(v) = w, S¢®(v) = tw and S¢¥(v) = v°.
4) S¢(w) = tw, S¢i(w) =0, S¢w) =0, S¢w)=vw, S¢(w)=tow
and Sq¥(w) = w*.

Proof. (1) and the last equalities in (2), (3) and (4) are immediate from
the axiom 3) of [4, p.1].

First we consider (3) and (4). Since v=j*(g,) and w=j*(¢;) in H*(F,/C;
Z,) by (2.6), it suffices to determine Sg¢(¢;) and S¢(¢;) in H*(BC; Z,). Todo
so, by (2.4), it suffices to compute S¢‘(¢,) and Sq¢(¢;) in H*(BT'; Z,). But this
is a direct calculation, for H*(BT;Z,) is multiplicatively generated by the

elements of degree 2 (see (2.2)).
Finally we show the remaining part of (2). By [3, Corollary 4.5] we may set

S¢*(u) = k-tu+1-v and
Sq¢t(u) = m-ttu+n-tv

for some k,l,m,nsZ, Then from the Adem relations S¢S¢=S¢Sq¢,
S¢*Sq*=S¢*+S¢°Sq' and S¢*S¢*=Sq’Sq', it follows that k/=0, Im+n=1 and
I=n respectively. Hence k=m=0 and /=n=1, which proves (2).
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"Next we turn to the case p=3. To begin with we need some preparations.
As in [6, 83], put x=t/2 and x;=x—y; for /=1,2,3. Thus x, x,€H?
(BT Z[1/2]) (i=1, 2, 3). Furthermore put

(2.7) ty=—x+4x5, t,=20,4%,, t;=—x,—x and t,=—x,-+}x .

Note that t,e HA(BT; Z) (i=1,2, 3,4). For later convenience we introduce the
notation:

¢ =0ty ty, by, t)EH¥(BT; Z) ;
p; = o (i, x}, x5) € HY(BT; Q) ,
where 1</ <4 and 1<;j<3. A straightforward calculation using (2.7) yields:
(2.8) E—26,=2(p,+%*) ;
52636+ 2, =Py +*2)*+2( pp+py* — 3xixs — 3x3x?) .
We also need:
(2.9) p=—aq+3%% p,=¢—2qx+3x*.
This follows from [6, (3.6)].
Now put 7,=c¢,;/2. From the discussion in [3, §4.2] we observe that
H*(BT; Z) = Z[t,, ty, ty, Ly, 711/(€,—27,)

on which the Weyl group ®(F,) acts as follows:

R R, R, R, R,
t t, -t L—"
[ [ t, t,—7:
t; 4 t, t;—v,
ty 13 t,—"

This allows us to identify the #; with that given in [5, §4(A)]. Then by [5,
Theorem A] we have

(2.10) HX(FT; Z)=Z2[t,, t,, ts, 1, Y1, V3, Wil [(:— 2715 =271, ¢3—23, ¢4—2¢;,7,
+291—3w,, —c,vi+73, 3c 1 — v+ 3csviw,+3wh, wi) where degt;—=deg
7,=2 (=1, 2, 3, 4), deg v;=06 and deg w,=8§.

(By abuse of notation we have written ¢;, ¢;, etc. for their images under ¢*.)

It is well known that Spin(9) is a closed connected subgroup of F,, and
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the homogeneous space F,/Spin(9) can be identified with the Cayley projec-
tive plane I, whose integral cohomology is given by:

(2.11) H*(I1; Z)=Z[w]/(w®) where deg w=3§ .

Since T Spin (9)C F,, we have a natural map

F T2 FSpin (9)=11.
Then it follows from [5, (6.9)] that
(2.12) p*(w)=w,.
The following result may be of independent interest.
Lemma 2. ¢*(v)=w,+xixj+x5x°+2x* in HYF,|T; Z).

Proof. From (2.6), the commutativity of (2.1), and (2.4) we see that
*(v)=q/3€H F,/T; Z). (2.10), together with (2.8) and (2.9), gives:

l

u;r—n wf.a w].—

(cs—cse+ %Cg)

W,

(po+pi¥*— 3xix;— 3x3x%)

G — xix;—xix*—2xt .

Il

Combining these we get the result. (It is easy to verify that xfx3-+x3x>2x* is
in fact an integral class.)

Proposition 3. The non-trivial Az-action on
HX(F,|C; Zy) = Z[t,9]/(#, ©°)
is given by:

(1) @) ==.
(2) ®Yv)= —*t, ®¥v) =0, ®*v) = 0 and P (v) = 0.

Proof. (1) and the last equality in (2) are immediate from the axiom 3) of
[4, p.76].

To show (2), we must compute ®(v) fori=1,2,3. Sinceg*: H¥(F,/C;Z)—
H*(F,|T; Z) is a split monomorphism (see [3, §3]) and its image is known with
Z s~coefficients (see Lemma 2), it saffices to determine g*(®*(v)) in H*(F,/T'; Z).
(2.10) and the same calculation as in (2.8) yield:
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H*(F,|T; Z3) = Zj[t,, ty, ts, t,, w,][(c, i, ci—ecse,—cd,
c3—ccl, cf, wi)
= Z3[x,, %y, %3, %, w,][(x}+ 23425+ 2, 23+
wiad x5+ ada? - wiat 4o, w§4- x5’ afat
145, 25, wl) .

Moreover (2.12) and (2.11) imply that @®‘(w,)=0 for all 7>1. Therefore
we have

7*(@*(v)) = @Y (g*())
= @Y(xix5+xjx?—x*)
= —xind—axlxi—aixn?—xlat — b

= —af.

So since ¢*(tf)=—« it follows that ®'(v)=—1°. Using the Adem relation
P*=—@'®', we also get ®%*v)=0. Finally we consider ®}v). By [3,
Corollary 4.5] we may set

®¥(v) = k- 1fv+1 - 10*

for some k,/=Z;. Then ¢*(®3v))=k-x%w,+1 -x*wi+---. On the other hand
notice that ®3(¢*(v)) does not involve x%w, or x*wi, and they are linearly inde-
pendent in H®(F,/T; Z,). This implies that k=I=0 as required.

3. Main results

As seen in [6], the algebraic description of H 4«(QF,; Z) is much easier than
that of H*(QF,; Z). For this reason we shall treat the right f,-action on
H «(X; Z,) which dualizes to the usual left (A, -action on H*(X; Z,).

We first consider the case p=2 and follow the notation of [2]. For >0 let
( )S¢' be the dual to S¢’( ). Then these operations have the following pro-
perties (cf. [4, p. 1]):

B.1) ()S¢:H(X;Z,)—~H, (X;Z,).

(3.2) If deg a<<2i, (a)Sq'=0.

(3.3) If deg a=2i, (a)Sq'=~/«a where \/ is the dual of the squaring map
for Z ,-algebras.

(3.4) (diagonal Cartan formula) Let ~p: H «(X; Z,)—H «(X; Z,)QH «(X; Z,)
be the coproduct (induced from the diagonal map A: X - XX X). If y(a)=
2la'Qa’’, then

H(@S7) = 32, (2)S¢@(a")Sg’ -
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Suppose now that X is an H-space, and «+ 3 denotes the Pontrjagin product
of @ and B in H«(X; Z,). Then one can readily check:

(3.5) (internal Cartan formula)
(a-B)S¢* = 3 ()Sg-(8)S7'

We shall say that an A,-action on H «(X; Z,) is non-trivial if it does not
follow from (3.1), (3.2) or (3.5).

Let us now consider the case X=QF,. Hereafter we shall use the notations
and results of [6] without specific reference.
First we have

(3.6) Hy(QF; Z)=Z)[or, 03, 05, oy oul/(0l) where deg o=2i(i=1,2,5,7, 11).
Moreover o, ct=0s+0oic,, o, and o}y=oy+olo,‘o,05 are primitive,

and Jr(o,)=0,Qa, .

Therefore (by (3.5)) we have only to determine the ( )S¢' on the elements
oy, 05, 04, 0; and of;. On the other hand, (3.4) implies that for z>1 ( )S¢’
sends a primitive element to another primitive element. In view of (3.6), the
primitive elements of H «(QF,; Z,) which appear in degrees <22 are:

deg 2 8 10 14 16 20 22

2 4 4 72 ’
g, O3 g5 agq g2 05 o111 .

These, together with (3.1) and (3.2), show that possible non-zero operations
(among non-trivial operations) are:

deg 2 8 10 14 16 20
(@)S¢ (@9)S¢ (0)Sq" (o11)S¢® (a1))SE (o11)S¢"
(o7)S¢°

Let us compute these operations. First by (3.3) we have (0,)S¢?=0o,. Next
we want to determine the coefficient 2 €Z, in the equation (05)S¢*=k-o3. By
use of (3.5) we have (08)S¢*=(05)S¢’*+(0301)S¢?=(05)S¢* and so (o5)S¢’=
k.c}. Dualizing this gives Sg¢¥a,)=k-bs+1-a; for some l=Z, Since
F¥(S¢(a))=S¢(f ¥(a,))=S¢*(tu)=1t?u~+1tv by use of (1) and (2) of Proposition
1, and since f¥(b;)=tu+tv and f¥(a;)=tv, it follows that k=1 (and also
[=0). Thus we obtain (c§)S¢*=073.

Instead of proceeding further, we state here a pattern of computation:
The problem is to determine the coefficient k'€ Z, in the equation

(@)Sq' =K'+

where a’ and @ are primitive. In particular o’=a+decomposables and « is
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the image under the mod 2 reduction of an integral class which is indecompos-
able. Using (3.5) we get

(@)Sq' = k-B+ -
where k(€ Z,) and k' determine each other. Dualizing this gives
*) S¢b) = keat -

where a and b are dual to o and @B respectively. In particular a is the image
under the mod 2 reduction of an integral class which is primitive. Since the
composite

c ¥
PH*(QF,; Z) —> H*(QF; Z) —f—> H*(F,|C; Z)

is a split monomorphism, it is sufficient to consider (*) in H*(F,/C; Z,) via
f¥. But in [6, §4] the cohomology ring H*(QF,; Z) and its image under f¥
have been described, and by Proposition 1 we already know the A;-action
on H*(F,C;Z,). Thus k and hence &’ are computable.

In this way routine computations yield

Theorem 4. The non-trivial A,-action on
H (QF ; Z)) = Z)[0,, 03, 0%, 7, O'fl]/(o'i)
is given by:

(1) (oS¢ =0,

(2) (08)S¢* = o} and (c§)S¢* = 0.

(3) (o7)S¢* =0, (0,)S¢* = % and (o;)S¢"* = 0.

“ (a,’(l))qu = o4% (¢11)Sq¢* = 0, (¢11)S¢® = a3, (61:)S¢® = o, and (a1,)Sq"°

The argument for the case p=3 is similar (we have prepared Proposition 3
in place of Proposition 1) and so we only present the result.

Theorem 5. The non-trivial A,-action on
H*(QF4; ZS) = Za[o'n T3, Ué) 0-4) 0'1,1]/(0-?)
is given by:

(1) (o)@' =o0,.
(2) (e8)®'=0.
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(1]
[2]

B3]
(4]
(5]
(6]
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() (a7)0 = o} and (o7)P* = 0.
4 ()0 = a,(c1)P* = 0 and (¢{,)P* = 0.
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